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Abstract

We consider a diffusion process X in a random potential V of the form
Vx = Sx − δx where δ is a positive drift and S is a strictly stable process
of index α ∈ (1, 2) with positive jumps. Then the diffusion is transient and
Xt/ logα t converges in law towards an exponential distribution. This be-
haviour contrasts with the case where V is a drifted Brownian motion and
provides an example of a transient diffusion in a random potential which is as
”slow” as in the recurrent setting.
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1 Introduction

Let (V(x), x ∈ R) be a two-sided stochastic process defined on some probability
space (Ω,F ,P). We call a diffusion in the random potential V an informal solution
X of the S.D.E: {

dXt = dβt − 1
2
V′(Xt)dt

X0 = 0,

where β is a standard Brownian motion independent of V. Of course, the process
V may not be differentiable (for example when V is a Brownian motion) and we
should formally consider X as a diffusion whose conditional generator given V is

1

2
eV(x) d

dx

(
e−V(x) d

dx

)
.

Such a diffusion may be explicitly constructed from a Brownian motion through a
random change of time and a random change of scale. This class of processes has
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been widely studied for the last twenty years and bears a close connection with the
model of the random walk in random environment (RWRE), see [17] and [12] for a
survey on RWRE and [11], [12] for the connection between the two models.

This model exhibits many interesting features. For instance, when the potential
process V is a Brownian motion, the diffusion X is recurrent and Brox [2] proved
that Xt/ log2 t converges to a non-degenerate distribution. Thus, the diffusion is
much ”slower” than in the trivial case V = 0 (then X is simply a Brownian motion).

We point out that Brox’s theorem is the analogue of Sinai’s famous theorem for
RWRE [13] (see also [4] and [8]). Just as for the RWRE, this result is a consequence
of a so-called ”localization phenomena”: the diffusion is trapped in some valleys of
its potential V. Brox’s theorem may also be extended to a wider class of potentials.
For instance, when V is a strictly stable process of index α ∈ (0, 2], Schumacher [11]
proved that

Xt

logα t
law−→

t→∞
b∞,

where b∞ is a non-degenerate random variable, whose distribution depends on the
parameters of the stable process V.

There is also much interest concerning the behaviour of X in the transient case.
When the potential is a drifted Brownian motion i.e. Vx = Bx − κ

2
x where B is a

two-sided Brownian motion and κ > 0, then the associated diffusion X is transient
toward +∞ and its rate of growth is polynomial and depends on κ. Precisely,
Kawazu and Tanaka [7] proved that

• If 0 < κ < 1, then 1
tκ

Xt converges in law towards a Mittag-Leffler distribution
of index κ.

• If κ = 1, then log t
t

Xt converges in probability towards 1
4
.

• If κ > 1, then 1
t
Xt converges almost surely towards κ−1

4
.

In particular, when κ < 1, the rate of growth of X is sub-linear. Refined results on
the rates of convergence for this process were later obtained by Tanaka [16] and Hu
et al. [6].

In fact, this behaviour is not specific to diffusions in a drifted Brownian potential.
More generally, it is proved in [15] that if V is a two-sided Lévy process with no
positive jumps and if there exists κ > 0 such E[eκV1 ] = 1, then the rate of growth
of Xt is linear when κ > 1 and of order tκ when 0 < κ < 1 (see also [3] for a law of
large numbers in a general Lévy potential). These results are the analogues of those
previously obtained by Kesten et al. [9] for the discrete model of the RWRE.

In this paper, we study the asymptotic behaviour of a diffusion in a drifted stable
potential. Precisely, let (Sx, x ∈ R) denote a two-sided càdlàg stable process with
index α ∈ (1, 2). By two-sided, we mean that

(a) The process (Sx, x ≥ 0) is strictly stable with index α ∈ (1, 2), in particular
S0 = 0.

(b) For all x0 ∈ R, the process (Sx+x0
− Sx0

, x ∈ R) has the same law as S.
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It is well known that the Lévy measure Π of S has the form

Π(dx) =
(
c+1{x>0} + c−1{x<0}

) dx

|x|α+1
(1)

where c+ and c− are two non-negative constants such that c++c− > 0. In particular,
the process (Sx , x ≥ 0) has no positive jumps (resp. no negative jumps) if and only
if c+ = 0 (resp. c− = 0). Given δ > 0, we consider a diffusion X in the random
potential

Vx = Sx − δx.

Since the index α of the stable process S is larger than 1, we have E[Vx] = −δx,
and therefore

lim
x→+∞

Vx = −∞ and lim
x→−∞

Vx = +∞ almost surely.

This implies that the random diffusion X is transient toward +∞. We already
mentioned that, when S has no positive jumps (i.e. c+ = 0), the rate of transience
of X is given in [15] and Xt has a polynomial growth. Thus, we now assume that S

possesses positive jumps.

Theorem 1. Assume that c+ > 0, then

Xt

logα t

law−→
t→∞

E
(

c+

α

)
,

where E(c+/α) denotes an exponential law with parameter c+/α. This result also

holds with sups≤t Xs or infs≥t Xs in place of Xt.

The asymptotic behaviour of X is in this case very different from the one observed
when V is a drifted Brownian motion. Here, the rate of growth is very slow: it is
the same as in the recurrent setting. We also note that neither the rate of growth
nor the limiting law depend on the value of the drift parameter δ.

Theorem 1 has a simple heuristic explanation: the ”localisation phenomena”
for the diffusion X tells us that the time needed to reach a positive level x is
approximatively exponentially proportional to the biggest ascending barrier of V

on the interval [0, x]. In the case of a Brownian potential, or more generally a
spectrally negative Lévy potential, the addition of a negative drift somehow ”kills”
the ascending barriers, thus accelerating the diffusion and leading to a polynomial
rate of transience. However, in our setting, the biggest ascending barrier on [0, x] of
the stable process S is of the same order as its biggest jump on this interval. Since,
the addition of a drift has no influence on the jumps of the potential process, the
time needed to reach level x still remains of the same order as in the recurrent case
(i.e. when the drift is zero) and yields a logarithmic rate of transience.
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2 Proof of the theorem.

2.1 Representation of X and of its hitting times.

In the remainder of this paper, we indifferently use the notation Vx or V(x). Let us
first recall the classical representation of the diffusion X in the random potential V

from a Brownian motion through a random change of scale and a random change of
time (see [2] or [12] for details). Let (Bt, t ≥ 0) denote a standard Brownian motion
independent of V and let σ stand for its hitting times:

σ(x)
def
= inf(t ≥ 0 , Bt = x).

Define the scale function of the diffusion X,

A(x)
def
=

∫ x

0

eVydy for x ∈ R. (2)

Since limx→+∞ Vx/x = −δ and limx→−∞ Vx/x = δ almost surely, it is clear that

A(∞) = lim
x→+∞

A(x) < ∞ and lim
x→−∞

A(x) = −∞ almost surely.

Let A-1 : (−∞, A(∞)) 7→ R denote the inverse of A and define

T(t)
def
=

∫ t

0

e−2V(A-1(Bs))ds for 0 ≤ t < σ(A(∞)).

Similarly, let T-1 denote the inverse of T. According to Brox [2] (see also [12]), the
diffusion X in the random potential V may be represented in the form

Xt = A
-1

(
BT-1(t)

)
. (3)

It is now clear that, under our assumptions, the diffusion X is transient toward +∞.
We will study X via its hitting times H defined by

H(r)
def
= inf(t ≥ 0 , Xt = r) for r ≥ 0.

Let (L(t, x), t ≥ 0, x ∈ R) stand for the bi-continuous version of the local time
process of B. In view of (3), we can write

H(r) = T (σ(A(r))) =

∫ σ(A(r))

0

e−2V(A-1(Bs))ds =

∫
A(r)

−∞

e−2V(A-1(x))L(σ(A(r)), x)dx.

Making use of the change of variable x = A(y), we get

H(r) =

∫ r

−∞

e−VyL(σ(A(r)), A(y))dy = I1(r) + I2(r) (4)

where

I1(r)
def
=

∫ r

0

e−VyL(σ(A(r)), A(y))dy,

I2(r)
def
=

∫ 0

−∞

e−VyL(σ(A(r)), A(y))dy.
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2.2 Proof of Theorem 1.

Given a càdlàg process (Zt , t ≥ 0), we denote by ∆tZ = Zt − Zt− the size of the
jump at time t. We also use the notation Z♮

t to denote the largest positive jump of
Z before time t,

Z♮
t

def
= sup(∆s, 0 ≤ s ≤ t).

Let Z#
t stand for the largest ascending barrier before time t, namely:

Z#
t

def
= sup

0≤x≤y≤t
(Zy − Zx).

We also define the functionals:

Zt
def
= sup

s∈[0,t]

Zs (running unilateral maximum)

Zt
def
= inf

s∈[0,t]
Zs (running unilateral minimum)

Z∗
t

def
= sup

s∈[0,t]

|Zs| (running bilateral supremum)

We start with a simple lemma concerning the fluctuations of the potential process.

Lemma 1. There exist two constants c1, c2 > 0 such that for all a, x > 0

P{V
#
x ≤ a} ≤ e−c1

x
aα , (5)

and whenever a
x

is sufficiently large,

P{V
∗
x > a} ≤ c2

x

aα
. (6)

Proof. Recall that Vx = Sx − δx. In view of the form of the density of the Lévy
measure of S given in (1), we get

P{V
#
x ≤ a} ≤ P{V

♮
x ≤ a} = exp

(
−x

∫ ∞

a

c+

yα
dy

)
= exp

(
−c+

α

x

aα

)
.

This yields (5). From the scaling property of the stable process S, we also have

P{V
∗
x > a} = P

{
x

1
α sup

t∈[0,1]

|St − δx1− 1
α t| > a

}
≤ P

{
S
∗
1 >

a

x
1
α

− δx1− 1
α

}
.

Notice further that a/x1/α − δx1−1/α > a/(2x1/α) whenever a/x is large enough,
therefore, making use of a classical estimate concerning the tail distribution of the
stable process S (c.f. Proposition 4, p221 of [1]), we find that

P{V
∗
x > a} ≤ P

{
S
∗
1 >

a

2x
1
α

}
≤ P

{
S1 >

a

2x
1
α

}
+ P

{
S1 >

a

2x
1
α

}
≤ c2

x

aα
.
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Proposition 1. There exists a constant c3 > 0 such that, for all r sufficiently large

and all x ≥ 0,

P{V
#
r ≥ x+log4 r}−c3e

− log2 r ≤ P{log I1(r) ≥ x} ≤ P{V
#
r ≥ x−log4 r}+c3e

− log2 r.

Proof. This estimate was first proved by Hu and Shi (see Lemma 4.1 of [5]) when the
potential process is close to a standard Brownian motion. A similar result is given
in Proposition 3.2 of [14] when V is a random walk in the domain of attraction
of a stable law. As explained by Shi [12], the key idea is the combined use of
Ray-Knight’s Theorem and Laplace’s method. However, in our setting, additional
difficulties appear since the potential process is neither flat on integer interval nor
continuous. We shall therefore give a complete proof but one can still look in [5]
and [14] for additional details. Recall that

I1(r) =

∫ r

0

e−VyL(σ(A(r)), A(y))dy,

where L is the local time of the Brownian motion B (independent of V). Let
(U(t), t ≥ 0) denote a two-dimensional squared Bessel process starting from zero,
also independent of V. According to the first Ray-Knight Theorem (c.f. Theorem
2.2 p455 of [10]), for any x > 0 the process (L(σ(x), x − y), 0 ≤ y ≤ x) has the
same law as (U(y), 0 ≤ y ≤ x). Therefore, making use of the scaling property of
the Brownian motion and the independence of V and B, for each fixed r > 0, the
random variable I1(r) has the same law as

Ĩ1(r)
def
= A(r)

∫ r

0

e−VyU

(
A(r) − A(y)

A(r)

)
dy.

We simply need to prove the proposition for Ĩ1 instead of I1. In the rest of the proof,
we assume that r is very large. We start with the upper bound. Define the event

E1
def
=

{
sup

t∈(0,1]

U(t)

t log
(

8
t

) ≤ r

}
.

According to Lemma 6.1 of [5], P{E c
1} ≤ c4e

−r/2 for some constant c4 > 0. On E1,
we have

Ĩ1(r) ≤ r

∫ r

0

e−Vy(A(r) − A(y)) log

(
A(r)

A(r) − A(y)

)
dy

= r

∫ r

0

(∫ r

y

eVz−Vydz

)
log

(
A(r)

A(r) − A(y)

)
dy

≤ r2eV
#
r

∫ r

0

log

(
A(r)

A(r) − A(y)

)
dy.

Notice also that A(r) =
∫ r

0
eVzdz ≤ reVr and similarly A(r) − A(y) ≥ (r − y)eVr .

Therefore
∫ r

0

log

(
A(r)

A(r) − A(y)

)
dy ≤ r(Vr − Vr) +

∫ r

0

log

(
8r

r − y

)
dy

= r(Vr − Vr + 1 + log 8).

6



Define the set E2
def
= {Vr − Vr ≤ elog3 r}. In view of Lemma 1,

P{E c
2} ≤ P

{
V

∗
r >

1

2
elog3 r

}
≤ e− log2 r.

Therefore, P{(E1 ∩ E2)
c} ≤ 2e− log2 r and on E1 ∩ E2,

Ĩ1(r) ≤ r3(elog3 r + 1 + log 8)eV
#
r ≤ elog4 r+V

#
r .

This completes the proof of the upper bound. We now deal with the lower bound.
Define the sequence (γk, k ≥ 0) by induction

{
γ0

def
= 0,

γk+1
def
= inf(t > γn, |Vt − Vγk

| ≥ 1).

The sequence (γk+1−γk, k ≥ 0) is i.i.d. and distributed as γ1 = inf(t > 0, |Vt| ≥ 1).

We denote by [x] the integer part of x. We also use the notation ǫ
def
= e− log3 r.

Consider the following events

E3
def
=

{
γ[r2] > r

}
,

E4
def
= {γk − γk−1 ≥ 2ǫ for all k = 1, 2 . . . , [r2]} .

In view of Cramer’s large deviation Theorem and since r is very large, we get that
P{E c

3} ≤ e−r. We also have

P{E c
4} ≤

[r2]∑

k=1

P{γk − γk−1 < 2ǫ} ≤ [r2]P{γ1 < 2ǫ}

≤ [r2]P{V
∗
2ǫ ≥ 1}

≤ e− log2 r,

where we used Lemma 1 for the last inequality. Define also

E5
def
= {|Vx − Vr| < 1 for all x ∈ [r − 2ǫ, r]}.

From time reversal, the processes (Vt, 0 ≤ t ≤ 2ǫ) and (Vr − V(r−t)− , 0 ≤ t ≤ 2ǫ)
have the same law. Thus,

P{E c
5} ≤ P{V

∗
2ǫ ≥ 1} ≤ e− log2 r.

Setting E6
def
= E3 ∩ E4 ∩ E5, we get P{E c

6} ≤ 3e− log2 r. Moreover, it is easy to check
(see figure 1) that on E6, we can always find x−, x+ such that:





0 ≤ x− ≤ x+ ≤ r − 2ǫ,
for any a ∈ [x−, x− + ǫ], |Vx

−

− Va| ≤ 2,
for any b ∈ [x+, x+ + ǫ], |Vx+

− Vb| ≤ 2,
Vx+

− Vx
−

≥ V#
r − 4.
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0

1

−1

V#
r

γ1 γ2 γ6

γ3 γ4 γ5

r

x− x−+ǫ

x+ x++ǫ

r−2ǫ r

Figure 1: Sample path of V on E6.

Let us also define

E7
def
= E6 ∩

{
inf

y∈[x
−

,x
−

+ǫ]
U

(
A(r) − A(y)

A(r)

)
≥ A(r) − A(x−)

A(r)
e−2 log2 r

}
,

E8
def
=

{
V

♮
r ≥ 3 log2 r

}
.

We finally set E9
def
= E7 ∩ E8. Then on E9, we have, for all r large enough,

Ĩ1(r) ≥ A(r)

∫ x
−

+ǫ

x
−

e−VyU

(
A(r) − A(y)

A(r)

)
dy

≥ e−Vx
−

−2−2 log2 r

∫ x
−

+ǫ

x
−

(A(r) − A(x−))dy

= e−Vx
−

−2−2 log2 r−log3 r

∫ r

x
−

eVydy

≥ e−Vx
−

−2−2 log2 r−log3 r

∫ x++ǫ

x+

eVydy

≥ eVx+
−Vx

−

−4−2 log2 r−2 log3 r

≥ eV
#
r −log4 r.

This proves the lower bound on E9. It simply remains to show that P{E c
9} ≤

8



c5e
− log2 r. According to Lemma 6.1 of [5], for any 0 < a < b and any η > 0, we have

P

{
inf

a<t<b
U(t) ≤ ηb

}
≤ 2

√
η + 2 exp

(
− η

2(1 − a/b)

)
.

Therefore, making use of the independence of V and U , we find

P{E c
9} ≤ P{E c

6} + P{E c
8} + P{E c

7 ∩ E6 ∩ E8}
≤ P{E c

6} + P{E c
8} + 2e− log2 r + 2E

[
e

1
2

J(r)e−2 log2 r

1E6∩E8

]
,

where

J(r)
def
=

A(r) − A(x−)

A(x− + ǫ) − A(x−)
.

We have already proved that P{E c
6} ≤ 3e− log2 r. Using Lemma 1, we also check that

P{E c
8} ≤ e− log2 r. Thus, it remains to show that

E
[
e

1
2

J(r)e−2 log2 r

1E6∩E8

]
≤ c6e

− log2 r. (7)

Notice that, on E6,

A(r) − A(x−) =

∫ r

x
−

eVydy ≥
∫ x++ǫ

x+

eVydy ≥ elog3 r+Vx+
−2,

and also

A(x− + ǫ) − A(x−) =

∫ x
−

+ǫ

x
−

eVydy ≤ elog3 r+Vx
−

+2.

Therefore, on E6 ∩ E8,

J(r) ≥ eVx+
−Vx

−

−4 ≥ eV
#
r −8 ≥ eV

♮
r−8 ≥ e3 log2 r−8

which clearly yields (7) and the proof of the proposition is complete.

Lemma 2. We have
V#

r

r1/α

law−→
r→∞

S
♮
1.

Proof. Let f : [0, 1] 7→ R be a deterministic càdlàg function. For λ ≥ 0, define

fλ(x)
def
= f(x) − λx.

We first show that
lim

λ→∞
f#

λ (1) = f ♮(1). (8)

It is clear that f ♮(1) = f ♮
λ(1) ≤ f#

λ (1) for any λ > 0. Thus, we simply need to prove

that lim sup f#
λ (1) ≤ f ♮(1). Let η > 0 and set

A(η, λ)
def
= sup (fλ(y) − fλ(x) , 0 ≤ x ≤ y ≤ 1 and y − x ≤ η) ,

B(η, λ)
def
= sup (fλ(y) − fλ(x) , 0 ≤ x ≤ y ≤ 1 and y − x > η) ,

9



so that
f#

λ (1) = max(A(η, λ), B(η, λ)). (9)

Notice that A(η, λ) ≤ A(η) where

A(η)
def
= A(η, 0) = sup (f(y) − f(x) , 0 ≤ x ≤ y ≤ 1 and y − x ≤ η) .

Since f is càdlàg, we have limη→0 A(η) = f ♮(1). Thus, for any ε > 0, we can find
η0 > 0 small enough such that

lim sup
λ→∞

A(η0, λ) ≤ f ♮(1) + ε. (10)

Notice also that

B(η0, λ) ≤ sup (f(y) − f(x) − η0λ , 0 ≤ x ≤ y ≤ 1 and y − x > η0)

≤ f#(1) − η0λ

which implies
lim

λ→∞
B(η0, λ) = −∞. (11)

The combination of (9), (10) and (11) yield (8). Making use of the scaling property
of the stable process S, for any fixed r > 0,

(Vy , 0 ≤ y ≤ r)
law
= (r1/α

Sy − δry , 0 ≤ y ≤ 1).

Therefore, setting R(z) = (S· − z·)#
1 , we get the equality in law:

V#
r

r1/α

law
= R(δr1−1/α). (12)

Making use of (8), we see that R(z) converges almost surely towards S
♮
1 as z goes to

infinity. Since α > 1 and δ > 0, we also have δr1−1/α → ∞ as r goes to infinity and
we conclude from (12) that

V#
r

r1/α

law−→
r→∞

S
♮
1.

Proof of Theorem 1. Recall that the random variable S
♮
1 denotes the largest positive

jump of S over the interval [0, 1]. Thus, according to the density of the Lévy measure
of S,

P{S
♮
1 ≤ x} = exp

(
−

∫ ∞

x

c+

yα+1
dy

)
= exp

(
− c+

αyα

)
. (13)

On the one hand, the combination of Lemma 1 and 2 readily shows that

log(I1(r))

r1/α

law−→
r→∞

S
♮
1. (14)

On the other hand, the random variables A(∞) = limx→∞ A(x) and
∫ 0

−∞
e−Vydy

have the same law. Moreover, we already noticed that these random variables are
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almost surely finite. Since the function L(t, ·) is, for any fixed t, continuous with
compact support, we get

I2(r) =

∫ 0

−∞

e−VyL(σ(A(r)), A(y))dy ≤ sup
z∈(−∞,0]

L(σ(A(∞)), z)

∫ 0

−∞

e−Vydy < ∞.

Therefore,
sup
r≥0

I2(r) < ∞ almost surely. (15)

Combining (4), (14) and (15), we deduce that

log(H(r))

r1/α

law−→
r→∞

S
♮
1

which, from the definition of the hitting times H , yields

sups≤t Xs

logα t

law−→
t→∞

(
1

S
♮
1

)α

.

According to (13), the random variable (1/S
♮
1)

α has an exponential distribution with
parameter c+/α so the proof of the theorem for sups≤t Xs is complete. We finally
use the classical argument given by Kawazu and Tanaka, p201 [7] to obtain the
corresponding results for Xt and infs≥t Xs.

Acknowledgments. I would like to thank Yueyun Hu for his precious advices.
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Math. France, Paris.

[13] Sinai, Ya. G. (1982). The limiting behavior of a one-dimensional random walk in a
random environment, Teor. Veroyatnost. i Primenen. 27, no. 2, 247–258.

[14] Singh, A. (2007). Limiting behavior of a diffusion in an asymptotically stable envi-
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