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Abstract

We extend the earlier suggested QCD-motivated model for theQ2-dependence
of the generalized Gerasimov-Drell-Hearn (GDH) sum rule which assumes the
smooth dependence of the structure function gT , while the sharp dependence is
due to the g2 contribution and is described by the elastic part of the Burkhardt-
Cottingham sum rule. The model successfully predicts the low crossing point
for the proton GDH integral, but is at variance with the recent very accurate
JLAB data. We show that, at this level of accuracy, one should include the
previously neglected radiative and power QCD corrections, as boundary values
for the model. We stress that the GDH integral, when measured with such a
high accuracy achieved by the recent JLAB data, is very sensitive to QCD power
corrections. We estimate the value of these power corrections from the JLAB
data at Q2

∼ 1GeV2. The inclusion of all QCD corrections leads to a good
description of proton, neutron and deuteron data at all Q2.
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1UMR 6207 - Unité Mixte de Recherche du CNRS et des Universités Aix-Marseille I, Aix-Marseille
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The generalized (Q2-dependent) Gerasimov-Drell-Hearn (GDH) sum rules [1, 2]
are just being tested experimentally for proton, neutron and deuteron [3, 4, 5, 6].
The characteristic feature of the proton data is the strong dependence on the four-
momentum transfer Q2, for Q2 < 1GeV2, with a zero crossing for Q2

∼ 200−250MeV2,
which is in complete agreement with our prediction [7, 8], published almost 10 years
ago. Our approach is making use of the relation to the Burkhardt-Cottingham sum rule
for the structure function g2, whose elastic contribution is the main source of a strong
Q2-dependence, while the contribution of the other structure function, gT = g1 + g2 is
smooth.

However, the recently published proton JLAB data [6] lie below the prediction,
displaying quite a similar shape. Such a behaviour suggests, that the reason for the
discrepancy may be the oversimplified treatment of the QCD expressions at the bound-
ary pointQ0 ∼ 1GeV, defined in the smooth interpolation between large Q2 andQ2 = 0
and which serve as an input for our model. For large Q2 we took the asymptotic value
for the GDH integral and we neglected all the calculable corrections, as well as the
contribution of the g2 structure function. This was quite natural and unnecessary 10
years ago, since no data was available at that time.

In the present paper we fill this gap and include the radiative (logarithmic) and
power QCD corrections. We found that the JLAB data are quite sensitive to power
corrections and may be used for the extraction of the relevant phenomenological pa-
rameters. We present here the numerical values of these parameters which naturally
depend on the approximation of the QCD perturbation theory. The resulting theoret-
ical uncertainty should be of order of the last term of the perturbative series , taken
into account, and should not therefore be more than several percents.

Moreover, the perturbative series should contain the renormalon ambiguity due to
the factorial growth of the coefficients, resulting in a power rather than logarithmic
correction with an unspecified coefficient. It is in fact this ambiguity which allows
the interpretation of the dependence of the numerical value of the power correction,
earlier mentioned for the case of the F3 structure function [9], as an ambiguity in the
separation of logarithmic and power corrections.

We use the values of the power corrections as an input for our model at Q2

0
∼ 1GeV2

and we achieve a rather good description of the proton data at lower Q2. We also
present the improved description of the neutron and deuteron data and the behaviour
of the Bjorken sum rule at low Q2.

The starting point of our approach is the analysis of the general tensor structure of
W µν

A , the spin-dependent part of hadronic tensor W µν . It is a linear combination of all
possible Lorentz-covariant tensors, which should be orthogonal to the virtual photon
momentum q, as required by gauge invariance, and linear in the nucleon covariant
polarization s, from a general property of the density matrix. If the nucleon has
momentum p, we have as usual, s · p = 0 and s2 = −1. There are only two such
tensors: the first one arises already in the Born diagram

T µν
1

= ǫµναβsαqβ (1)

and the second tensor is just

T µν
2

= (s · q)ǫµναβpαqβ . (2)
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The scalar coefficients of these tensors are specified in a well-known way, since we have

W µν
A =

−iǫµναβ

p · q
qβ(g1(x,Q

2)sα + g2(x,Q
2)(sα − pα

s · q

p · q
)) =

−iǫµναβ

p · q
qβ((g1(x,Q

2) + g2(x,Q
2))sα − g2(x,Q

2)pα
s · q

p · q
) . (3)

Therefore, due to the factor (s · q), g2 is making the difference between longitudinal
and transverse polarizations, while gT = g1 + g2 contributes equally in both cases.

Let us consider now the Q2-dependent integral

I1(Q
2) =

2M2

Q2
Γ1(Q

2) ≡
2M2

Q2

∫

1

0

g1(x,Q
2)dx . (4)

It is defined for all Q2, and g1(x,Q
2) is the obvious generalization for all Q2 of the

standard scale-invariant structure function g1(x). Note that the elastic contribution at
x = 1 is not included in the above sum rule. Then, by changing the integration variable
x → Q2/2Mν, one recovers at Q2 = 0 the integral over all energies of spin-dependent
photon-nucleon cross-section, whose value is defined by the GDH sum rule [1, 2]

I1(0) = −
µ2

A

4
, (5)

where µA is the nucleon anomalous magnetic moment in nuclear magnetons. While
I1(0) is always negative, its value at large Q2 is determined by the Q2 independent

integral
∫

1

0
g1(x)dx, which is positive for the proton and negative for the neutron.

The separation of the contributions of gT and g2 leads to the decomposition of
I1(Q

2) as the difference between IT (Q
2) and I2(Q

2)

I1(Q
2) = IT (Q

2)− I2(Q
2), (6)

where

IT (Q
2) =

2M2

Q2

∫

1

0

gT (x,Q
2)dx, I2(Q

2) =
2M2

Q2

∫

1

0

g2(x,Q
2)dx . (7)

There are solid theoretical arguments to expect a strong Q2-dependence of I2(Q
2).

It is the well-known Burkhardt-Cottingham sum rule [10]. It states that

I2(Q
2) =

1

4
µGM(Q2)

µGM(Q2)−GE(Q
2)

1 +Q2/4M2
, (8)

where µ is the nucleon magnetic moment, GM(Q2) and GE(Q
2) denote the famil-

iar Sachs form factors, which are dimensionless and normalized to unity at Q2 = 0,
GM(0) = GE(0) = 1. For large Q2, as a consequence of the Q2 behavior of the r.h.s.
of Eq. (8), we get

∫

1

0

g2(x,Q
2)dx = 0. (9)
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In particular, from Eq. (9) it follows that

I2(0) =
µ2

A + µAe

4
, (10)

e being the nucleon charge in elementary units. To reproduce the GDH value (see
Eq. (5)) one should have

IT (0) =
µAe

4
, (11)

which was indeed proved by Schwinger [11]. The importance of the g2 contribution can
be seen already, since the entire µA-term for the GDH sum rule is provided by I2.

Note that IT does not differ from I1 for large Q2 due to the BC sum rule, but it is
positive in the proton case. It is possible to obtain a smooth interpolation for IpT (Q

2)
between large Q2 and Q2 = 0 [7]

IpT (Q
2) = θ(Q2

0
−Q2)(

µA,p

4
−

2M2Q2

(Q2

0
)2

Γp
1
) + θ(Q2

−Q2

0
)
2M2

Q2
Γp
1
, (12)

where Γp
1
=

∫

1

0
gp
1
(x)dx. The continuity of the function and of its derivative is guaran-

teed with the choice Q2

0
= (16M2/µA,p)Γ

p
1
∼ 1GeV2, where the integral is given by the

world average proton data.
This smooth interpolation seems to be very reasonable in the framework of the

QCD sum rules method [8, 12], as the low energy theorem for the quantity linear in µA

may, in principle, be obtained by making use of Ward identities. It is also compatible
with resonance approaches [13], as we observed earlier [8] that the magnetic transition
to ∆(1232), being the main origin of sharp dependence in that approach, contributes
only to g2.

However, such interpolation neglects the QCD perturbative and power corrections
and on the other hand, it assumes that at the boundary point Q0 the contribution of
g2 is already extremely small so that

IpT (Q
2

0
) = Ip

1
(Q2

0
). (13)

Both types of corrections are easily taken into account, although this does not allow a
simple analytic parametrization.

The starting point of the upgraded model is the corrected expression for the asymp-
totic expression for I i

1
(i = p, n):

I i
1
(Q2) =

2M2

Q2
[

∫

1

0

gi
1
(x,Q2)dx(1−

αs(Q
2)

2π
)− ci

<< Oi >>

Q2
] , (14)

where we took into account the one-loop perturbative correction (while the inclusion
of higher order ones will be discussed later), as well as the twist-4 contribution [14].
Here ci is the charge factor equal to 2/9 for proton and to 1/18 for neutron, while the
matrix elements of the combinations of reduced twist-3 and -4 operators happen to be
equal [14] for both proton and neutron:

<< Op >>=<< On >>= 0.09± 0.06GeV2 .
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Note that the kinematical target mass corrections happen to be numerically small
and we neglect their contribution. Anyway, they may be combined with the genuine
twist corrections and the resulting change of the latter is within experimental and
theoretical errors.

As the expression for the I2 stays unchanged, the expression for IT above the
matching point Q0 should change accordingly. Let us start from the proton case.

IpT,pert(Q
2) = θ(Q2

−Q2

0
)
2M2

Q2
[Γp

1
(1−

αs(Q
2)

2π
)− cp

<< Op >>

Q2
− Ip

2
(Q2)]. (15)

The smooth interpolation to the GDH value at Q2 = 0 is now more difficult and cannot
be performed anymore, by making use of simple analytic formulae. Instead, we expand
(15) to the power series at the point Q0 and define the expression at the low Q2 as:

IpT,non−pert(Q
2) = θ(Q2

0
−Q2)

N
∑

n=0

(

1

n!

∂nIpT,pert
∂(Q2)n

)

Q=Q0

(Q2
−Q2

0
)n. (16)

Here N is the number of continuous derivatives of these two expansions, which turns
out to be a free parameter of the model, together with the matching value Q0. They
should be chosen in such a way, that the condition for real photons

IpT,non−pert(0) =
µA

4
(17)

is satisfied.
The procedure we are implementing in such a way, may be considered as a matching

of the “twist-like” expansion in negative powers of Q2 and the “chiral-like” expansion
in positive powers of Q2, which is similar to the matching of the expansions in direct
and inverse coupling constants. In its simplest present version we take only the value
I(0) as an input, although the slope and other derivatives calculated within the chiral
perturbation theory may be added in future work.

As soon as the low Q2 region exhibits the important contribution of the resonances
[13], the suggested procedure may be also considered as a version of quark-hadron
duality. It is worthy to note here, that Bloom-Gilman duality for spin-dependent case
is strongly violated by the contribution of ∆(1232) resonance [15]. As it was mentioned
before, since this resonance does not contribute to the gT structure function [8], it is
this function which may be a good candidate to study duality.

We have studied Eq. (17) numerically changing the following inputs:
i) for different order of perturbative correction (1,2,3 loops) [16].
ii) for different values of the degree of approximating polynomial N in Eq. (16); it

is interesting that taking N = 1 does not allow for solution of Eq. (17).
iii) for different values of non-perturbative corrections, which we were choosing in

order to be close to JLAB data at their highest Q2
∼ 1GeV2. We observed that the

increasing of the order of perturbative corrections lead to systematical decrease of the
required non-perturbative one, which is similar to the case of F3 structure function [9]
and may be considered as a manifestation of the ambiguity in separating logarithmic
and power corrections.

iv) we varied the matching point Q0 until Eq. (17) is satisfied.

5



We found that Q0 is systematically (but not strongly) increasing with N . The
expression for Q2 dependent integral Γp

1
(Q2) = Ip

1,non−pert(Q
2)Q2/2M2 resulting from 3-

loops perturbative correction with N = 3, << Op >>= 0.11GeV2 and Q2

0
= 0.97GeV2

is shown in Fig. 1. It is reasonably close to the JLAB data [6]. In what follows the
thick lines correspond to our new approach and we present also the results from the
old approach for comparison.

0.2 0.4 0.6 0.8 1

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 1: Our description of Γp
1
(Q2) versus Q2. The thick line is the new analysis

to be compared with the thin line, which represents our previous approach without
corrections.

Here we took the asymptotic value for Γp
1
= 0.147 providing the good description

of Γp
1
(Q2) for Q2 of the order of several GeV 2, when the 3-loops radiative correction

is included. This procedure may be considered as a sort of preliminary estimate, since
the full 3-loops analysis is not available.

To generalize our approach to the neutron case, we use the difference between
proton and neutron instead of the neutron itself. Although it is possible, in principle,
to construct a smooth interpolation for the functions g1 themselves [17], it does not
fit the suggested general argument on the linearity in µA, since Ip−n

1
(0) is proportional

to µ2

A,n − µ2

A,p, which is quadratic and, moreover, has an additional suppression due to
the smallness of isoscalar anomalous magnetic moment. So we suggest the following
parametrization for the isovector contribution of IT (Q

2), namely Ip−n
T (Q2), above the

matching point, where again only the 1-loop term is presented explicitly

Ip−n
T,pert(Q

2) = θ(Q2
−Q2

1
)
2M2

Q2
[Γp−n

1
(1−

αs(Q
2)

2π
)

−cp
<< Op >>

Q2
+ cn

<< On >>

Q2
− Ip

2
(Q2) + In

2
(Q2)]. (18)

Here the transition value Q2

1
may be determined by the continuity conditions in

a similar way. We get the value Q2

1
∼ 1.04GeV2, which is not too far from that of
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the proton case. Concerning In
2
(Q2), which is given by Eq. (8), we have not neglected

Gn
E(Q

2) 3 and we have used its very recent determination [19]. The result of this
calculation is very slightly modified compared to the case where one assumes Gn

E(Q
2) =

0 and all the subsequent results involving the neutron were obtained with a non-zero
Gn

E(Q
2). The asymptotic value of Γp−n

1
= 0.21 is dictated by the Bjorken sum rule.

We also took the same value << On >>= 0.11GeV2 as in the proton case. The
plot representing Γp−n

1
(Q2) is displayed on Fig. 2 and agrees well with the very recent

experimental data [20].
This may be considered as an argument in favour of the general picture of power

corrections obtained in QCD sum rules calculations [14], where the neutron correction
is small. However the quantitative comparison with the calculations in the framework
of the chiral soliton model [18] would require a more detailed analysis.

Now we have all the ingredients to turn to the behavior of neutron integral, which
is simply obtained from the difference Γp

1
(Q2)−Γp−n

1
(Q2). It is shown on Fig. 3 and we

notice that the strong oscillation around Q2 = 1GeV2, we had in the previous analysis,
is no longer there.

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.12

Figure 2: Our prediction for Γp−n
1

(Q2) versus Q2. The thick line is the new analysis
to be compared with the thin line, which represents our previous approach without
corrections.

3We thank G.Dodge for making this suggestion.
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Figure 3: Our prediction for Γn
1
(Q2) versus Q2. The thick line is the new analysis

to be compared with the thin line, which represents our previous approach without
corrections.

We now have all the ingredients to investigate the deuteron integral. Note that in
this case the generalization of the GDH sum rule may be naturally decomposed into
two distinct regions.

The first one is the region of largeQ2, where nuclear binding effects can be disregard,
so that the deuteron structure function is the simple additive sum of the proton and
neutron ones. As a result, the Q2

→ 0 limit of this intermediate asymptotics is defined
by the sum of the squares of proton and neutron anomalous magnetic momenta.

When nuclear binding effects are taken into account one should get instead the
square of the sum of these anomalous magnetic moments. As they are known to be
rather close in magnitude and of different sign, the result should be therefore very
small.

The difference between these two regimes should be attributed [21] to the deuteron
photodesintegration channel, which is supported by existing explicit calculations [22]
in the case of real photons. For virtual photons, this allows to estimate the Q2 value,
where binding effects start to play a role, to be of the order of m2

π. The simplest way
to implement this reasoning [21] is to use the following expression:

Id
1
(Q2) =

1

2
[θ(Q2

d0 −Q2)
2Q2

Q2

d0 +Q2
+ θ(Q2

−Q2

d0)](I
p
1
(Q2) + In

1
(Q2) (19)

Here we introduced the nuclear scale Qd0 ∼ mπ and neglected the square of the
deuteron anomalous magnetic moment. The prediction is shown in Fig. 4 and seems
to be in good agreement with the preliminary JLAB data [23].

Let us finally discuss the role of the elastic contribution. It must be definitely
included [24] if one uses the operator product expansion (OPE), which is the essen-
tial tool in determining the power corrections. However, we use the OPE only above
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-0.02
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0.06

Figure 4: Our prediction for Γd
1
(Q2) versus Q2. The thick line is the new analysis

to be compared with the thin line, which represents our previous approach without
corrections.

matching point, where the elastic contribution is small. At the same time, below the
matching point the object those Q2 behaviour is studied may be considered as a sort
of fracture function, where only a partial summation over final states, excluding the
elastic one, is implied. It is this function which may reach the GDH value at Q2 = 0.
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