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Expressive Power of Weighted Propositional
Formulas for Cardinal Preference Modelling

Yann Chevaleyre Ulle Endris$, Jerdme Lang

Abstract

As proposed in various places, a set of propositional formulas, each associated
with a numerical weight, can be used to model the preferences of an agent in com-
binatorial domains. If the range of possible choices can be represented by the set of
possible assignments of propositional symbols to truth values, then the utility of an
assignment is given by the sum of the weights of the formulas it satisfies. Our aim
in this paper is twofold: (1) to establish correspondences between certain types of
weighted formulas and well-known classes of utility functions (such as monotonic,
concave olk-additive functions); and (2) to obtain results on the comparative suc-
cinctness of different types of weighted formulas for representing the same class of
utility functions.

Key words : Preference representation, logic-based languages, expressive power,
comparative succinctness, computational complexity

1 Introduction

Many individual or multiagent decision making problems have in their input the prefer-
ences of the agent(s) over a set of possible alternatives. These preferences can be either
ordinal (i.e.preference relations, typically weak orders) or cardinal (itiity functions).

We make use of the generic wapdeference structurtor either a preference relation or a
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utility function. Such problems include decision making and planning under uncertainty,
multi-criteria decision making and decision support systems, automated group decision
making (including auctions, fair division, vote), and distributed decision making (includ-
ing negotiation).

Saying that the input of a problem contains the preference structure of the agent(s)
over the set of alternatives does not imply anything about how these structugseare
ified in the input. Clearly, if the set of alternatives is small, this question is not relevant,
since the size of the explicit representation of the preference structure is small as well.
This is no longer the case when the set of alternatives is a combinatorial domain: in
this case, the set of alternatives is the set of all assignments of each of a given finite
set of variables to a value of the corresponding finite dorhaEExamples are numer-
ous: in combinatorial auctions and negotiation over resoulfCeamtonet al., 2006;
Chevaleyreet al., 2006, an alternative is an assignment of each good to an agent; in
multiple issue referend®ramset al., 1998, an alternative consists of a truth value (yes
or no) for each issue.

For this purpose, many languages have been developed so as to express prefer-
ence structures as succinctly as possible. These languages differ significantly, depend-
ing on whether the preference structure to be expressed is ordinal or cardinal. Lan-
guages for the succinct representation of ordinal preferences include languagges of
teris paribusstatements, which range from very expressive langubegle and Well-
man, 199] to syntactical restrictions such as CP-ni8sutilier et al., 1999, where a
weaker expressivity is compensated for by the availability of efficient elicitation and op-
timisation techniques. They also include languages based on conditional logics, priori-
tised logics, and prioritised constraint satisfaction problems (see e.g.[Rafd for an
overview). Languages for the succinct representation of utility functions include graphi-
cal modeldBacchusand Grove, 1996; La Mura and Shoham, 1999; Boutliak, 2001;
Gonzales and Perny, 2004lecision tree$Boutilier et al., 1993, valued constraint sat-
isfaction problemg¢Bistarelliet al., 1999, and bidding languages for combinatorial auc-
tions[Nisan, 2006; Boutilier and Hoos, 2001; Sandholm, 3002

Many different issues concerning preference representation languages are worth in-
vestigating:

o Elicitation: design algorithms to elicit preferences from an agent so as to get an
output expressed in a given language.

¢ Cognitive relevanceassess the cognitive relevance of a language by measuring its
proximity to the way human agents “know” their preferences and express them in
natural language.

3Another situation where preference representation is non-trivial is when the set of alternatives is con-
tinuous. We leave this issue aside and focus on finite domains only.
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o Expressive powelidentify the set of preference structures that can be expressed in
a given language.

o Complexity:for a given language, determine the computational complexity of tasks
such as finding a non-dominated alternative, checking whether an alternative is pre-
ferred to another one, whether an alternative is non-dominated, or whether all non-
dominated alternatives satisfy a given property.

o Comparative succinctnesgiven two languages andL’, determine whether every
preference structure that can be expressddéan also be expressed i without
a significant (that is, supra-polynomial) increase in size (in which éagesaid to
be at least as succinct 3.

Elicitation and complexity have been the subject of much previous work that we will not
recall here. Cognitive relevance is somewhat harder to assess, due to its non-technical na-
ture, and to our knowledge it has been rarely studied (see \2€f}¢ for a short discus-

sion). Expressive power and comparative succinctness, have been investigated to a lesser
extent. Coste-Marquist al. [2004 give a systematic analysis of both issues deati-

nal preferences, while several other authi@sutilier and Hoos, 2001; Sandholm, 2002;
Chevaleyreet al., 2004; Nisan, 20Q@nvestigate these issues for bidding languages for
auctions and negotiation (which express valuation functions for bundles of goods). In
this paper we investigate expressive power and succinctness for one of the simplest lan-
guages for utility representation, where goals are specifiggr@sositional logic for-

mulas, and each goal is associated with a numerical weight. The utility of an alter-
native is then obtained by summing up the weights of the goals it satisfies. This lan-
guage has been considered in many places, as have several of its vafRitias, 1991,
Haddawy and Hanks, 1992; Dupin de Saint-@yal., 1994; Lafage and Lang, 2000

After covering some preliminaries and introducing the problems addressed in this pa-
per in more formal detail in the next section, we first investigate expressivity issues. We
focus on a number of possible restrictions on both formulas and weights, and identify the
corresponding classes of utility functions. While the results are obvious in extreme cases
(if no restriction is imposed, all utility functions can be expressed, with maximal succinct-
ness; if only atomic formulas are allowed then only linear functions can be expressed),
there appear to be many cases for which they are non-trivial and particularly interesting,
because they correspond to intermediate classes which may realise a good trade-off be-
tween simplicity and efficiency. We then present, in less detail, initial results concerning
the comparative succinctness of different preference languages. In the final section, we
discuss related work and further research directions. In particular, we point out interest-
ing directions for future work regarding the computational complexity of working with
different languages based on weighted propositional formulas.
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2 Modelling Preferences

In this section we introduce two approaches to modelling cardinal preferences: by means
of classical utility functions and by means of weighted propositional formulas.

We first fix some basic notation. LétS be a finite set of propositional symbols and
letn = |PS|. Lpg is the propositional language built frofS using the operations of
negation, conjunction and disjunction. For any formula Lps, Var(p) denotes the set
of propositional symbols occurring in PS(k) is the set of all subsets ¢S with at most
k elements (in particula’S (1) and PS(n) are isomorphic ta’S and2”, respectively).
ElementsM of 275 could be bundles of indivisible goods, agreements in the context of
multi-criteria decision making, coalitions of agents in the context of cooperative games
or, more generally, propositional worlds (assigning to every symbol appearing it/
andfalseto all other symbols).

2.1 Utility Functions

We now introduce the concept ofudility function over propositional worlds and recall
the definitions of several well-known classes of utility functions.

Definition 1 (Utility functions) A utility function is a mapping : 2% — R.

e v is normalised iffu({ }) = 0.

u is non-negative iffy( X) > 0 for all X.

u is monotonic iffu( X) < u(Y') wheneverX C Y.

uis modular iffu(X UY) = u(X) + u(Y) —u(X NY) forall X andY'.

u is subadditive ifiu(X UY) < u(X) +u(Y) —u(X NY)forall X andY.

u is superadditive ifi( X UY) > u(X)+u(Y)—u(X NY) forall X andY.

uis concave ifil( X UY) —u(Y) <wu(XUZ)—u(Z)forall X whenevel” D Z.

uis convex ifu( X UY) —u(Y) > u(X UZ) —u(Z) for all X wheneved” D Z.

u is k-additive iff there exists a mapping : PS(k) — R such that (for allX):

u(X) = ) {m(Y)|Y C XandY € PS(k)}
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Intuitively, concavity means that marginal utility (of obtainifg) decreases as we move

to a better starting position (namely fromto Y). Observe that: is convex iff —u is
concave and, similarly; is superadditive iff-u is subadditive. All concave functions are
also subadditive and all convex functions are superadditive{setX NY). The class

of modular functions is the intersection of the classes of subadditive and superadditive
functions. Utility functions that are both monotonic and normalised are also known as
capacities.

The class ok-additive functions, the definition of which is inspired by work in fuzzy
measure theory (see e[@rabisch, 199J) and which recently also have found application
in combinatorial auctiongConitzeret al., 200% and distributed negotiatiofChevaleyre
etal., 2004, is probably less well-known than the other classes of functions mentioned in
Definition 1. This class is useful in domains where synergies between different items are
restricted to bundles of at mostelements. We recall the well-known fact that for= n,
any utility function is k-additive: m({ }) = u({ }) andm(X) can be defined recursively
asu(X) — >y -ym(Y) forall X # {}. Moreover, the functiom such thatu(X) =
Y {m(Y) | Y C X} isuniquelydetermined; the mapping— m is known as thédbius
inversion([Rota, 1964; see alsdShafer, 1976; Gilboa and Schmeidler, 1h92lso, the
class of modular functions coincides with the class of 1-additive functions. This may be
seen as follows. LeX be any non-empty set " and letz € X. Then the equation
characterising modularity implies X) = u(X \ {z}) + [u({z}) — u({ })]. If we apply
this step recursively for every elementXf then we end up with the following equation:

uX) = u{}) + Y [w{z}) - u{})]
Choosingm({}) = u({}) andm({z}) = u({z}) — u({ }), this shows that modularity
implies 1-additivity. The converse is easily seen to hold as well.

2.2 Weighted Formulas

An alternative approach to representing preferenceswsggted propositional formu-

las. A weighted formula is a paify, ), wherey is a propositional formula in the lan-
guageLps anda is a numerical weight representing the relative importance of that for-
mula. Intuitively, the degree of satisfaction derived from a particular propositional world
(bundle of goods, agreement, coalition) is the sum of the weights of the formulas satisfied
by that world.

Definition 2 (Goal bases)A goal base is a sef = {(;, ;) }; of pairs, each consisting
of a satisfiable formule; € £ps and a real numbet;. The utility functionu generated
by G is defined by

ug(M) = > foi| (pi,0;) € Gand M | i}
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forall M € 275, G is called the generator af ;.

Summing up the individual weights is particularly suited for modelling utility functions,
but other aggregation functions have been investigated agvedtige and Lang, 2090
In this paper we are going to be interested in the following question:

Are there simple restrictions on goal bases such that the utility functions they
generate enjoy simple structural properties?

Interesting candidates for restrictions on formulas include restrictions on the length of
formulas as well as the range of propositional connectives appearing in a formula. The
most obvious restriction on weights would be to allow only positive numbers.

Definition 3 (Restrictions) Let H C Lpg be a restriction on the set of propositional
formulas and lef?’ C R be a restriction on the set of weights allowed in the specification
of goals. For formulas, we consider the following restrictions:

o A positive formula is a formula with no occurrence-gfa strictly positive formula
is a positive formula that is not a tautology.

¢ Aclause is a (possibly empty) disjunction of literalg;-alause is a clause of length
<k.

¢ A cube is a (possibly empty) conjunction of literalsk-®ube is a cube of length
<k.

o Ak-formulais a formulap with | Var(y)| < k.

As for weights, we consider only the restriction to the positive reals. Given two restrictions
H and H', letU/(H,H’) be the class of utility functions that can be generated from goal
bases conforming to the restrictiodsand H'.

Restrictions on formulas can also be combined (e.g. positive clauses are disjunctions of
positive literals). We write “all” in case no specific restriction applies. For example,

U (positivek-cubesall) is the class of utility functions generated by goal bases made up
from positivek-cubes and where weights are not subject to any restrictions. We are also
going to consider restrictions to both atoms (propositional symbols) and literals (atoms
and their negations). Note that is a cube (of lengtt®), but not a clause (nor is it a
literal). The empty clause is equivalent tqg i.e. it is not of interest here, because goals

are required to be satisfiable.

Two goal baseg: and G’ are said to beequivalent(written G = ') iff they gen-
erate the same utility functionse. iff ug = ug. The following lemma introduces two
equivalence-preserving transformations on goal bases. It shows how to eliminate both
negations and disjunctions from inside a conjunction.
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Lemma 1 The following equivalences hold for all goal basesformulasy, 1, x € Lps
and weightsy € R:

(i) GUi(e A=, 0)} = GU{(p,a), (p A, —a)}

(i) GU{(p A (¥ VX)) =
GU{(p A, ), (o Ax,a), (0 A Ax, —a)}}

Proof. The claims are easily verified by considering all (eight) possible ways of assigning
truth values to the formulag, ) andy. 0

A special case of paft) shows how to eliminate a negation from the outside of a formula:
{(=¢,a)} can be rewritten a§(T, ), (¥, —a)}. Similarly, settingy = T in part (i)
provides us with a way of transforming a disjunction into a set of conjuncti¢fs:v

X Oé)} can be replaced b‘Mwa Ot)./ (X? CM), W A X —0()}.

3 Correspondence Results

This section gives a range of answers to our earlier question regarding the existence of
restrictions on goal bases generating utility functions with simple structural properties.

3.1 Basic Results

It turns out that the notion of-additivity plays a central role in characterising the classes
of utility functions corresponding to certain types of goal bases. This connection is at its
most apparent in the case of positieubes.

Proposition 1 ¢ (positivek-cubesall) is equal to the class df-additive utility functions.

Proof. A k-additive function can be represented by a mapping PS(k) — R (see
Definition 1). We can define a bijective functighfrom such mappings: onto goal
bases with only positivek-cubes:

fme=A{(pt A Ap, ) [ m({pr,...,px}) =}

Clearly, the utility functions generated by and the goal basg(m) are identical. O

Observe thahegativek-cubes (i.econjunctions of negative literals of length k) also
generate the set of all-additive functions. This may be seen as follows. Bt) be
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defined byB(u)(M) = u(M) for all M. If u is generated by, thenB(u) is generated

by G obtained by replacing every literal in every formula@fby its negation, which
shows that/(negativek-cubesall) = B(U(positivek-cubesall)), which is equal to the

set of allk-additive utility functions (since the latter is closed un@®r In fact, for several

of our correspondence results on positive formulas below, there exist similar results for
formulas where all literals are negative, even though we are not going to specifically report
these here.

Proposition 2 The following sets are also all equal to the clas&afdditive utility func-
tions:

e U(k-cubesall) andi{(k-clausesall);

o U/(positivek-formulasall) andZ/(k-formulas all).

Proof. Any positivek-cube(p; A - - - A py, ) can be rewritten as a set bfclauses (using
an arbitrary additional propositional symbgt

{(=p1 V-V o, —a), (p, @), (-p, o)}

Hence, U (positivek-cubesall) C U(k-clausesall). Clearly, U(positivek-cubesall)
is also included in botld/(k-cubesall) and i/ (positivek-formulasall), and all of the
classes mentioned are includedifk-formulasall).

Using Lemma 1, we can transform any goal base consistitgfofmulas into a goal
base of positive:-cubes,i.e. we also get/(k-formulasall) C U/(positivek-cubesall).
Hence, all of the sets of utility functions mentioned earlier are equivalent. The claim then
follows immediately from Proposition 1. O

Thepositivek-clauses dmot generate the full set df-additive utility functions, because
(due to the fact thafl is not a clause) positivé-clauses do not allow us to assign a
non-zero utility to{ }. We therefore obtain the following weaker result:

Proposition 3 U (positivek-clausesall) is equal to the class of normalisédadditive
utility functions.

Proof. First observe that positivie-clauses augmented with can generate all-additive
utility functions. This immediately follows from casé) of Lemma 1 and Proposition 1.
Without lack of generality, we may assume that any goal liasé positive k-clauses
augmented witll" includes exactly one weighted goal of the foffn, «). It then remains
to be shown that,; is normalised iffac = 0. This is clearly so, because;({ }) = a

138



Annales du LAMSADE f6

holds due to the fact thdt} falsifies all positive clauses. O

Next we list a number of further basic results, all of which are simple consequences of
the results ort-additive utility functions for the special casesiof n andk = 1.

Proposition 4 The following sets are all equal to the class of all utility functions:

e U(positive cubegll) andi/(positive all);

e U(cubesall), U(clausesall) and/(all, all).

Proof. Recall thatany utility function is k-additive for a sufficiently high value df. The
claim then follows from Propositions 1 and 2. O

U (positive cubeall) corresponds to themarginal contribution netsof leong and
Shohan{2004, who also point out that this language is fully expressive.

Proposition 5 U (positive clausesll) is equal to the class of normalised utility func-
tions.

Proof. This is a corollary to Proposition 3. O

Proposition 6 ¢(strictly positiveall) is also equal to the class of normalised utility func-
tions.

Proof. As any positive clause is a strictly positive formula, by Proposition 5, any nor-
malised function must belong té(strictly positiveall). Vice versa, ifG is a set of strictly
positive formulas themq({ }) = 0, becausd } falsifies all strictly positive formulas™

Proposition 7 U(literals, all) is equal to the class of modular utility functions.

Proof. First recall that the class of modular functions is equal to the class of 1-additive
functions. Therefore, by Proposition Z{1-cubesall) is equal to the class of modular
functions. The set of 1-cubes is the set of literals together Witfihe claim then follows
from the fact that we can rewrit§ T, a)} as{(p, @), (=p,a)} using any propositional
symbolp. O
Proposition 8 ¢/ (atomsall) is equal to the class of normalised modular utility functions.

Proof. Atoms are strictly positive literals.e. the claim follows from Propositions 6 and 7.
]
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3.2 Non-negative Functions

Next we study the classes of utility functions generated by positively weighted formulas.
Unsurprisingly, such functions will be non-negative.

Proposition 9 U(all, positive)and{(cubespositive)are both equal to the class of non-
negative utility functions.

Proof. It is obvious thatl/(all, positive), anda fortiori ¢/(cubespositive), are con-
tained in the set of all non-negative utility functions. For the converse inclusion, it
is enough to show that any non-negative utility function can be generated by posi-
tively weighted cubes. So suppogés such a non-negative utility function and define

G = {(form(M),u(M)) | M € 275}, where:

form(M) = /\{3: |z e M}/\/\{ﬂm |z e PS\ M}

We haveu = ug, i.e.w is inU(cubespositive)). O

Again, clauses are less expressive than cfibes:

Proposition 10 (clausespositive)is a proper subset of the class of non-negative utility
functions.

Proof. Inclusion oft/(clausespositive)in the set of non-negative functions follows from
Proposition 9. To show that the inclusion is strict, consider the following non-negative
utility function:

u({p. ¢}) = 1; u({p}) = 0; u({g}) = 0; u({}) =0

Suppose there exists a generatoof v using only positively weighted clauses. Letbe
the weight associated with clauséWe obtain the following list of constraints:

(1) wp + wy + Wyyg + Wopyg + Wpy—g +wr =1

(2) wp + W-g + Wpyg + Wpy—g + Wpy—g + w7 =0
(3) wop + Wy + Wyvg + Wopyg + Wopy—g + w7 =0
(4) wop + Wog + Wopyg + Wpy—g + Wopy—g +wT =0
(5) w,. > 0 for all clauses:

4But observe that the restrictions on the functions that can still be expressed are different than for Propo-
sition 5. While positive clauses with general weights generate all normalised functions, general clauses with
positive weights do not onlgotgenerate all normalised (non-negative) utility functions, but also some non-
normalised functions.
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Constraints (2), (3), (4) and (5) give. = 0 for any clause:, which is inconsistent with
(). O

Likewise,U (k-clausespositive)is a proper subset of the class of non-negatiaiditive
utility functions.

3.3 Monotonic Functions

The next result characterises the class of normalised monotonic utility functions, also
known ascapacities.

Proposition 11 I/ (strictly positive positive)is equal to the class of normalised mono-
tonic utility functions.

Proof. Clearly, any utility function generated by positive formulas with positive weights
must be monotonic; and by Proposition 6, any function generated by strictly positive
formulas is normalised. Hence, everg U(strictly positive positive)must be a capacity.

For the converse, we sketch how to construct a goal base of positively weighted strictly
positive formulas for any given capacity Consider the utility functions” (for & =
1,...,n) defined as follows:

u*(X) = max{u(X') | X' C X and|X'| < k}

For instancey! (X) = max,cx u({z}) andu™ = u (because of monotonicity). We are
going to show how to construct generatorsdoyu? — u!, u* — u? and so forth; the union
of these will then be a generator for the utility functiot, and hence for.

(Step 1) To construct a generat6f for !, order the elements; of PS such that

u({pr}) < -+ <u({pa}).
G'={(p V- Von,u({p})),

(P2 V-V pyu({p2}) — u({pi})), -,
(P, u({pn}) — ul{pn}) }

Clearly,G' is a generator fon!.

(Step 2) To construct a generator for! = u? — u!, let {X;,... ,X(n)} be the set of all
2-ary subsets ofS, ordered in such a way that~!(X;) < v*"!(X;) whenever < j.
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Observe that*~!(X;) is non-negative (due to the monotonicity:gf Now define:

G2 = {(AXLV - VA X (w7 (X)),
(AXa V.-V /\X(;), uTH(X) — P (X)),
2—-1 2—-1

(AX(myu™ (X)) = (X (m) 1))}
G? is a generator for? — u!. If we continue using the same method, we can construct
generator€:®, ..., G" for u® — u? up tou™ — v™~1. The union ofG, ..., G™ will then
be a generator for the sumof, u? — u!,... u" —u™!; thatis, it will be a generator for
u=u". a

To exemplify our construction, consider the capacitwith u({p,}) = 2, u({ps}) =5
andu({p:, p2}) = 6:

(Step 1) Ordering the elements §f;, po} givesu({p:}) < u({p2}, therefore,G' =
{(p1 V p2,2), (p2,3)}. G'is a generator fou', whereu!'({}) = 0, u*'({;m}) = 2,
u'({p2}) = 5, u'({p1, p2}) = 5.

(Step 2) Since{p,p.} is the only 2-ary subset offp;,p.}, G*> = {(p1 A

P2, w?~ ({p1, p2})) }- Now, v~ ({p1, p2}) = w?({p1, p2}) —u' ({1, p2}) = u({p1, p2}) —
5 = 1. Therefore, we obtain the following goal base:

G=G"UG"={(p1Vp22),(p23),(p1 Apas, 1)}

Also observe that we can model the full set of monotonic utility functions by allowing
a single goal(T, ) with weight o (which could be negative) in a goal base that oth-

erwise consists only of strictly positive formulas with positive weights. Furthermore,
U (positive positive)is the set of non-negative monotonic utility functions.

3.4 Concave Functions

As a final correspondence result, we establish a connection between restrictions on goal
bases and concave utilities.

Proposition 12 U/ (positive clausegositive)is a subset of the class of normalised con-
cave monotonic utility functions.

Proof. The fact that any utility function from the séf(positive clausegositive)is a
capacity follows from Proposition 11. So the interesting part is to show that positive
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clauses with positive weights generate concave utility functionsu lbet generated by a
goal basé~ of positive clauses with positive weights and}tY andZ be propositional
worlds such that” O Z. For positive clauseg, X UY | ¢ together withY” = ¢ implies
X | ¢, andM | ¢ impliesM’ = o wheneverd C M. Hence:

{(p,0) EG| XUY EpandY j£ ¢} C
{(p.0) G| XUZ EpandZ I o}
Because all weightsy are positive, we immediately obtain the required inequation

characterising concavity, namely X UY') — u(Y) < uw(X U Z) —u(Z). O

We do not know whether the converse inclusion holds as well. Note that Proposition 12
implies thatpositive clauses with negative weiglgisnerate onlgonvexutility functions
(albeit only negative ones).

4 Comparative Succinctness

Different restrictions on goal bases constitute diffedamguagesfor describing utility
functions. In this section, we make a first step towards analysing the compaative
cinctnes®of such languages.

4.1 Defining Succinctness

A languagel’ for expressing utility functions is said to la¢ least as succinas another
languagel iff there exists a polysize reduction for any utility function expressed to
the same utility function expressed i (see alsdCadoliet al., 1996; Coste-Marquist
al., 2004). In our case, languages are restrictiofi$d, H') or, more generally, sets of
goal bases.

Definition 4 (Succinctness)Let L and L' be two sets of goal bases. We say thais at
least as succinct ag, denoted by < L/, iff there exist a mapping : L — L' and a
polynomial functiorp such that:

e G=f(G)forall G € L;and
e size(fG)) < p(sizdG)) forall G € L.
Here thesizeof a goal base is the sum of the lengths of the formulas in that goal base.
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If L < L'andL' < L,thenL andL’ are as succinct as each other: they express the
same sets of utilities in the same order of size. It may also be the case that two languages
are incomparable, that is, neither< L' nor L’ < L holds. The strict order associated
with < is denoted by< (i.e. L < L' iff L < L' butnotL’ < L).

We are interested in comparing the succinctness of different languages that have the
same expressive power (itat can generate the same class of utility functions). Note
that, if H, H' C Lps andH” C R with U(H,H") = U(H', H"), then H C H' implies
U(H,H") <U(H, H"). Inthis case the polysize reduction is simply the identity function.

4.2 An Incomparability Result

The most basic way of representing a utility function would be to explicitly list all propo-
sitional worlds with a non-zero utility. We call this tiegplicit form. This directly corre-
sponds to goal bases consisting solely of cubes, each of which containgethep as

a conjunct for every propositional symhok PS (let us refer to such cubes ascubes).
Clearly,U/(n-cubesall) is equal to the class of all utility functions.

As discussed earlier, the concept iohdditivity gives rise to a different represen-
tation, which we call the:-additive form. Thek-additive form directly corresponds to
goal bases consisting only of positive cubes (see proof of Proposition 1). As shown
elsewherd Chevaleyreet al., 2004, the explicit form and the:-additive form of rep-
resenting utility functions ariscomparablewith respect to succinctness. This means that
U (n-cubesall) andi/(positive cubesall) are also incomparable. The following two util-
ity functions can be used to prove the mutual lack of a polysize reduction (details may be
found in[Chevaleyreet al., 2004):

e The functionu, (M) = | M| can be generated by a goal base of jupbsitive cubes
of length1, but we require™ — 1 n-cubes to generatg .

e The functionu,, with uy(A) = 1 for |M| = 1 anduy(M) = 0 otherwise, can
be generated by a goal baserofi-cubes, but we requirg” — 1 positive cubes to
generateu,.

4.3 The Efficiency of Negation

Recall that botfd/ (positive cubesall) andl/(cubesall) are equal to the class of all utility
functions (Proposition 4). However, as the next proposition states, the representation of

5In that papefChevaleyreet al., 2004, cardinality rather than size is used as a measure for succinct-
ness. Note, however, that comparative succinctness results coincide for the two approaches as long as only
formulas of polynomial length occur (as is the case for cubes of any kind).
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utility functions based on cubes is strictly more succinct than the representation based on
positive cubes alon®:

Proposition 13 U/(positive cubegll) < ¢/(cubesall).

Proof. Clearly,U(positive cubeall) < Z/(cubesall), because every positive cube is also
a cube (i.ethe polysize reduction here is identity). To show that the representation based
on general cubes ®rictly more succinct, we consider the family of utility functions,

M # {}. u, is generated by the goal ba§e= {(—p; A --- A =p,,1)}. Thatis, using
general cubesy,, can be generated from a goal base with a single weighted formula of
lengthn.

Now, consider the following goal base using positive cubes alone:
¢ = {(AX.(-D*)| X CPs}

That is, every cube of lengthgets the weight—1)*. Observe that’ generates,, i.€.
Uy = Uy
| M|

(M) =y (-1 =" <“¥'> (=1)% = oM

XCM k=0

Next, the Mdbius inversion shows that the goal base generatjng in fact uniquely
determined if only positive cubes are availablldeed, the only positive cube satisfied
by { } is T. Hence, we must haveT, 1) € G'. But then we must hav@, —1) € G’ for
every propositional symbgl € PS to ensureu({p}) = 0. This in turn fully determines
the weights of cubes with two conjuncts, and so forth.

Thus, because the size @f is exponentiain the number of propositional symbols in
PS and because no other goal base using positive cubes can gengrtie language
based on cubes is indeed strictly more succinct than the language based on positive
cubes. O

This result shows that the inclusion of negation into a representation language for cardinal
preferences can make that language strictly more succinct.

5This has also been observed by leong and Shd2aeg .
"Without loss of generality, we assume that no goal base contains two or more logically equivalent
formulas.
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Formulas Weights Utility Functions Reference
cubes/clauses/all general = all Prop. 4
positive cubes/formulas general = all Prop. 4
positive clauses general = normalised Prop. 5
strictly positive formulas  general = normalised Prop. 6
k-cubes/clauses/formulas general= k-additive Prop. 2
positivek-cubes/formulas general = k-additive Prop.1&2
positivek-clauses general = normalisedk-additive Prop. 3
literals general = modular Prop. 7
atoms general = normalised modular Prop. 8
cubes/formulas positive = non-negative Prop. 9
clauses positive C non-negative Prop. 10
strictly positive formulas  positive = normalised monotonic Prop. 11
positive clauses positive C normalised concave monotonic  Prop. 12

Table 1: Summary of Correspondence Results

5 Conclusion

We have further analysed the language of weighted propositional formulas previously
studied by several authors. Most of our results concerrexipeessive powesf this lan-

guage; we have established several correspondences between certain types of weighted
formulas and well-known classes of utility functions. Our correspondence results are
summarised in Table 1. We have then made initial steps towards analysingntiper-

ative succinctnessf languages based on different types of weighted formulas that can
represent the same class of utility functions. In particular, we have seen that the language
of weighted cubes, while not more expressive, is strictly more succinct than the language
based on positive cubes.

In this paper, we have focussed exclusively on the additive interpretation of weighted
propositional formulas. Other aggregation functions can be considered, such as maximum
[Duboiset al., 1994 or more general functions (see, for instance, the work of Bistarelli
et al.[1999 in the CSP framework). Weighted formulas together with maximum as the
aggregation function have been considered in various places, including for instance the so-
called XOR language for combinatorial auctid@andholm, 200R which furthermore
restricts formulas to positive cubes. Comparing the simple (but yet expressive) frame-
work of weighted goals with the various languages designed for combinatorial auctions
(a synthesis of which is given by Nis§2004) is an issue for further research.

While this paper establishes a number of interesting results on the expressive power
and comparative succinctness of weighted formulas for cardinal preference modelling, it
also raises a multitude of open questions. As concerns expressive power, further corre-
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spondence results are needed to fully understand the relationship between restrictions on
goal bases and different classes of utility functions. For instance, it would be very inter-
esting to obtain precise characterisations of the classsspafradditiveandsubadditive
functions in terms of goal bases. As concerns succinctness, our observation that the inclu-
sion of negation into a language significantly improves succinctness in the case of cubes
immediately raises the question whether this remains true for more general formulas: Is
U(all, all) strictly more succinct that (positive all)? We conjecture: yes. Another inter-
esting question would be wheth@fall, all) is strictly more succinct thatt(cubesall).

Again, we conjecture: yes.

A further important area for future research concernstimaplexityof working with
different languages of weighted formulas. For instance, lekMJTILITY (H,H’) be the
following decision problem: given a goal basec U/(H,H’) and an integeis, check
whether there exists aworld’ € 2% such thatis(M) > K. Obviously, MAX-UTILITY
is in NP for the full language of weighted formulas, singg M) > K can be checked
in polynomial time. Clearly as well, the general problem is NP-complete, due to its
straightforward reduction from& [Garey and Johnson, 1979More interestingly, for
sublanguages such &g k-clausespositive), MAX-UTILITY is also NP-complete, even
for k = 2. This can be shown via a reduction fromaM2 SaT [Garey and Johnson, 19179

Simpler languages such &4 (literals,all), on the other hand, give rise to poly-
nomial decision problems: assuming ti@tcontains every literal exactly once (pos-
sibly with weight 0), making a propositional symbel true iff the weight of p
is greater than the weight ofp results in an alternative with maximal utility.
MAX-UTILITY (positive, positive is also in P, because makiradl propositional sym-
bols true will result in maximal utility. We shall leave a full analysis of these issues to a
future occasion.

This paper has previously appeared in the Proceedings of the 10th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR-2006).
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