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A connection between chaotic message-embedding and conventional self-synchronizing stream ciphers

A lot of encryption methods involving chaotic dynamics have been proposed in the literature since the 90's. Most of them consists of "mixing" the information to be hidden with a chaotic sequence. In this paper, a connection between one of the most attractive chaotic schemes, namely, hybrid message-embedding and the conventional self-synchronizing stream cipher is carried out. The main point can be stated as follows: hybrid messageembedding is strictly equivalent to a conventional selfsynchronizing stream cipher under flatness conditions.

Introduction

Modern cryptography originates in the works of Feistel at IBM during the late 1960s and early 1970s. One of the key dates is 1977, when the symmetric (or privatekey) algorithm called Data Encryption Standard (DES) was adopted by the U.S. National Bureau of Standards (now the National Institute of Standards and Technology -NIST), for encrypting unclassified information. DES is now in the process of being replaced by the Advanced Encryption Standard (AES), a new standard adopted by NIST in 2001. Another milestone is 1978, marked by the publication of RSA, the first full-fledged public-key algorithm. In 1993 entered the scene "chaotic cryptography", that takes advantage of the complex behavior of chaotic dynamical systems to 'hide' or 'mask' information. Chaotic behavior can be distinguished by its extreme sensitivity to initial conditions, leading to long-term unpredictability. Moreover, signals resulting from chaotic dynamics are broadband and present random-like statistical properties, albeit they are generated by deterministic systems. All this explains, why there is likely a connection between the random-looking behavior exhibited by chaotic systems and the properties of confusion and diffusion, required by Shannon for cryptosystems [START_REF] Massey | Contemporary cryptology: an introduction[END_REF]. It also motivates the use of chaotic systems for secure communications, even though the terminology "secure" is sometimes questionable. An overview of the different methods devised so far can be found, according to the chronology, in the papers [START_REF] Ogorzalek | Taming chaos -part : synchronization[END_REF][3][13] [START_REF] Millérioux | Conventional cryptography and message-embedding[END_REF]. Neverthe-less, very few works have really established the connection between standard and chaos-based encryption algorithms, but see [START_REF] Dachselt | Chaotic versus classical stream ciphers -a comparative study[END_REF][6] for some interesting exceptions. In this paper, a connection between one of the most attractive chaotic schemes, namely, hybrid message-embedding and the conventional self-synchronizing stream cipher is carried out Throughout the paper, the terminology synchronization between two dynamical systems with respective state vectors x k and xk will mean that the following equalities are fulfilled:

lim k→∞ T x k -xk = 0 ∀ x0 ∈ U (1)
or

∃k f < ∞, T x k -xk = 0 ∀ x0 ∈ U and k ≥ k f ( 2 
)
where T is a constant matrix of appropriate dimension and U is a non empty set of initial conditions. (1) corresponds to an asymptotic synchronization, while (2) corresponds to a finite time synchronization. Let us point out that in practice, since we deal with finite accuracy, the error of an asymptotical synchronization can be considered to be zero after a finite transient time.

Hybrid Message-embedding

The hybrid message-embedded technique (Fig. 1) was proposed in [START_REF] Yang | Cryptography based on chaotic systems[END_REF] and partially cryptanalyzed in [START_REF] Parker | Reconstructing the keystream from a chaotic encryption scheme[END_REF] wherein the term "hybrid" was first introduced. We distinguish two distinct setups. The first one is governed by the state equations:

         x k+1 = f θ (x k , u k ) y k = h θ (x k , u k ) u k = ν e (x k , m k ) , (3) 
while the second class is governed by:

         x k+1 = f θ (x k , u k ) y k = h θ (x k ) u k = ν e (x k , m k ) . (4) 
The systems (3) and ( 4) differ from each other by their relative degree. Definition 1 ([4] P.139) The relative degree of a system with respect to the quantity u k is the required number r of iterations of the output y k so as y k+r depends on u k which actually appears explicitly in the expression of y k+r .

Based on Definition 1, the relative degree of the system (3) is r = 0. The system (4) has a relative degree r strictly greater than 0. It means that, after iterating r times the state vector x k , the output y k+r reads

y k+r = h θ ( f r θ (x k , u k )) (5) 
where

f i θ (x k , u k ) = x k when i = 0 = f θ ( f i-1 θ (x k , u k ), u k+i-1 ) ∀i ≥ 1.
and where u k appears explicitly in the sense that there exists u k u k such that

y k+r = h θ ( f r θ (x k , u k )) h θ ( f r θ (x k , u k )) whereas for all u k u k , y k+r = h θ ( f r θ (x k , u k )) = h θ ( f r θ (x k , u k )) if r < r.
Let us point out that u k is sometimes called the "pre-ciphertext".

The receiver system must be designed in such a way that both u k and x k can be recovered, given the only available data y k and its subsequent iterates. Once u k is recovered, the plaintext m k is correctly extracted by applying the decryption function ν d , provided that xk is exactly synchronized with x k . The synchronization and the recovering of u k can resort to an inverse system or to an unknown input observer of the form

         xk+1 = fθ ( xk , y k , . . . , y k+r ) ûk = g θ ( xk , y k+r ) mk = ν d ( xk , ûk ) (6) with g such that ûk = g θ( xk , y k+r ) = u k when xk = x k (7)
and with ν d such that

mk = ν d ( xk , ûk ) = m k when xk = x k and ûk = u k . (8) 
Unlike other classical methods, the hybrid messageembedded technique offers the advantages that only a single channel is needed and, moreover, that the synchronization can be guaranteed without restriction on the rate of variation of m k . Additionally, the scheme allows to introduce a highly nonlinear function ν e which can make the state generator significantly resistant to algebraic attacks.
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Figure 1: Hybrid message-embedding

The connection with self-synchronizing stream ciphers

A major and obvious difference between chaotic ciphers and stream ciphers consists in that a chaotic generator is assumed to produce an aperiodic sequence {x k } ranging in a dense set, while the pseudo-random generators used in stream ciphers produce discrete sequences. Yet, observe that when chaotic generators are implemented in machines with finite accuracy (say, a computer), the sequences {x k } are not really chaotic. Indeed, since the set on which the x k 's take values has finite cardinality, such sequences will obviously get trapped in a loop, called cycle, of finite period. We can expect this period to be not too short and the degree of 'randomness' of the sequence to be high (as measured e.g. by standard statistical tests), but guaranteeing the said properties requires some caution [START_REF] Knuth | The Art of Computer Programming[END_REF]. Important contributions to this issue and a definition of discrete chaos can be found in [START_REF] Kocarev | Discrete chaos: part i[END_REF]. Henceforth we focus rather on the structure of the proposed setups for the comparative study, regardless of the dynamic involved.

Conventional self-synchronizing stream ciphers

For stream ciphers, a special class of symmetric encryption schemes, the plaintext is broken up into blocks of the same length, called symbols and denoted by m k . If m k is the k th symbol of the plaintext at time k, each element c k of the ciphertext obeys at time k

c k = e(K k , m k ).
e is the encryption function which can change for each symbol because it depends on a time-varying key K k . The sequence {K k } is called the keystream. Self-Synchronous Stream Ciphers (SSSC) admits at the transmitter side, the recursions

K k+1 = σ ss θ (c k-l , . . . , c k-l ) c k = e(K k , m k ) , (9) 
where σ ss θ is also a function parameterized by θ that generates the keystream {K k }. K k actually depends on a fixed number of past values of c k ; the quantity b = |ll + 1| is called the memory; most often one has l = 0. θ is the parameter vector of the function σ ss . If the parameters are identical at both sides, the respective keystreams synchronize automatically because σ ss θ operate, at both sides, on the same quantities, namely the past values of c k . The ability to self-synchronizing constitutes one of the main advantages of such cryptosystems. Indeed, they are resistant against bit slips on the transmission channel without any additional synchronization flags or interactive protocols for recovering lost synchronization.

Main result

First of all, we must recall the definition of flatness (see [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF] for an introductory theory) Definition 2 (Flatness) A system with dynamic f , parametrized by θ, of relative degree r, input e k and state vector z k of dimension n is said to be flat if there exists a set of independent variables y k , referred to as flat outputs, such that all system variables can be expressed as a function of the flat output and a finite number of its backward and/or forward iterates.

For Single Input Single Output systems, it means that there exist two functions F θ and G θ which obey

       z k = F θ (y k+k F θ (r) , . . . , y k+k F θ (r) ) e k = G θ (y k+k G θ (r) , . . . , y k+k G θ (r) ) . ( 10 
)
where k F θ (r), k F θ (r), k G θ (r) and k G θ (r) are Z-valued integers depending on the relative degree r of the system.

Proposition 1 The hybrid message-embedding cryptosystem (3) (or (4)) is equivalent to a conventional selfsynchronizing stream cipher if the nonlinear dynamic f with output y k and input u k is flat.

Proof 1 Flatness of (3), with relative degree r = 0, means that there exist two functions F θ and G θ and integers k

F θ (0), k F θ (0), k G θ (0) and k G θ (0) such that x k = F θ (y k+k F θ (0) , . . . , y k+k F θ (0) ) u k = G θ (y k+k G θ (0) , . . . , y k+k G θ (0) ) . ( 11 
)
When iterating once forward the first equation of [START_REF] Ogorzalek | Taming chaos -part : synchronization[END_REF], it turns out that ( 3) is strictly equivalent to

x k+1 = F θ (y k+k F θ (0)+1 , . . . , y k+k F θ (0)+1 ) y k = h θ (x k , ν e (x k , m k )) . ( 12 
)
Letting l h,ν e (x k , m k ) = h θ (x k , ν e (x k , m k )) since y k depends explicitly on x k and m k , identification of ( 12) with ( 9) leads then to the following result: i) The system ( 3) is strictly equivalent to the transmitter part of a self-synchronizing stream cipher of the form [START_REF] Massey | Contemporary cryptology: an introduction[END_REF] with key generator σ ss θ = F θ , running key K k = x k , ciphertext c k = y k , encrypting function e = l h,ν e , secret static key θ and memory b

= |k F θ (0) -k F θ (0) + 1|.
Besides, flatness of ( 4), with relative degree r > 0, means that there exist two functions F θ and G θ and integers k F θ (r),

k F θ (r), k G θ (r) and k G θ (r) such that x k = F θ (y k+k F θ (r) , . . . , y k+k F θ (r) ) u k = G θ (y k+k G θ (r) , . . . , y k+k G θ (r) ) . ( 13 
)
When iterating once forward the first equation of ( 13) and taking into account [START_REF] Knuth | The Art of Computer Programming[END_REF], it turns out that ( 4) is strictly equivalent to:

x k+1 = F θ (y k+k F θ (r)+1 , . . . , y k+k F θ (r)+1 ) y k+r = h θ ( f r θ (x k , ν e (x k , m k ))) . ( 14 
)
Letting l h , f r ,ν e (x k , m k ) = h θ ( f r θ (x k , ν e (x k , m k ))
) since y k+r depends explicitly on x k and m k , identification of ( 14) with ( 9) leads then to the following result:

ii) The system ( 4) is strictly equivalent to the transmitter part of a self-synchronizing stream cipher of the form [START_REF] Massey | Contemporary cryptology: an introduction[END_REF] with key generator σ ss θ = F θ , running key K k = x k , ciphertext c k = y k+r , encrypting function e = l h , f r ,ν e , secret static key θ and memory b

= |k F θ (r) -k F θ (r) + 1|.
Remark 1 It is worthwhile noticing that the set of equations [START_REF] Ogorzalek | Taming chaos -part : synchronization[END_REF] (resp. ( 13)) could be used at the receiver part to obtain both x k and u k without resorting to a state reconstruction through an inverse system or an Unknown Input Observer like [START_REF] Kocarev | Chaos-based cryptography :a brief overview[END_REF]. Even more is true: substituting x k and u k of (11) (resp. ( 13)) into [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF] gives

m k = ν d (F θ (y k+k F θ (r) , . . . , y k+k F θ (r) ), G θ (y k+k G θ (r) , . . . , y k+k G θ (r) )).
(15) with r = 0 (resp. r > 0). So, the message m k can be retrieved in finite time by and the knowledge of x k is no longer useful. However, given a system, the difficulty lies in finding out the quantities k F θ (r), k F θ (r), k G θ (r) and k G θ (r) and writing down explicitly the functions F θ and G θ . It can be shown (see [START_REF] Daafouz | Une approche intrinsèque des observateurs linéaires à entrées inconnues[END_REF] for the linear case) that resorting to a state space approach actually allows to achieve this computation in an implicit and recursive way. Indeed, for flat systems, only a finite number of iterations of ( 6) is needed to achieve xk = x k . It turns out that the resulting state vector xk = x k only depends on past values of y k , which provides F θ in [START_REF] Millérioux | Conventional cryptography and message-embedding[END_REF]. Then, substituting xk = x k into [START_REF] Kocarev | Discrete chaos: part i[END_REF] provides G θ in [START_REF] Millérioux | Conventional cryptography and message-embedding[END_REF].

Example

We consider a 3-dimensional linear congruential hybrid message-embedded cryptosystem like (4) with dynamic f and output function h of the form:

         x k+1 = Ax k + Bu k y k = Cx k u k = ν e (x k , m k ) . ( 16 
)
The entries of the matrices A, B and C are integers ranging between 0 and 255, the modulo being m = 256. All along this section, the operations are performed modulo m. Numerically, the matrices read

A =           38 1 0 7 0 1 4 0 0           , B =           1 0 0           , C = [1 0 0] .
It is recalled that, for linear systems written in a state space form, the relative degree corresponds to the smallest integer r such that CA r-1 B is different from 0 ( [START_REF] Isidori | Nonlinear control systems[END_REF]). Here, since CB = 1, the relative degree of the system is 1. The supposed secret static key is the vector θ = [38 7 4] which actually corresponds to the first column of A written in a companion form. The function ν e is chosen to be a bitwise XOR (denoted ⊕) between the components of x k denoted x (i) k and the plaintext m k :

u k = x (1) k ⊕ x (2) k ⊕ x (3) k ⊕ m k .
where x (i) k and m k are meant here to be the corresponding 8-bit representation. It turns out that after iterating three times the inverse system of (16) (the structure is not provided here but see for example [START_REF] Daafouz | Une approche intrinsèque des observateurs linéaires à entrées inconnues[END_REF] for details), as mentioned in the Remark 1, we obtain the equations in the form ( 13) ) with F θ obeying

           x (1) k = y k x (2) k = 7y k-1 + 4y k-2 x (3) k = 4y k-1 (17)
and the function G θ obeying

u k = y k+1 -38y k -7y k-1 -4y k-2 . (18) 
Equations ( 17) and (18) clearly corroborate that the system is flat. Besides, they provide the actual values k

F θ (1) = 0, k F θ (1) = -2, k G θ (1) = 1 and k G θ (1) = -2
The relative degree r of the system being 1, we must compute y k+1 :

y k+1 = CAx k + CBν e (x k , m k ) = l h , f 1 ,ν e (x k , m k ) = 38x (1) k + x (2) k + x (1) k ⊕ x (2) k ⊕ x (3) k ⊕ m k (19)
Iteration of (17) once forward and consideration of (19) allow us to claim the result ii):

The system (16) is strictly equivalent to the transmitter part of a self-synchronizing stream cipher of the form [START_REF] Massey | Contemporary cryptology: an introduction[END_REF] with key generator σ ss θ = F θ corresponding to Eq. (17), running key K k = x k , ciphertext c k = y k+1 , encrypting function e = l h , f 1 ,ν e corresponding to Eq. ( 19), secret static key θ = [38 7 4] and memory b = 2 + 1 = 3.

Retrieving m k requires the computation (15). Here the function ν d is also an XOR between the components of x k and the (pre-)ciphertext u k = ν e (x k , m k ), that is, ν d (x k , u k ) = u k ⊕ x (1) k ⊕ x (2) k ⊕ x (3) k . Indeed, u k ⊕ x (1) k ⊕ x (2) k ⊕ x (3) k = m k ⊕ x (1) k ⊕

x (2) k ⊕ x (3) k ⊕ x (1) k ⊕ x (2) k ⊕ x (3) k = m k . The system being flat, x (i) k can be expressed in terms of delayed outputs as indicated by the function F θ . Hence, one has m k = (y k+1 -38y k -7y k-1 -4y k-2 )⊕y k ⊕(7y k-1 +4y k-2 )⊕4y k-1 .

Conclusion

We conclude, based on the parallelism mentioned above, that digital hybrid message-embedding is able to provide the same security as any conventional self-synchronizing stream cipher, currently being used (e.g., RC4) in, say, internet and mobile communications, under some suitable choice of functions f , h (or h ) and ν e .