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Approval Voting: Three Examples
Francesco De Sinopoli∗, Bhaskar Dutta†, Jean-François Laslier‡

Abstract

In this paper we discuss three examples of approval voting games. The first one
illustrates that a stronger solution concept than perfection is needed for a strategic
analysis of this type of games. The second example shows that sophisticated voting
can imply that the Condorcet winner gets no vote. The third example shows the
possibility of insincere voting being a stable equilibrium.

Key words : Approval voting, sophisticated voting, sincere voting, perfect equilib-
rium, stable set.

1 Introduction

Approval voting (AV) – a voting procedure in which voters may vote for as many candi-
dates as they wish- has become an extremely popular voting system, being used in a large
number of electoral contests.1 Its proponents (for instance Brams, 1980, Brams and Fish-
burn, 1978, 1981, 2003) have discussed several advantages that it has over other electoral
systems, and have even suggested that it is “the electoral reform of the 20th century”.

One advantage that AV is supposed to have over other voting systems is that it helps
select the “strongest” candidate. Of course, the notion of what is the strongest candidate is
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1See Brams and Fishburn (2003) for an account of the various contexts in which AV is used.
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not always well-defined. But, if a candidate beats all other candidates in pairwise contests
- that is, if it is a Condorcet winner- then it is intuitive to label this as the strongest candi-
date. It is known that plurality rule and several other systems will sometimes fail to elect
the Condorcet winner. However, Brams and Fishburn (1981) prove that if a Condorcet
winner exists then the AV game has a Nash equilibrium in undominated strategies that
selects the Condorcet winner. A main purpose of this paper is to examine the “tendency”
of AV to select Condorcet winners when they exist.

In order to do so, we use the model of one stage voting procedures developed by My-
erson and Weber (1993) to analyse various features of AV games. Since Nash equilibrium
has no predictive power in voting games such as the ones induced by AV when there
are three or more voters, we focus on refinements of Nash equilibrium. In particular, a
first example demonstrates that the perfect equilibrium solution concept is not restrictive
enough in the context of approval games, since some outcomes induced by this concept
are excluded by iterated elimination of dominated strategies and by strategic stability.2

The termssophisticated votingwas introduced in the voting literature by Farquharson
(1969). It refers to iterating the “exhaustive” elimination of all weakly dominated strate-
gies by all players. In this example sophisticated voting results in an outcome in which the
Condorcet loser and Condorcet winner are selected with the same probability. A second
example shows how the Condorcet winner can getno vote at all according to sophisti-
cated voting and strategic stability. This shows that the Brams and Fishburn (1981) result
cannot be extended to these more demanding concepts.

A ballot or strategy under AV is said to besincerefor a voter if it shows no “hole” with
respect to the voter’s preference ranking: if the voter sincerely approves of a candidatex
she also approves of any candidate she prefers tox. Much of the preceding work on AV
has assumed that voters will only use sincere strategies. For instance, Niemi (1984) asserts
that “under approval voting, voters are never urged to vote insincerely”. It is true that for
every pure strategy of the other players, the set of best replies contains a sincere strategy.
However, this is no longer true when one considers mixed strategies. We construct another
example of a strategy combination which is a strategically stable equilibrium and where
an insincere strategy is the unique best-response for a voter. This example has another
surprising property: the outcome corresponding to this strategy combination turns out to
select the Condorcet loser with the highest probability and the Condorcet winner with the
lowest probability. Under plurality rule, for the same preferences, there is only one stable
set and, in this stable set, the Condorcet winner is elected with probability1.

Our paper does not contain any general results. However, the examples do suggest
that it is important to subject the received wisdom about AV to closer scrutiny.

2The same drawback of the perfect equilibrium concept holds with plurality rule. See De Sinopoli
(2000) for an analysis of equilibrium refinements with such a voting rule.
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2 The Framework

Let C = {1, ..., K} be the set of candidates, andN = {1, ..., n} be the set of voters.
Under Approval Voting (AV), a ballot is a subset of the set of candidates. The approval
voting rule selects the candidate receiving the maximum number of votes or “approvals”.
In case two or more candidates get the maximum number of votes, ties are broken by
an equi-probable lottery on the set of tied candidates. Hence, every voter has2K pure
strategies, corresponding to the set of vectors withK components, where each entry is
either zero or one.3

The strategy space of each player is

Σ = ∆ (V )

whereV = {0, 1}K is the set of pure strategies.

In order to determine the winner, we do not need to know the ballots cast by each voter

- it is enough to know their sum. Given a pure strategy vectorv ∈ V n, let ω =
n∑

i=1

vi.

Clearlyω is aK-dimensional vector, and each coordinate represents the total number of
votes obtained by the corresponding candidate. Then, denoting byp (c | v) the probability
that candidatec is elected corresponding tov, we have:

p (c | v) =

{
0 if ∃m ∈ C s.t ωc < ωm
1
q

if ωc ≥ ωm ∀m ∈ C and# {d ∈ C s.t. ωc = ωd} = q.
(1)

Each voteri ∈ N has a VNM utility function characterized byui : C → ℜ, with ui
c

representing the payoff that playeri gets if candidatec is elected. Hence, given the utility
vectors{ui}i∈N , we have a normal form game. For each pure strategy combinationv, the
payoff of playeri is given by:

U i (v) =
∑

c∈C

p (c | v) ui
c. (2)

Clearly, we can extend (1) and (2) to mixed strategies. Under a mixed strategyσ we
have:

p (c | σ) =
∑

v∈V

σ (v) p (c | v)

and
U i (σ) =

∑

c∈C

p (c | σ) ui
c,

3A “one” in thek-th component denotes voting for candidatek.
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where, as usual,σ (v) denotes the probability of the (pure) strategy combinationv under
σ.

Since the election rule depends only upon the sum of the votes cast, the payoff func-
tions and the best reply correspondences also have this property. Hence, the analysis will
often refer to the following set:

Ω−i =

{
ω−i | ∃v ∈ V n s.t.

∑

j 6=i

vj = ω−i

}
.

It is easy to see (cf. Brams and Fishburn, 1978) that anundominatedstrategy always
approves the most preferred candidate(s) and does not approve the least preferred one(s).

3 Example 1

We show here that in the example below, perfection is not an appropriate concept since
the set of perfect equilibria includes strategyn-tuples (and induced outcomes) which do
not survive iterated elimination of dominated strategies.

Example 1.There are six voters and three candidates. Utilities are given by:

u1 = u2 = (3, 1, 0), u3 = u4 = (0, 3, 1), u5 = u6 = (0, 1, 3).

We first define the concept of perfect equilibrium.

Definition 1 A completely mixed strategyσε is anε−perfectequilibrium if

∀i ∈ N, ∀vi, v̄i ∈ V i, if U i
(
vi, σε

)
> U i

(
v̄i, σε

)
, thenσε

(
v̄i

)
≤ ε.

A strategy combinationσ is a perfect equilibrium if there exists a sequence{σε} of ε−
perfect equilibria converging (forε → 0) to σ.

It is easy to see that the strategy combination

c = ((1, 0, 0), (1, 0, 0), (0, 1, 1), (0, 1, 1), (0, 0, 1), (0, 0, 1))

is an undominated equilibrium, leading to the election of the third candidate. We now
show thatc is a perfect equilibrium.

Proposition 2 In the AV game for example 1,c is a perfect equilibrium.
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Proof. Consider the following completely mixed strategy combinationσε, whereξi

denotes the mixed strategy of playeri which assigns equal probability to all his pure
strategies.

σε
i = (1 − 8ε2)(1, 0, 0) + 8ε2 (ξi) i = 1, 2

σε
i = (1 − 8ε2)(0, 1, 1) + 8ε2 (ξi) i = 3, 4

σε
i = (1 − ε − 7ε2)(0, 0, 1) + (ε − ε2) (1, 0, 0) + 8ε2 (ξi) i = 5, 6

It is easy to see that, forε sufficiently close to zero, this is anε−perfect equilibrium.
Suppose all voters other thani choose the strategies prescribed byc. Then, the two un-
dominated strategies of voteri are equivalent. Since forε going to zero, the probability
of player5 (or 6) to tremble towards(1, 0, 0) is infinitely greater than the probability of
any other “mistake”, due to the trembling of one or several players, it is enough to check
that in this event the limiting strategy is preferred to the other undominated strategy.

Hence, for player1, the relevant contingency which allows him to discriminate be-
tween his two undominated strategies is when the behavior of the others is summarized
by the vectorω−1 = (2, 2, 3). Since

U1((1, 0, 0) | (2, 2, 3)) =
3

2
>

4

3
= U1((1, 1, 0) | (2, 2, 3))

approving only the most preferred candidate is the best reply toσε for player1. The same
statement obviously applies for player2.

For player3, the relevant contingency in order to discriminate between his two un-
dominated strategies is given byω−3 = (3, 1, 2). Since

U3((0, 1, 1) | (3, 1, 2)) =
1

2
> 0 = U3((0, 1, 0) | (3, 1, 2)),

(0, 1, 1) is the best reply toσε. The same statement is true for player4.

For player5, the relevant event is given byω−5 = (3, 2, 2) with

U5((0, 0, 1) | (3, 2, 2)) =
3

2
>

4

3
= U5((0, 1, 1) | (3, 2, 2)).

Hence(0, 0, 1) is the best reply toσε, and the same holds for player6.

Therefore,{σε} is a sequence ofε−perfectequilibria. Sincec is the limit of σε, it is
perfect.

We now study the strategy combination

e = ((1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1))

in which each voter approves only his most prefered candidate and that results in a com-
plete tie between the three candidates.
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Proposition 3 In the AV game for example 1, lete be the strategy profile in which each
voter approves only his most prefered candidate;e is the unique sophisticated equilib-
rium, moreover{e} is the unique stable set of this game, hence survives any sequence of
elimination of weakly dominated strategies.

Proof. Each voter has only two undominated strategies – approving only his most
preferred candidate or approving the first two candidates in his preference ranking. Once
all the dominated strategies have been eliminated, we have a reduced game with the fol-
lowing pure strategy sets:

V ′i = {(1, 0, 0), (1, 1, 0)} i = 1, 2

V ′i = {(0, 1, 0), (0, 1, 1)} i = 3, 4

V ′i = {(0, 0, 1), (0, 1, 1)} i = 5, 6

In this reduced game, the last four voters have a unique dominant strategy — to ap-
prove only the most preferred candidate. For instance, consider player3. In eachω−3

the first candidate gets two votes while the second gets at least one and the third at least
two. Hence, except forω−3 = (2, 1, 2), the approval of only the second candidate is either
equivalent to the other strategy, since both lead to the election of the same candidate, or it
is preferred. Moreover, ifω−3 = (2, 1, 2), the strategy(0, 1, 0) results in all the3 candi-
dates being elected with equal probability. This yields an expected utility of4

3
. If strategy

(0, 1, 1) is played, then candidate3 is elected with probability one. Since this gives voter
3 a utility of 1, (0, 1, 0) dominates(0, 1, 1).

The same argument applies to the fourth voter and a symmetric one to the last two
voters. Hence, we can further reduce the game by eliminating the strategyvi = (0, 1, 1)
for i = 3, 4, 5, 6. In this game, player1 (resp.2) can face only two circumstances, namely
ω−1 = (1, 2, 2) or ω′

−1 = (1, 3, 2). In the latter case, his two strategies are equivalent since
both lead to the election of the second candidate; in the former case,(1, 0, 0) is preferred
to (1, 1, 0), giving a utility of 4

3
instead of1. Hence(1, 0, 0) is dominant for player1 (resp.

2). Thus, iterated elimination of dominated strategy isolates the equilibriume where each
voter approves only his most preferred candidate.

Notice thate is strict, and hence,isolated. This implies that{e} is the unique Mertens-
stable set of the game.4 This in turn implies thate survives any sequence of elimination
of dominated strategies.

The above results, namely thatc is a perfect equilibrium but only{e} is a stable set,
holds for every game with the same preference order and such that, for every voter, the

4See Mertens (1989) for a definition of this concept. We just recall that stable sets, which are connected
set of perfect equilibria, always exist and that every stable set contains a stable set of every game obtained
by iterated elimination of dominated strategies. These properties directly imply the claim.
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difference in utility between the most preferred candidate and the second preferred one is
greater than the difference between the second and the least preferred one.

Furthermore, the unique strategy combination surviving iterated elimination of domi-
nated strategies elects all the three candidates with the same probability. In other words,
the Condorcet loser (candidate1) is elected with the same probability as the Condorcet
winner (candidate2)!

4 Example 2

In this section, we propose a more striking example in which sophisticated voting implies
that nobody approves the Condorcet winner.

Example 2.There are three voters and four candidates. Utilities are given by:

u1 = (10, 0, 1, 3), u2 = (0, 10, 1, 3), u3 = (1, 0, 10, 3).

Note that at this profile, candidate4 is the unique Condorcet winner.

Proposition 4 In the AV game for example 2, lete be the strategy profile in which each
voter approves only his most prefered candidate;e is the unique sophisticated equilib-
rium, moreover{e} is the unique stable set of this game, hence survives any sequence of
elimination of weakly dominated strategies. Ate the Condorcet winner receives no vote.

Proof. The fourth alternatives defeats any other by a strict majority (2 votes against
1), hence is the unique Condorcet winner.

Recall that an undominated strategy always approves the most preferred candidate and
does not approve the least preferred one. Hence, every voter has only four undominated
strategies. After we eliminate all the others, it is easy to verify that, for player1, the strat-
egy(1, 0, 0, 0) dominates(1, 0, 1, 1) and(1, 0, 1, 0). Once these two strategies of player1
are eliminated,(0, 0, 1, 0) is dominant for player3. In the reduced game, player3 has only
one strategy -(0, 0, 1, 0), while player1 has two, namely(1, 0, 0, 0) and(1, 0, 0, 1). Now,
(0, 1, 0, 0) is dominant for player2. Hence eliminating the other strategies,(1, 0, 0, 0)
becomes dominant for player1. It is easy to see that this equilibrium is strict; the result
follows like in the previous proposition.

Hence, sophisticated voting (and thus strategic stability) may imply that the Con-
dorcet winner receives no approval vote. As we have remarked earlier, Fishburn and
Brams (1981) prove that if a candidatex is a Condorcet winner, then there is a sincere
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undominated strategy combination that electsx. This and the previous example show how
this result cannot be extended to sophisticated (or strategically stable) strategies.5

5 Example 3

Let us consider the AV game(Γ) for the following example:

Example 3.There are three voters and four candidates. Utilities are given by:

u1 = (1000, 867, 866, 0), u2 = (115, 1000, 0, 35), u3 = (0, 35, 115, 1000).

This game has a stable set in which player1 approves the first and the third candidate.
Hence strategic stability does not imply sincerity. Moreover, this result still holds in a
neighborhood of the game (an open set of payoffs around the considered ones) and also
for stronger solution concepts.

Proposition 5 The strategy combination

s = ((1, 0, 1, 0),
1

4
(0, 1, 0, 0) +

3

4
(1, 1, 0, 0),

1

4
(0, 0, 0, 1) +

3

4
(0, 0, 1, 1))

forms a stable set ofΓ. Moreover, there exists a neighborhood(ΨΓ) of Γ, in the space of
approval games with three voters and four candidates, such that every game inΨΓ has a
stable set with the same support ass.

The proof of the Proposition, which is postponed to the Appendix, consists in showing
that the equilibriums is strongly stable (Kojimaet. al., 1985) and, hence, forms a stable
set. The strong stability ofs is proven by showing thats is quasi-strict and isolated and,
furthermore, that(s2, s3) is strongly stable in the2 × 2 game obtained by eliminating
all the strategies that are not best replies. This proof actually implies the stronger result
thats is a regular equilibrium (Harsanyi, 1973), because the characterization theorem of
Kojima, et. al. shows that an equilibrium is regular if and only if it is quasi strict and
strongly stable.6

5In this example the undominated equilibrium electing the Condorcet winner is
((1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)). It can be proved that such an equilibrium is not even perfect.
Hence the exclusion of the “Condorcet outcome” from the solution set does not depend on the definition of
stability. As a matter of fact, not even a weaker requirement such as perfection guarantees that the set of
solutions contains such an outcome. For a simpler example of this, see footnote 3 in De Sinopoli (1999).

6Dutta and Laslier (2005) give a direct but longer proof thats is regular. Even if we obtain the stronger
result thats is strongly stable (and regular), we prefer to state the results in terms of strategic stability
because many games, including AV games, have no strongly stable equilibria. Consider the example where
everybody has the same preference order over the alternatives. In this case, with three or more voters, no
strongly stable equilibrium exists.
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Unlike examples 1 and 2, this game cannot be solved by iterative elimination of dom-
inated strategies. Because{s} is a stable set the pure strategies which are played with
positive probability ins cannot be eliminated. Hence, here, elimination of dominated
strategies cannot eliminate the pure strategies played by players2 and3.

Notice in this example, the second candidates is the Condorcet winner and is elected
with probability 1

64
in the equilibriums, while the third candidate, who is the Condorcet

loser, is elected with probability31
64

.7 Under plurality rule, for the same preferences, there
is only a stable set8 and, in this stable set, the Condorcet winner is elected with probability
1.

Furthermore notice that, by adding two votersi and j, with ui = (1, 1, 0, 0) and
uj = (0, 0, 1, 1), we obtain a strongly stable equilibrium in which the strategies of the
original players are the ones ins while i andj use their dominant strategies. Replicating
this, we can obtain an example of insincere voting with any odd number of voters.9

Our proof also shows that not even more demanding criteria such as strong stability or
regularity, can exclude insincere strategies. This is due to the fact that an insincere strategy
can be the only best reply to mixed strategy combinations of the opponents. Hence, as
long as we allow for mixed strategies, there is no reason to exclude non-sincere behavior.

6 Conclusion

In this paper, three examples of approval voting games have been proposed. The first
one allows us to conclude that in the class of approval games, the perfect equilibrium
concept is not restrictive enough to capture sophisticated voting, since there are “perfect
equilibrium” outcomes that do not survive the iterated elimination of dominated strategies
and that are not induced by any stable set. Furthermore, even if there is a Condorcet
winner, strategic stability, as well as sophisticated voting, does not imply his election and,
as a second example shows, it is possible that nobody votes for him.

The third example shows that strategic stability does not imply sincerity. It is not
difficult to see that for every pure strategy of the other players, the set of best replies
contains a sincere strategy. As soon as we allow for mixed strategies, not only is this
not true, but even a strong requirement such as strategic stability cannot exclude the use
of non-sincere strategies. Moreover, this result holds in a complete neighborhood of the
game and also for more demanding criteria.

7The probabilities of election of the first and the fourth candidate are, respectively,31

64
and 1

64
.

8In the unique stable set, players1 and2 vote for the second candidate and player3 for the fourth.
9Similar examples can be constructed also with4 voters (see the second example in De Sinopoli, 1999),

and, hence, for any number of voters greater than or equal to3.
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Appendix
Proof of Proposition 2.

Given that a strongly stable equilibrium (Kojimaet. al., 1985) is a stable set as a
singleton,10 it is enough to prove that

s = ((1, 0, 1, 0),
1

4
(0, 1, 0, 0) +

3

4
(1, 1, 0, 0),

1

4
(0, 0, 0, 1) +

3

4
(0, 0, 1, 1))

is strongly stable.

The first step of the proof consists in showing thats is a quasi-strict equilibrium
(each player uses all his pure best replies). To this end we calculate the probability, under
s, of each contingency a player can face and, from these probabilities, the expected utility
derived from each undominated strategy. It is easy to see that no dominated strategy is a
best reply tos.

Player 1

Pr(ω−1 = (1, 1, 1, 1) | s−1) = 9
16

Pr(ω−1 = (0, 1, 1, 1) | s−1) = 3
16

Pr(ω−1 = (1, 1, 0, 1) | s−1) = 3
16

Pr(ω−1 = (0, 1, 0, 1) | s−1) = 1
16

.

From these probabilities it follows that:

U1((1, 0, 1, 0), s−1) = 9
16

· 1866
2

+ 3
16

· 866 + 3
16

· 1000 + 1
16

· 2733
4

= 58713
64

U1((1, 0, 0, 0), s−1) = 9
16

· 1000 + 3
16

· 2733
4

+ 3
16

· 1000 + 1
16

· 1867
3

= 176065
192

U1((1, 1, 0, 0), s−1) = 9
16

· 1867
2

+ 3
16

· 867 + 3
16

· 1867
2

+ 1
16

· 867 = 7335
8

U1((1, 1, 1, 0), s−1) = 9
16

· 2733
3

+ 3
16

· 1733
2

+ 3
16

· 1867
2

+ 1
16

· 867 = 7233
8

.

Since no dominated strategy is a best reply tos−1 we have that(1, 0, 1, 0) is the only
best reply tos−1 (although this strategy is not sincere).

Player 2

Pr(ω−2 = (1, 0, 1, 1) | s−2) = 1
4

Pr(ω−2 = (1, 0, 2, 1) | s−2) = 3
4
.

From these probabilities it follows that:

U2((0, 1, 0, 0), s−2) = 1
4
· 1150

4
+ 3

4
· 0 = 575

8

10See Mertens (1991: 697-699) which shows how the continuity of the map from the space of perturbed
games to subsets of equilibria is a stronger requirement than the one included in the definition of stability.
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U2((1, 1, 0, 0), s−2) = 1
4
· 115 + 3

4
· 115

2
= 575

8

U2((0, 1, 0, 1), s−2) = 1
4
· 35 + 3

4
· 35

2
= 175

8

U2((1, 1, 0, 1), s−2) = 1
4
· 150

2
+ 3

4
· 150

3
= 225

4
.

Hence,(0, 1, 0, 0) and(1, 1, 0, 0) are the only two pure best replies tos−2.

Player 3

Pr(ω−3 = (1, 1, 1, 0) | s−3) = 1
4

Pr(ω−3 = (2, 1, 1, 0) | s−3) = 3
4
.

From these probabilities it follows that:

U3((0, 0, 0, 1), s−3) = 1
4
· 1150

4
+ 3

4
· 0 = 575

8

U3((0, 0, 1, 1), s−3) = 1
4
· 115 + 3

4
· 115

2
= 575

8

U3((0, 1, 0, 1), s−3) = 1
4
· 35 + 3

4
· 35

2
= 175

8

U3((0, 1, 1, 1), s−3) = 1
4
· 150

2
+ 3

4
· 150

3
= 225

4
.

Hence, the only two pure best replies of player3 are(0, 0, 0, 1) and(0, 0, 1, 1).

The second steprequires to prove that the quasi-strict equilibriums is isolated. To
analyze the set of equilibria nears we can limit the analysis to the case in which the
strategy of player1 is fixed, because he is using a strict best reply. Moreover, becauses is
quasi strict, also players2 and3 can use (sufficiently close tos) only the pure strategies
in s. Hence, to show thats is isolated it is enough to study the equilibria of the following
game between players2 and3:

(0, 0, 0, 1) (0, 0, 1, 1)
(0, 1, 0, 0) 575

2
, 575

2
0, 115

(1, 1, 0, 0) 115, 0 115
2

, 115
2

This game has two pure equilibria, i.e.((0, 1, 0, 0), (0, 0, 0, 1)) and((1, 1, 0, 0), (0, 0, 1, 1)),
and a completely mixed one corresponding tos. Hence,s is isolated.

The third step consists in showing thats is a strongly stable equilibrium. Sinces
is quasi-strict and isolated we can conclude (cf. van Damme, 1991: 55, Th. 3.4.4) that
(s2, s3) is a strongly stable equilibrium of the reduced game where we takes1 as being
fixed. Since the first player is using his strict best reply,s is a strongly stable equilibrium
of the whole game. Hence,{s} is a stable set ofΓ.

The second part of the proposition directly follows from corollary 4.1 in Kojimaet.
al. (1985), which states that, given a game and a strongly stable equilibrium, the unique
nearby equilibrium of a nearby game is strongly stable too. In this statement, a game is
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a point in the Euclidean space of dimensionn
∏n

i=1 ki, whereki is the number of pure
strategies for playeri (hereki = 2K for all i). The space of approval voting games is a
subspace (of dimensionnK) defined by the utility of each of theK candidates for each
of then players. Since each “approval game” nearΓ has a normal form close to that ofΓ
and since for sufficiently close games and sufficiently close strategies, no other strategy
than the ones ins can be a best reply, the claim easily follows.
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