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Expressive Power of Weighted Propositional
Formulas for Cardinal Preference Modelling

Yann Chevaleyre∗, Ulle Endriss†, J́erôme Lang‡

Abstract

As proposed in various places, a set of propositional formulas, each associated
with a numerical weight, can be used to model the preferences of an agent in com-
binatorial domains. If the range of possible choices can be represented by the set of
possible assignments of propositional symbols to truth values, then the utility of an
assignment is given by the sum of the weights of the formulas it satisfies. Our aim
in this paper is twofold: (1) to establish correspondences between certain types of
weighted formulas and well-known classes of utility functions (such as monotonic,
concave ork-additive functions); and (2) to obtain results on the comparative suc-
cinctness of different types of weighted formulas for representing the same class of
utility functions.

Key words : Preference representation, logic-based languages, expressive power,
comparative succinctness, computational complexity

1 Introduction

Many individual or multiagent decision making problems have in their input the prefer-
ences of the agent(s) over a set of possible alternatives. These preferences can be either
ordinal (i.e.preference relations, typically weak orders) or cardinal (i.e.utility functions).
We make use of the generic wordpreference structurefor either a preference relation or a
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utility function. Such problems include decision making and planning under uncertainty,
multi-criteria decision making and decision support systems, automated group decision
making (including auctions, fair division, vote), and distributed decision making (includ-
ing negotiation).

Saying that the input of a problem contains the preference structure of the agent(s)
over the set of alternatives does not imply anything about how these structures arespec-
ified in the input. Clearly, if the set of alternatives is small, this question is not relevant,
since the size of the explicit representation of the preference structure is small as well.
This is no longer the case when the set of alternatives is a combinatorial domain: in
this case, the set of alternatives is the set of all assignments of each of a given finite
set of variables to a value of the corresponding finite domain.3 Examples are numer-
ous: in combinatorial auctions and negotiation over resources[Cramtonet al., 2006;
Chevaleyreet al., 2006], an alternative is an assignment of each good to an agent; in
multiple issue referenda[Bramset al., 1998], an alternative consists of a truth value (yes
or no) for each issue.

For this purpose, many languages have been developed so as to express prefer-
ence structures as succinctly as possible. These languages differ significantly, depend-
ing on whether the preference structure to be expressed is ordinal or cardinal. Lan-
guages for the succinct representation of ordinal preferences include languages ofce-
teris paribusstatements, which range from very expressive languages[Doyle and Well-
man, 1991] to syntactical restrictions such as CP-nets[Boutilier et al., 1999], where a
weaker expressivity is compensated for by the availability of efficient elicitation and op-
timisation techniques. They also include languages based on conditional logics, priori-
tised logics, and prioritised constraint satisfaction problems (see e.g. Lang[2004] for an
overview). Languages for the succinct representation of utility functions include graphi-
cal models[Bacchusand Grove, 1996; La Mura and Shoham, 1999; Boutilieret al., 2001;
Gonzales and Perny, 2004], decision trees[Boutilier et al., 1995], valued constraint sat-
isfaction problems[Bistarelli et al., 1999], and bidding languages for combinatorial auc-
tions[Nisan, 2006; Boutilier and Hoos, 2001; Sandholm, 2002].

Many different issues concerning preference representation languages are worth in-
vestigating:

• Elicitation: design algorithms to elicit preferences from an agent so as to get an
output expressed in a given language.

• Cognitive relevance:assess the cognitive relevance of a language by measuring its
proximity to the way human agents “know” their preferences and express them in
natural language.

3Another situation where preference representation is non-trivial is when the set of alternatives is con-
tinuous. We leave this issue aside and focus on finite domains only.
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• Expressive power:identify the set of preference structures that can be expressed in
a given language.

• Complexity:for a given language, determine the computational complexity of tasks
such as finding a non-dominated alternative, checking whether an alternative is pre-
ferred to another one, whether an alternative is non-dominated, or whether all non-
dominated alternatives satisfy a given property.

• Comparative succinctness:given two languagesL andL′, determine whether every
preference structure that can be expressed inL can also be expressed inL′ without
a significant (that is, supra-polynomial) increase in size (in which caseL′ is said to
be at least as succinct asL).

Elicitation and complexity have been the subject of much previous work that we will not
recall here. Cognitive relevance is somewhat harder to assess, due to its non-technical na-
ture, and to our knowledge it has been rarely studied (see Nisan[2006] for a short discus-
sion). Expressive power and comparative succinctness, have been investigated to a lesser
extent. Coste-Marquiset al. [2004] give a systematic analysis of both issues forordi-
nal preferences, while several other authors[Boutilier and Hoos, 2001; Sandholm, 2002;
Chevaleyreet al., 2004; Nisan, 2006] investigate these issues for bidding languages for
auctions and negotiation (which express valuation functions for bundles of goods). In
this paper we investigate expressive power and succinctness for one of the simplest lan-
guages for utility representation, where goals are specified aspropositional logic for-
mulas, and each goal is associated with a numerical weight. The utility of an alter-
native is then obtained by summing up the weights of the goals it satisfies. This lan-
guage has been considered in many places, as have several of its variations[Pinkas, 1991;
Haddawy and Hanks, 1992; Dupin de Saint-Cyret al., 1994; Lafage and Lang, 2000].

After covering some preliminaries and introducing the problems addressed in this pa-
per in more formal detail in the next section, we first investigate expressivity issues. We
focus on a number of possible restrictions on both formulas and weights, and identify the
corresponding classes of utility functions. While the results are obvious in extreme cases
(if no restriction is imposed, all utility functions can be expressed, with maximal succinct-
ness; if only atomic formulas are allowed then only linear functions can be expressed),
there appear to be many cases for which they are non-trivial and particularly interesting,
because they correspond to intermediate classes which may realise a good trade-off be-
tween simplicity and efficiency. We then present, in less detail, initial results concerning
the comparative succinctness of different preference languages. In the final section, we
discuss related work and further research directions. In particular, we point out interest-
ing directions for future work regarding the computational complexity of working with
different languages based on weighted propositional formulas.
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2 Modelling Preferences

In this section we introduce two approaches to modelling cardinal preferences: by means
of classical utility functions and by means of weighted propositional formulas.

We first fix some basic notation. LetPS be a finite set of propositional symbols and
let n = |PS |. LPS is the propositional language built fromPS using the operations of
negation, conjunction and disjunction. For any formulaϕ ∈ LPS , Var(ϕ) denotes the set
of propositional symbols occurring inϕ. PS (k) is the set of all subsets ofPS with at most
k elements (in particular,PS (1) andPS (n) are isomorphic toPS and2PS , respectively).
ElementsM of 2PS could be bundles of indivisible goods, agreements in the context of
multi-criteria decision making, coalitions of agents in the context of cooperative games
or, more generally, propositional worlds (assigningtrue to every symbol appearing inM
andfalseto all other symbols).

2.1 Utility Functions

We now introduce the concept of autility function over propositional worlds and recall
the definitions of several well-known classes of utility functions.

Definition 1 (Utility functions) A utility function is a mappingu : 2PS → R.

• u is normalised iffu({ }) = 0.

• u is non-negative iffu(X) ≥ 0 for all X.

• u is monotonic iffu(X) ≤ u(Y ) wheneverX ⊆ Y .

• u is modular iffu(X ∪ Y ) = u(X) + u(Y ) − u(X ∩ Y ) for all X andY .

• u is subadditive iffu(X ∪ Y ) ≤ u(X) + u(Y ) − u(X ∩ Y ) for all X andY .

• u is superadditive iffu(X ∪ Y ) ≥ u(X)+u(Y )−u(X ∩ Y ) for all X andY .

• u is concave iffu(X ∪Y )−u(Y ) ≤ u(X ∪Z)−u(Z) for all X wheneverY ⊇ Z.

• u is convex iffu(X ∪ Y ) − u(Y ) ≥ u(X ∪ Z) − u(Z) for all X wheneverY ⊇ Z.

• u is k-additive iff there exists a mappingm : PS (k) → R such that (for allX):

u(X) =
∑

{m(Y ) | Y ⊆ X andY ∈ PS (k)}
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Intuitively, concavity means that marginal utility (of obtainingX) decreases as we move
to a better starting position (namely fromZ to Y ). Observe thatu is convex iff−u is
concave and, similarly,u is superadditive iff−u is subadditive. All concave functions are
also subadditive and all convex functions are superadditive (setZ = X ∩ Y ). The class
of modular functions is the intersection of the classes of subadditive and superadditive
functions. Utility functions that are both monotonic and normalised are also known as
capacities.

The class ofk-additive functions, the definition of which is inspired by work in fuzzy
measure theory (see e.g.[Grabisch, 1997]) and which recently also have found application
in combinatorial auctions[Conitzeret al., 2005] and distributed negotiation[Chevaleyre
et al., 2004], is probably less well-known than the other classes of functions mentioned in
Definition 1. This class is useful in domains where synergies between different items are
restricted to bundles of at mostk elements. We recall the well-known fact that fork = n,
anyutility function is k-additive:m({ }) = u({ }) andm(X) can be defined recursively
asu(X) −

∑
Y ⊂X m(Y ) for all X 6= { }. Moreover, the functionm such thatu(X) =∑

{m(Y ) | Y ⊆ X} is uniquelydetermined; the mappingu 7→ m is known as theMöbius
inversion([Rota, 1964]; see also[Shafer, 1976; Gilboa and Schmeidler, 1992]). Also, the
class of modular functions coincides with the class of 1-additive functions. This may be
seen as follows. LetX be any non-empty set in2PS and letx ∈ X. Then the equation
characterising modularity impliesu(X) = u(X \ {x}) + [u({x}) − u({ })]. If we apply
this step recursively for every element ofX, then we end up with the following equation:

u(X) = u({ }) +
∑

x∈X

[u({x}) − u({ })]

Choosingm({ }) = u({ }) andm({x}) = u({x}) − u({ }), this shows that modularity
implies 1-additivity. The converse is easily seen to hold as well.

2.2 Weighted Formulas

An alternative approach to representing preferences usesweighted propositional formu-
las. A weighted formula is a pair(ϕ, α), whereϕ is a propositional formula in the lan-
guageLPS andα is a numerical weight representing the relative importance of that for-
mula. Intuitively, the degree of satisfaction derived from a particular propositional world
(bundle of goods, agreement, coalition) is the sum of the weights of the formulas satisfied
by that world.

Definition 2 (Goal bases)A goal base is a setG = {(ϕi, αi)}i of pairs, each consisting
of a satisfiable formulaϕi ∈ LPS and a real numberαi. The utility functionuG generated
byG is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G andM |= ϕi}

135



Expressive Power of Weighted Propositional Formulas . . .

for all M ∈ 2PS . G is called the generator ofuG.

Summing up the individual weights is particularly suited for modelling utility functions,
but other aggregation functions have been investigated as well[Lafage and Lang, 2000].
In this paper we are going to be interested in the following question:

Are there simple restrictions on goal bases such that the utility functions they
generate enjoy simple structural properties?

Interesting candidates for restrictions on formulas include restrictions on the length of
formulas as well as the range of propositional connectives appearing in a formula. The
most obvious restriction on weights would be to allow only positive numbers.

Definition 3 (Restrictions) Let H ⊆ LPS be a restriction on the set of propositional
formulas and letH ′ ⊆ R be a restriction on the set of weights allowed in the specification
of goals. For formulas, we consider the following restrictions:

• A positive formula is a formula with no occurrence of¬; a strictly positive formula
is a positive formula that is not a tautology.

• A clause is a (possibly empty) disjunction of literals; ak-clause is a clause of length
≤ k.

• A cube is a (possibly empty) conjunction of literals; ak-cube is a cube of length
≤ k.

• A k-formula is a formulaϕ with |Var(ϕ)| ≤ k.

As for weights, we consider only the restriction to the positive reals. Given two restrictions
H andH ′, let U(H, H’) be the class of utility functions that can be generated from goal
bases conforming to the restrictionsH andH ′.

Restrictions on formulas can also be combined (e.g. positive clauses are disjunctions of
positive literals). We write “all” in case no specific restriction applies. For example,
U(positivek-cubes,all) is the class of utility functions generated by goal bases made up
from positivek-cubes and where weights are not subject to any restrictions. We are also
going to consider restrictions to both atoms (propositional symbols) and literals (atoms
and their negations). Note that⊤ is a cube (of length0), but not a clause (nor is it a
literal). The empty clause is equivalent to⊥, i.e. it is not of interest here, because goals
are required to be satisfiable.

Two goal basesG andG′ are said to beequivalent(written G ≡ G′) iff they gen-
erate the same utility functions,i.e. iff uG = uG′ . The following lemma introduces two
equivalence-preserving transformations on goal bases. It shows how to eliminate both
negations and disjunctions from inside a conjunction.
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Lemma 1 The following equivalences hold for all goal basesG, formulasϕ, ψ, χ ∈ LPS

and weightsα ∈ R:

(i) G ∪ {(ϕ ∧ ¬ψ, α)} ≡ G ∪ {(ϕ, α), (ϕ ∧ ψ,−α)}

(ii) G ∪ {(ϕ ∧ (ψ ∨ χ), α) ≡
G ∪ {(ϕ ∧ ψ, α), (ϕ ∧ χ, α), (ϕ ∧ ψ ∧ χ,−α)}}

Proof. The claims are easily verified by considering all (eight) possible ways of assigning
truth values to the formulasϕ, ψ andχ. 2

A special case of part(i) shows how to eliminate a negation from the outside of a formula:
{(¬ψ, α)} can be rewritten as{(⊤, α), (ψ,−α)}. Similarly, settingϕ = ⊤ in part (ii)
provides us with a way of transforming a disjunction into a set of conjunctions:{(ψ ∨
χ, α)} can be replaced by{(ψ, α), (χ, α), (ψ ∧ χ,−α)}.

3 Correspondence Results

This section gives a range of answers to our earlier question regarding the existence of
restrictions on goal bases generating utility functions with simple structural properties.

3.1 Basic Results

It turns out that the notion ofk-additivity plays a central role in characterising the classes
of utility functions corresponding to certain types of goal bases. This connection is at its
most apparent in the case of positivek-cubes.

Proposition 1 U(positivek-cubes, all) is equal to the class ofk-additive utility functions.

Proof. A k-additive function can be represented by a mappingm : PS (k) → R (see
Definition 1). We can define a bijective functionf from such mappingsm onto goal
basesG with only positivek-cubes:

f : m 7→ {(p1 ∧ · · · ∧ pk, α) | m({p1, . . . , pk}) = α}

Clearly, the utility functions generated bym and the goal basef(m) are identical. 2

Observe thatnegativek-cubes (i.e.conjunctions of negative literals of length≤ k) also
generate the set of allk-additive functions. This may be seen as follows. LetB(u) be

137



Expressive Power of Weighted Propositional Formulas . . .

defined byB(u)(M) = u(M) for all M . If u is generated byG, thenB(u) is generated
by G obtained by replacing every literal in every formula ofG by its negation, which
shows thatU(negativek-cubes,all) = B(U(positivek-cubes,all)), which is equal to the
set of allk-additive utility functions (since the latter is closed underB). In fact, for several
of our correspondence results on positive formulas below, there exist similar results for
formulas where all literals are negative, even though we are not going to specifically report
these here.

Proposition 2 The following sets are also all equal to the class ofk-additive utility func-
tions:

• U(k-cubes,all) andU(k-clauses,all);

• U(positivek-formulas,all) andU(k-formulas,all).

Proof. Any positivek-cube(p1 ∧ · · · ∧ pk, α) can be rewritten as a set ofk-clauses (using
an arbitrary additional propositional symbolp):

{(¬p1 ∨ · · · ∨ ¬pk,−α), (p, α), (¬p, α)}

Hence,U(positivek-cubes,all) ⊆ U(k-clauses,all). Clearly, U(positivek-cubes,all)
is also included in bothU(k-cubes,all) andU(positivek-formulas,all), and all of the
classes mentioned are included inU(k-formulas,all).

Using Lemma 1, we can transform any goal base consisting ofk-formulas into a goal
base of positivek-cubes,i.e. we also getU(k-formulas,all) ⊆ U(positivek-cubes,all).
Hence, all of the sets of utility functions mentioned earlier are equivalent. The claim then
follows immediately from Proposition 1. 2

Thepositivek-clauses donot generate the full set ofk-additive utility functions, because
(due to the fact that⊤ is not a clause) positivek-clauses do not allow us to assign a
non-zero utility to{ }. We therefore obtain the following weaker result:

Proposition 3 U(positivek-clauses, all) is equal to the class of normalisedk-additive
utility functions.

Proof. First observe that positivek-clauses augmented with⊤ can generate allk-additive
utility functions. This immediately follows from case(ii) of Lemma 1 and Proposition 1.
Without lack of generality, we may assume that any goal baseG of positivek-clauses
augmented with⊤ includes exactly one weighted goal of the form(⊤, α). It then remains
to be shown thatuG is normalised iffα = 0. This is clearly so, becauseuG({ }) = α
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holds due to the fact that{ } falsifies all positive clauses. 2

Next we list a number of further basic results, all of which are simple consequences of
the results onk-additive utility functions for the special cases ofk = n andk = 1.

Proposition 4 The following sets are all equal to the class of all utility functions:

• U(positive cubes, all) andU(positive,all);

• U(cubes,all), U(clauses,all) andU(all, all).

Proof. Recall thatanyutility function isk-additive for a sufficiently high value ofk. The
claim then follows from Propositions 1 and 2. 2

U(positive cubes,all) corresponds to themarginal contribution netsof Ieong and
Shoham[2005], who also point out that this language is fully expressive.

Proposition 5 U(positive clauses,all) is equal to the class of normalised utility func-
tions.

Proof. This is a corollary to Proposition 3. 2

Proposition 6 U(strictly positive,all) is also equal to the class of normalised utility func-
tions.

Proof. As any positive clause is a strictly positive formula, by Proposition 5, any nor-
malised function must belong toU(strictly positive,all). Vice versa, ifG is a set of strictly
positive formulas thenuG({ }) = 0, because{ } falsifies all strictly positive formulas.2

Proposition 7 U(literals,all) is equal to the class of modular utility functions.

Proof. First recall that the class of modular functions is equal to the class of 1-additive
functions. Therefore, by Proposition 2,U(1-cubes, all) is equal to the class of modular
functions. The set of 1-cubes is the set of literals together with⊤. The claim then follows
from the fact that we can rewrite{(⊤, α)} as{(p, α), (¬p, α)} using any propositional
symbolp. 2

Proposition 8 U(atoms,all) is equal to the class of normalised modular utility functions.

Proof. Atoms are strictly positive literals,i.e. the claim follows from Propositions 6 and 7.
2
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3.2 Non-negative Functions

Next we study the classes of utility functions generated by positively weighted formulas.
Unsurprisingly, such functions will be non-negative.

Proposition 9 U(all, positive)andU(cubes,positive)are both equal to the class of non-
negative utility functions.

Proof. It is obvious thatU(all, positive), anda fortiori U(cubes,positive), are con-
tained in the set of all non-negative utility functions. For the converse inclusion, it
is enough to show that any non-negative utility function can be generated by posi-
tively weighted cubes. So supposeu is such a non-negative utility function and define
G = {(form(M), u(M)) | M ∈ 2PS}, where:

form(M) =
∧

{x | x ∈ M} ∧
∧

{¬x | x ∈ PS \ M}

We haveu = uG, i.e.u is in U(cubes,positive)). 2

Again, clauses are less expressive than cubes:4

Proposition 10 U(clauses,positive)is a proper subset of the class of non-negative utility
functions.

Proof. Inclusion ofU(clauses,positive)in the set of non-negative functions follows from
Proposition 9. To show that the inclusion is strict, consider the following non-negative
utility function:

u({p, q}) = 1; u({p}) = 0; u({q}) = 0; u({ }) = 0

Suppose there exists a generatorG of u using only positively weighted clauses. Letwc be
the weight associated with clausec. We obtain the following list of constraints:

(1) wp + wq + wp∨q + w¬p∨q + wp∨¬q + w⊤ = 1
(2) wp + w¬q + wp∨q + wp∨¬q + w¬p∨¬q + w⊤ = 0
(3) w¬p + wq + wp∨q + w¬p∨q + w¬p∨¬q + w⊤ = 0
(4) w¬p + w¬q + w¬p∨q + wp∨¬q + w¬p∨¬q + w⊤ = 0
(5) wc ≥ 0 for all clausesc

4But observe that the restrictions on the functions that can still be expressed are different than for Propo-
sition 5. While positive clauses with general weights generate all normalised functions, general clauses with
positive weights do not onlynotgenerate all normalised (non-negative) utility functions, but also some non-
normalised functions.
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Constraints (2), (3), (4) and (5) givewc = 0 for any clausec, which is inconsistent with
(1). 2

Likewise,U(k-clauses,positive)is a proper subset of the class of non-negativek-additive
utility functions.

3.3 Monotonic Functions

The next result characterises the class of normalised monotonic utility functions, also
known ascapacities.

Proposition 11 U(strictly positive,positive) is equal to the class of normalised mono-
tonic utility functions.

Proof. Clearly, any utility function generated by positive formulas with positive weights
must be monotonic; and by Proposition 6, any function generated by strictly positive
formulas is normalised. Hence, everyu ∈ U(strictly positive,positive)must be a capacity.
For the converse, we sketch how to construct a goal base of positively weighted strictly
positive formulas for any given capacityu. Consider the utility functionsuk (for k =
1, . . . , n) defined as follows:

uk(X) = max{u(X ′) | X ′ ⊆ X and|X ′| ≤ k}

For instance,u1(X) = maxx∈X u({x}) andun = u (because of monotonicity). We are
going to show how to construct generators foru1, u2 −u1, u3 −u2 and so forth; the union
of these will then be a generator for the utility functionun, and hence foru.

(Step 1) To construct a generatorG1 for u1, order the elementspi of PS such that
u({p1}) ≤ · · · ≤ u({pn}).

G1 = { (p1 ∨ · · · ,∨pn, u({p1})),
(p2 ∨ · · · ∨ pn, u({p2}) − u({p1})), . . . ,
(pn, u({pn}) − u({pn−1}) }

Clearly,G1 is a generator foru1.

(Step 2) To construct a generator foru2−1 = u2 − u1, let {X1, . . . , X(n

2
)} be the set of all

2-ary subsets ofPS , ordered in such a way thatu2−1(Xi) ≤ u2−1(Xj) wheneveri < j.
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Observe thatu2−1(Xi) is non-negative (due to the monotonicity ofu). Now define:

G2 = { (
∧

X1 ∨ · · · ∨
∧

X(n

2
), u

2−1(X1)),

(
∧

X2 ∨ · · · ∨
∧

X(n

2
), u

2−1(X2) − u2−1(X1)), . . . ,

(
∧

X(n

2
), u

2−1(X(n

2
)) − u2−1(X(n

2
)−1)) }

G2 is a generator foru2 − u1. If we continue using the same method, we can construct
generatorsG3, . . . , Gn for u3 − u2 up toun − un−1. The union ofG1, . . . , Gn will then
be a generator for the sum ofu1, u2 − u1, . . . , un − un−1; that is, it will be a generator for
u = un. 2

To exemplify our construction, consider the capacityu with u({p1}) = 2, u({p2}) = 5
andu({p1, p2}) = 6:

(Step 1) Ordering the elements of{p1, p2} givesu({p1}) < u({p2}, therefore,G1 =
{(p1 ∨ p2, 2), (p2, 3)}. G1 is a generator foru1, whereu1({}) = 0, u1({p1}) = 2,
u1({p2}) = 5, u1({p1, p2}) = 5.

(Step 2) Since{p1, p2} is the only 2-ary subset of{p1, p2}, G2 = {(p1 ∧
p2, u

2−1({p1, p2}))}. Now,u2−1({p1, p2}) = u2({p1, p2})−u1({p1, p2}) = u({p1, p2})−
5 = 1. Therefore, we obtain the following goal base:

G = G1 ∪ G2 = {(p1 ∨ p2, 2), (p2, 3), (p1 ∧ p2, 1)}

Also observe that we can model the full set of monotonic utility functions by allowing
a single goal(⊤, α) with weight α (which could be negative) in a goal base that oth-
erwise consists only of strictly positive formulas with positive weights. Furthermore,
U(positive,positive)is the set of non-negative monotonic utility functions.

3.4 Concave Functions

As a final correspondence result, we establish a connection between restrictions on goal
bases and concave utilities.

Proposition 12 U(positive clauses, positive)is a subset of the class of normalised con-
cave monotonic utility functions.

Proof. The fact that any utility function from the setU(positive clauses,positive) is a
capacity follows from Proposition 11. So the interesting part is to show that positive
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clauses with positive weights generate concave utility functions. Letu be generated by a
goal baseG of positive clauses with positive weights and letX, Y andZ be propositional
worlds such thatY ⊇ Z. For positive clausesϕ, X∪Y |= ϕ together withY 6|= ϕ implies
X |= ϕ, andM |= ϕ impliesM ′ |= ϕ wheneverM ⊆ M ′. Hence:

{(ϕ, α) ∈ G | X ∪ Y |= ϕ andY 6|= ϕ} ⊆

{(ϕ, α) ∈ G | X ∪ Z |= ϕ andZ 6|= ϕ}

Because all weightsα are positive, we immediately obtain the required inequation
characterising concavity, namelyu(X ∪ Y ) − u(Y ) ≤ u(X ∪ Z) − u(Z). 2

We do not know whether the converse inclusion holds as well. Note that Proposition 12
implies thatpositive clauses with negative weightsgenerate onlyconvexutility functions
(albeit only negative ones).

4 Comparative Succinctness

Different restrictions on goal bases constitute differentlanguagesfor describing utility
functions. In this section, we make a first step towards analysing the comparativesuc-
cinctnessof such languages.

4.1 Defining Succinctness

A languageL′ for expressing utility functions is said to beat least as succinctas another
languageL iff there exists a polysize reduction for any utility function expressed inL to
the same utility function expressed inL′ (see also[Cadoliet al., 1996; Coste-Marquiset
al., 2004]). In our case, languages are restrictionsU(H, H’) or, more generally, sets of
goal bases.

Definition 4 (Succinctness)Let L andL′ be two sets of goal bases. We say thatL′ is at
least as succinct asL, denoted byL ¹ L′, iff there exist a mappingf : L → L′ and a
polynomial functionp such that:

• G ≡ f(G) for all G ∈ L; and

• size(f(G)) ≤ p(size(G)) for all G ∈ L.

Here thesizeof a goal base is the sum of the lengths of the formulas in that goal base.
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If L ¹ L′ andL′ ¹ L, thenL andL′ are as succinct as each other: they express the
same sets of utilities in the same order of size. It may also be the case that two languages
are incomparable, that is, neitherL ¹ L′ nor L′ ¹ L holds. The strict order associated
with ¹ is denoted by≺ (i.e.L ≺ L′ iff L ¹ L′ but notL′ ¹ L).

We are interested in comparing the succinctness of different languages that have the
same expressive power (i.e.that can generate the same class of utility functions). Note
that, if H,H ′ ⊆ LPS andH ′′ ⊆ R with U(H, H” ) ≡ U(H’, H”), then H ⊆ H ′ implies
U(H, H”) ¹ U(H’, H” ). In this case the polysize reduction is simply the identity function.

4.2 An Incomparability Result

The most basic way of representing a utility function would be to explicitly list all propo-
sitional worlds with a non-zero utility. We call this theexplicit form. This directly corre-
sponds to goal bases consisting solely of cubes, each of which contains eitherp or ¬p as
a conjunct for every propositional symbolp ∈ PS (let us refer to such cubes asn-cubes).
Clearly,U(n-cubes,all) is equal to the class of all utility functions.

As discussed earlier, the concept ofk-additivity gives rise to a different represen-
tation, which we call thek-additive form. Thek-additive form directly corresponds to
goal bases consisting only of positive cubes (see proof of Proposition 1). As shown
elsewhere[Chevaleyreet al., 2004], the explicit form and thek-additive form of rep-
resenting utility functions areincomparablewith respect to succinctness. This means that
U(n-cubes,all) andU(positive cubes,all) are also incomparable. The following two util-
ity functions can be used to prove the mutual lack of a polysize reduction (details may be
found in[Chevaleyreet al., 2004]):5

• The functionu1(M) = |M | can be generated by a goal base of justn positive cubes
of length1, but we require2n − 1 n-cubes to generateu1.

• The functionu2, with u2(M) = 1 for |M | = 1 andu2(M) = 0 otherwise, can
be generated by a goal base ofn n-cubes, but we require2n − 1 positive cubes to
generateu2.

4.3 The Efficiency of Negation

Recall that bothU(positive cubes,all) andU(cubes,all) are equal to the class of all utility
functions (Proposition 4). However, as the next proposition states, the representation of

5In that paper[Chevaleyreet al., 2004], cardinality rather than size is used as a measure for succinct-
ness. Note, however, that comparative succinctness results coincide for the two approaches as long as only
formulas of polynomial length occur (as is the case for cubes of any kind).
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utility functions based on cubes is strictly more succinct than the representation based on
positive cubes alone:6

Proposition 13 U(positive cubes, all) ≺ U(cubes, all).

Proof. Clearly,U(positive cube, all) ¹ U(cubes,all), because every positive cube is also
a cube (i.e.the polysize reduction here is identity). To show that the representation based
on general cubes isstrictly more succinct, we consider the family of utility functionsun,
for n ≥ 1, whereun : 2{p1,...,pn} → R is defined byun({ }) = 1 andun(M) = 0 for all
M 6= { }. un is generated by the goal baseG = {(¬p1 ∧ · · · ∧ ¬pn, 1)}. That is, using
general cubes,un can be generated from a goal base with a single weighted formula of
lengthn.

Now, consider the following goal base using positive cubes alone:

G′ = {(
∧

X, (−1)|X|) | X ⊆ PS}

That is, every cube of lengthk gets the weight(−1)k. Observe thatG′ generatesun, i.e.
un = uG′ :

uG′(M) =
∑

X⊆M

(−1)|X| =

|M |∑

k=0

(
|M |

k

)
(−1)k = 0|M |

Next, the M̈obius inversion shows that the goal base generatingun is in fact uniquely
determined if only positive cubes are available:7 Indeed, the only positive cube satisfied
by { } is ⊤. Hence, we must have(⊤, 1) ∈ G′. But then we must have(p,−1) ∈ G′ for
every propositional symbolp ∈ PS to ensureu({p}) = 0. This in turn fully determines
the weights of cubes with two conjuncts, and so forth.

Thus, because the size ofG′ is exponentialin the number of propositional symbols in
PS and because no other goal base using positive cubes can generateun, the language
based on cubes is indeed strictly more succinct than the language based on positive
cubes. 2

This result shows that the inclusion of negation into a representation language for cardinal
preferences can make that language strictly more succinct.

6This has also been observed by Ieong and Shoham[2005].
7Without loss of generality, we assume that no goal base contains two or more logically equivalent

formulas.
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Formulas Weights Utility Functions Reference
cubes/clauses/all general = all Prop. 4
positive cubes/formulas general = all Prop. 4
positive clauses general = normalised Prop. 5
strictly positive formulas general = normalised Prop. 6
k-cubes/clauses/formulas general= k-additive Prop. 2
positivek-cubes/formulas general = k-additive Prop. 1 & 2
positivek-clauses general = normalisedk-additive Prop. 3
literals general = modular Prop. 7
atoms general = normalised modular Prop. 8
cubes/formulas positive = non-negative Prop. 9
clauses positive ⊂ non-negative Prop. 10
strictly positive formulas positive = normalised monotonic Prop. 11
positive clauses positive ⊆ normalised concave monotonic Prop. 12

Table 1: Summary of Correspondence Results

5 Conclusion

We have further analysed the language of weighted propositional formulas previously
studied by several authors. Most of our results concern theexpressive powerof this lan-
guage; we have established several correspondences between certain types of weighted
formulas and well-known classes of utility functions. Our correspondence results are
summarised in Table 1. We have then made initial steps towards analysing thecompar-
ative succinctnessof languages based on different types of weighted formulas that can
represent the same class of utility functions. In particular, we have seen that the language
of weighted cubes, while not more expressive, is strictly more succinct than the language
based on positive cubes.

In this paper, we have focussed exclusively on the additive interpretation of weighted
propositional formulas. Other aggregation functions can be considered, such as maximum
[Duboiset al., 1994] or more general functions (see, for instance, the work of Bistarelli
et al. [1999] in the CSP framework). Weighted formulas together with maximum as the
aggregation function have been considered in various places, including for instance the so-
called XOR language for combinatorial auctions[Sandholm, 2002], which furthermore
restricts formulas to positive cubes. Comparing the simple (but yet expressive) frame-
work of weighted goals with the various languages designed for combinatorial auctions
(a synthesis of which is given by Nisan[2006]) is an issue for further research.

While this paper establishes a number of interesting results on the expressive power
and comparative succinctness of weighted formulas for cardinal preference modelling, it
also raises a multitude of open questions. As concerns expressive power, further corre-
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spondence results are needed to fully understand the relationship between restrictions on
goal bases and different classes of utility functions. For instance, it would be very inter-
esting to obtain precise characterisations of the classes ofsuperadditiveandsubadditive
functions in terms of goal bases. As concerns succinctness, our observation that the inclu-
sion of negation into a language significantly improves succinctness in the case of cubes
immediately raises the question whether this remains true for more general formulas: Is
U(all, all) strictly more succinct thanU(positive,all)? We conjecture: yes. Another inter-
esting question would be whetherU(all, all) is strictly more succinct thanU(cubes, all).
Again, we conjecture: yes.

A further important area for future research concerns thecomplexityof working with
different languages of weighted formulas. For instance, let MAX -UTILITY (H, H’) be the
following decision problem: given a goal baseG ∈ U(H, H’) and an integerK, check
whether there exists a worldM ∈ 2PS such thatuG(M) ≥ K. Obviously, MAX -UTILITY

is in NP for the full language of weighted formulas, sinceuG(M) ≥ K can be checked
in polynomial time. Clearly as well, the general problem is NP-complete, due to its
straightforward reduction from SAT [Garey and Johnson, 1979]. More interestingly, for
sublanguages such asU(k-clauses,positive), MAX -UTILITY is also NP-complete, even
for k = 2. This can be shown via a reduction from MAX 2SAT [Garey and Johnson, 1979].

Simpler languages such asU(literals,all), on the other hand, give rise to poly-
nomial decision problems: assuming thatG contains every literal exactly once (pos-
sibly with weight 0), making a propositional symbolp true iff the weight of p
is greater than the weight of¬p results in an alternative with maximal utility.
MAX -UTILITY (positive, positive) is also in P, because makingall propositional sym-
bols true will result in maximal utility. We shall leave a full analysis of these issues to a
future occasion.

This paper has previously appeared in the Proceedings of the 10th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR-2006).
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