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Sinai’s walk : a statistical aspect

(preliminary version)

Pierre Andreoletti ∗

December 8, 2006

Abstract: We consider Sinai’s random walk in random environment. We prove that the logarithm
of the local time is a good estimator of the random potential associated to the random environment.
We give a constructive method allowing us to built the random environment from a single trajectory
of the random walk.

1 Introduction and results

In this paper we are interested in Sinai’s walk i.e a one dimensional random walk in random environ-
ment with three conditions on the random environment: two necessaries hypothesis to get a recurrent
process (see [Solomon(1975)]) which is not a simple random walk and an hypothesis of regularity which
allows us to have a good control on the fluctuations of the random environment.

The asymptotic behavior of such walk has been understood by [Sinai(1982)] : this walk is sub-
diffusive and at an instant n it is localized in the neighborhood of a well defined point of the lattice.
It is well known, see (Zeitouni [2001] for a survey) that this behavior is strongly dependent of the
random environment or, equivalently, by the associated random potential defined Section 1.2.

The question we solve here is the following: given a single trajectory of a random walk (Xk, 1 ≤ k ≤
n) where n is fixed, can we estimate the trajectory of the random potential where the walk lives ? Let us
remark that the law of this potential is unknown as-well. In their paper, [Adelman and Enriquez(2004)]
answer this question in the parametrical case when the law of the random environment is defined by
two parameters.

On the other hand, our approach is a non-parametrical approach based on good properties of the
local time of the random walk. We are able to reconstruct the random potential in a significant interval
where the walk spends most of its time. The key point of this paper is that if we impose to the local
time to be large enough but negligible comparing to the maximum of the local time then this will
directly implies conditions on the random potential. Notice that, this aspect of looking the random
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environment from the point of view of the walk have already been studied for a different purpose
than our in for example [Kesten(1977)]. Our proof is based on the results of [Andreoletti(2005)], in
particular in a weak law of large number for the local time on the point of localization of the walk.

The largest part of this paper is devoted to the proof of a theoretical result (Theorem 1.8) but as
this paper has been motivated by numerical simulations we also present some of them at the end of
the document. We give the main steps of the algorithm we use to rebuilt the random potential only
by considering a trajectory of the walk. Let us comment one of these simulations:
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Figure 1: The logarithm of the local time (in blue) and the random potential (in red)

In blue we have represented the logarithm of the local time and in red the potential associated to
the random environment. First, remark that we observe a good approximation on a large neighborhood
of the bottom of the valley around the coordinate -80. Outside this neighborhood and especially after
the coordinate -20, the approximation is not precise at all. We will explain this phenomena by the
fact that after the walk has reached the bottom of the valley, the walk will not return frequently to
the points with coordinate larger than -20, so we lose information for this part of the latice.

Our method of estimation give us two crucial information: a confidence interval for the differencies
of potential in sup-norm, on an observable set of sites “sufficiently” visited by the walk and a local-
ization result for the bottom of the valley linked with the hitting time of the maximum of the local
times. First we need to define the process:

1.1 Definition of Sinai’s walk

Let α = (αi, i ∈ Z) be a sequence of i.i.d. random variables taking values in (0, 1) defined on the
probability space (Ω1,F1, Q), this sequence will be called random environment. A random walk in
random environment (denoted R.W.R.E.) (Xn, n ∈ N) is a sequence of random variable taking value
in Z, defined on (Ω,F ,P) such that
• for every fixed environment α, (Xn, n ∈ N) is a Markov chain with the following transition proba-
bilities, for all n ≥ 1 and i ∈ Z

P
α [Xn = i+ 1|Xn−1 = i] = αi, (1.1)

P
α [Xn = i− 1|Xn−1 = i] = 1 − αi ≡ βi.

We denote (Ω2,F2,P
α) the probability space associated to this Markov chain.

• Ω = Ω1 × Ω2, ∀A1 ∈ F1 and ∀A2 ∈ F2, P [A1 ×A2] =
∫

A1
Q(dw1)

∫

A2
P

α(w1)(dw2).
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The probability measure P
α [ .|X0 = a] will be denoted P

α
a [.], the expectation associated to P

α
a : E

α
a ,

and the expectation associated to Q: EQ.

Now we introduce the hypothesis we will use in all this work. The two following hypothesis are the
necessaries hypothesis

EQ

[

log
1 − α0

α0

]

= 0, (1.2)

VarQ

[

log
1 − α0

α0

]

≡ σ2 > 0. (1.3)

[Solomon(1975)] shows that under 1.2 the process (Xn, n ∈ N) is P almost surely recurrent and 1.3
implies that the model is not reduced to the simple random walk. In addition to 1.2 and 1.3 we will
consider the following hypothesis of regularity, there exists 0 < η0 < 1/2 such that

sup {x, Q [α0 ≥ x] = 1} = sup {x, Q [α0 ≤ 1 − x] = 1} ≥ η0. (1.4)

We call Sinai’s random walk the random walk in random environment previously defined with the
three hypothesis 1.2, 1.3 and 1.4.
Let us define the local time L, at k (k ∈ Z) within the interval of time [1, T ] (T ∈ N

∗) of (Xn, n ∈ N)

L (k, T ) ≡

T
∑

i=1

I{Xi=k}. (1.5)

I is the indicator function (k and T can be deterministic or random variables). Let V ⊂ Z, we denote

L (V, T ) ≡
∑

j∈V

L (j, T ) =

T
∑

i=1

∑

j∈V

I{Xi=j}. (1.6)

To end, we define the following random variables

L∗(n) = max
k∈Z

(L(k, n)) , Fn = {k ∈ Z, L(k, n) = L∗(n)} , (1.7)

k∗ = inf{|k|, k ∈ Fn} (1.8)

L∗(n) is the maximum of the local times (for a given instant n), Fn is the set of all the favourite sites
and k∗ the smallest favorite site.

1.2 The random potential and the valleys

From the random environment we define what we will call random potential,
Let

ǫi ≡ log
1 − αi

αi
, i ∈ Z, (1.9)

define :
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Definition 1.1. The random potential (Sm, m ∈ Z) associated to the random environment α is
defined in the following way: for all k and j, if k > j

Sk − Sj =

{ ∑

j+1≤i≤k ǫi, k 6= 0,

−
∑

j≤i≤−1 ǫi, k = 0,

S0 = 0,

and symmetrically if k < j.

Remark 1.2. using Definition 1.1 we have :

Sk =

{ ∑

1≤i≤k ǫi, k = 1, 2, · · · ,
∑

k≤i≤−1 ǫi, k = −1,−2, · · · ,
(1.10)

however, if we use 1.10 for the definition of (Sk, k), ǫ0 does not appear in this definition and moreover
it is not clear, when j < 0 < k, what the difference Sk − Sj means (see figure 2).

Sj < 0

(Sk, k)

0

(k ∈ Z)

(Sk − Sj) > 0

Sm > 0

km
j

Figure 2: Trajectory of the random potential

Definition 1.3. We will say that the triplet {M ′,m,M ′′} is a valley if

SM ′ = max
M ′≤t≤m

St, (1.11)

SM ′′ = max
m≤t≤M̃ ′′

St, (1.12)

Sm = min
M ′≤t≤M ′′

St . (1.13)

If m is not unique we choose the one with the smallest absolute value.

Definition 1.4. We will call depth of the valley {M ′,m,M ′′} and we will denote it d([M ′,M ′′]) the
quantity

min(SM ′ − Sm, SM ′′ − Sm). (1.14)

Now we define the operation of refinement
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Definition 1.5. Let {M ′,m,M ′′} be a valley and let M1 and m1 be such that m ≤ M1 < m1 ≤ M ′′

and

SM1
− Sm1

= max
m≤t′≤t′′≤M ′′

(St′ − St′′). (1.15)

We say that the couple (m1,M1) is obtained by a right refinement of {M ′,m,M ′′}. If the couple
(m1,M1) is not unique, we will take the one such that m1 and M1 have the smallest absolute value.
In a similar way we define the left refinement operation.

d([M ′, m, M ′′]) = SM′′ − Sm

(k ∈ Z)

0
m

M ′′

M ′ M1

m1

(Sk, k)

Figure 3: Depth of a valley and refinement operation

We denote log2 = log log, in all this section we will suppose that n is large enough such that log2 n is
positive.

Definition 1.6. Let n > 3, γ > 0, and Γn ≡ log n + γ log2 n, we say that a valley {M ′,m,M ′′}
contains 0 and is of depth larger than Γn if and only if

1. 0 ∈ [M ′,M ′′],

2. d ([M ′,M ′′]) ≥ Γn ,

3. if m < 0, SM ′′ − maxm≤t≤0 (St) ≥ γ log2 n ,
if m > 0, SM ′ − max0≤t≤m (St) ≥ γ log2 n .

The basic valley {Mn
′,mn,Mn}

We recall the notion of basic valley introduced by Sinai and denoted here {Mn
′,mn,Mn}. The

definition we give is inspired by the work of [Kesten(1986)]. First let {M ′,mn,M
′′} be the smallest

valley that contains 0 and of depth larger than Γn. Here smallest means that if we construct, with
the operation of refinement, other valleys in {M ′,mn,M

′′} such valleys will not satisfy one of the
properties of Definition 1.6. Mn

′ and Mn are defined from mn in the following way: if mn > 0

Mn
′ = sup

{

l ∈ Z−, l < mn, Sl − Smn ≥ Γn, Sl − max
0≤k≤mn

Sk ≥ γ log2 n

}

, (1.16)

Mn = inf {l ∈ Z+, l > mn, Sl − Smn ≥ Γn} . (1.17)
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if mn < 0

Mn
′ = sup {l ∈ Z−, l < mn, Sl − Smn ≥ Γn} , (1.18)

Mn = inf

{

l ∈ Z+, l > mn, Sl − Smn ≥ Γn, Sl − max
mn≤k≤0

Sk ≥ γ log2 n

}

. (1.19)

if mn = 0

Mn
′ = sup {l ∈ Z−, l < 0, Sl − Smn ≥ Γn} , (1.20)

Mn = inf {l ∈ Z+, l > 0, Sl − Smn ≥ Γn} . (1.21)

{Mn
′,mn,Mn} exists with a Q probability as close to one as we need. In fact it is not difficult to

prove the following lemma

Mn

(k ∈ Z)

(Sk, k)

mn

0

d([M ′

n, mn, Mn]) ≥ Γn

≥ γ log
2

n

M ′

n

Figure 4: Basic valley, case mn > 0

Lemma 1.7. There exists c > 0 such that if 1.2, 1.3 and 1.4 hold, for all γ > 0 and n we have

Q
[

{Mn
′,mn,Mn} 6= ∅

]

= 1 −
cγ log2 n

log n
. (1.22)

Proof.
One can find the proof of this Lemma in Section 5.2 of [Andreoletti(2006)]. �

1.3 Main results

We start with some definitions that will be used all along this work. Let x ∈ Z, define

Tx =

{

inf{k ∈ N
∗, Xk = x}

+∞, if such k does not exist.
(1.23)

Let n > 1, k ∈ Z, and c0 > 0, define:

Sn
k,mn

= 1 −
1

log n
(Sk − Smn), (1.24)

Ŝn
k =

log(L(k, n))

log n
, (1.25)

un =
c0 log3 n

log n
. (1.26)
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Sn
k,mn

is the function of the potential we want to estimate, Ŝn
k is the estimator and un is an error

function.
Now let us define the following random sub-set of Z, recall that γ > 0:

L
γ
n =







l ∈ Z,
n

∑

j=Tk∗

IXj=l ≥ ((log n)γ) ∨ (L(l, Tk∗))







, (1.27)

where a ∨ b = max(a, b). This set L
γ
n is fundamental for our result, we notice that it depends only

on the trajectory of the walk and more especially of its local time. In fact L
γ
n is the set of points for

which we are able to give an estimator of the the random potential. We will see that this set is large
and contains a great amount of the points visited by the walk (see Proposition 1.10). Recall that T ∗

k is
the first time the walk hit the smallest point in absolute value where it will spend the largest amount
of time. In words, l ∈ L

γ
n, if and only if: 1) The local time of the random walker in l after the instant

T ∗
k is large enough (larger than (log n)γ), and 2) The walk have spent more time in l after T ∗

k than
before this instant.
Our main result is the following:

Theorem 1.8. Assume 1.2, 1.3 and 1.4 hold, there exists three constants c0, c1 and c2 such that for

all γ > 6, there exists n0 such that for all n > n0 there exists Gn ⊂ Ω1 with Q [Gn] ≥ 1 − φ1(n) and

inf
α∈Gn

P
α





⋂

k∈L
γ
n

{
∣

∣

∣
Ŝn

k − Sn
k,mn

∣

∣

∣
< un

}



 ≥ 1 − φ2(n). (1.28)

where

φ1(n) =
c1γ log2 n

log n
, (1.29)

φ2(n) =
c2

(log n)γ/2
. (1.30)

The fact that our result depends on mn seems to be restrictive, we would like to know where is the
bottom of the valley only by considering the local time of the walk, so we also prove the following fact
:

Proposition 1.9. Assume 1.2, 1.3 and 1.4 hold, there exists a constant c3 > 0 such that for all γ > 6,
there exists n0 such that for all n > n0 there exists Gn ⊂ Ω1 with Q [Gn] ≥ 1 − φ1(n) and

inf
α∈Gn

P
α
0

[

max
x∈Fn

|mn − x| ≤ (log2 n)2
]

≥ 1 − φ3(n), (1.31)

inf
α∈Gn

P
α
0

[

|Tmn − Tk∗ | ≤ (log n)3
]

≥ 1 − φ3(n), (1.32)

where φ3(n) = c3/(log n)γ−6.

Notice that the distance between mn (coordinate of the point visited by the walk where the
minimum of the potential is reached) and a favorite site is negligible comparing to a typical fluctuation
of the walk (of order (log n)2). Thanks to Proposition 1.9 we can replace 1.28 in Theorem 1.8 by

inf
α∈Gn

P
α





⋂

k∈L
γ
n

{
∣

∣

∣
Ŝn

k − Sn
k,k∗

∣

∣

∣
< un

}



 ≥ 1 − φ2(n). (1.33)
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Now let us give a result giving the main properties of L
γ
n.

Proposition 1.10. Assume 1.2, 1.3 and 1.4 hold,

inf
α∈Gn

P
α
0 [L(Lγ

n, n) = n(1 − o(1))] ≥ 1 − φ2(n), (1.34)

inf
α∈Gn

P
α
0 [Lγ

n is connex ] ≥ 1 − φ2(n), (1.35)

inf
α∈Gn

P
α
0

[

|Lγ
n| ≥ (log n)2

]

≥ 1 − φ2(n). (1.36)

Remark 1.11. ...

Remark 1.12. About the variance of the estimator.

————————————–

Theorem 1.8 is known to be the quenched result that means for a fixed environment α, a simple
consequence (see Remark 2.4) is the following annealed result :

Corollary 1.13. Assume 1.2, 1.3 and 1.4 hold, there exists three constants c0, c1 and c2 such that

for all γ > 6, there exists n0 such that for all n > n0

P





⋂

k∈L
γ
n

{∣

∣

∣
Ŝk

k − Sn
k,k∗

∣

∣

∣
< un

}



 ≥ 1 − φ(n), (1.37)

where φ(n) = φ1(n) + φ2(n).

This paper is organized as follows. In Section 2 we give the proof of Theorems 1.8 (we easily get the
corrolary from Remark 2.4), we have shared this proof into two parts, the first one deals with the
random environment and the other one with the random walk itself. In section 3 we give the sketch
the proofs of Propositions 1.9 and 1.10. In Section 4 we present an algorithm to rebuilt the random
potential from a trajectory of the walk and some numerical simulations. In the appendix we recall a
basic fact for birth and death processes.

2 Proof of Theorem 1.8

The proof of a result with a random environment involves both arguments and properties for the
random environment and arguments for the random walk itself. I will start to give the properties I
need for the random environment. Then we will use it to get the result for the walk.

2.1 Properties needed for the random environment

2.1.1 Construction of (Gn, n ∈ N)

Let k and l be in Z, define

Eα
k (l) = E

α
k [L(l, Tk)] (2.1)

in the same way, let A ⊂ Z, define

Eα
k (A) =

∑

l∈A

E
α
k [L(l, Tk)] . (2.2)

8



Definition 2.1. Let d0 > 0, d1 > 0, and ω ∈ Ω1, we will say that α ≡ α(ω) is a good environment

if there exists n0 such that for all n ≥ n0 the sequence (αi, i ∈ Z) = (αi(ω), i ∈ Z) satisfies the
properties 2.3 to 2.5

• {Mn
′,mn,Mn} 6= ∅, (2.3)

• Mn
′ ≥ −d0(σ

−1 log2 n log n)2, Mn ≤ d0(σ
−1 log2 n log n)2, (2.4)

• Eα
mn

(Wn) ≤ d1(log2 n)2, (2.5)

where Wn = {M ′
n,M

′
n + 1, · · · ,mn, · · · ,Mn}.

Remark 2.2. We will see in Section 2 below that we have used some results of [Andreoletti(2006)].
Considering this, we need extra properties about the random environment in addition to the three
mentioned above, but as we don’t need them for our computations we do not make them appear.

Define the set of good environments

Gn ≡ Gn(d0, d1) = {ω ∈ Ω1, α(ω) is a good environment} . (2.6)

Gn depends on d0, d1 and n, however we only make explicit the n dependence.

Proposition 2.3. There exists two constants d0 > 0 and d1 > 0 such that if 1.2, 1.3 and 1.4 hold,

there exists n0 such that for n > n0

Q [Gn] ≥ 1 − φ1(n), (2.7)

where φ1(n) is given by 1.29.

Proof.
We can find the proof for the first three properties 2.3-2.5 in [Andreoletti(2006)], see Definition 4.1
and Proposition 4.2. �

To end the section we would like to make the following elementary remark on the decomposition of P:

Remark 2.4. Let Cn ∈ σ (Xi, i ≤ n) and Gn ⊂ Ω1, we have :

P [Cn] ≡

∫

Ω1

Q(dω)

∫

Cn

dPα(ω) (2.8)

≥

∫

Gn

Q(dω)

∫

Cn

dPα(ω). (2.9)

So assume that Q[Gn] ≡ e1(n) ≥ 1 − φ1(n) and assume that for all ω ∈ Gn,
∫

Cn
dPα(ω) ≡ e2(ω, n) ≥

1 − φ2(n) we get that

P [Cn] ≥ e1(n) × min
w∈Gn

(e2(w,n)) ≥ 1 − φ1(n) − φ2(n). (2.10)
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2.2 Arguments for the walk

Let (ρ1(n), n ∈ N) a strictly positive decreasing sequence such that limn→∞ ρ1(n) = 0. First let us
show that the Theorem 1.8 is a simple consequence of the following

Proposition 2.5. Assume 1.2, 1.3 and 1.4 hold, there exists n0 such that for all n > n0 there exists

Gn ⊂ Ω1 with Q [Gn] ≥ 1 − φ1(n) and

sup
α∈Gn







P
α
0





⋃

k∈L
γ
n

{
∣

∣

∣

∣

L(k, n)

n
−

Eα
mn

(k)

Eα
mn

(Wn)

∣

∣

∣

∣

≤ wk,n

}











≥ 1 − φ2(n) (2.11)

where wk,n = ρ1(n)
Eα

mn
(k)

Eα
mn

(Wn) , φ1(n) and φ2(n) are given just after 1.28

Taking the logarithm and using its Taylor serie for n large enough, we remark that

− ρ1(n)
Eα

mn
(k)

Eα
mn

(Wn)
≤

L(k, n)

n
−

Eα
mn

(k)

Eα
mn

(Wn)
≤ ρ1(n)

Eα
mn

(k)

Eα
mn

(Wn)
(2.12)

is equivalent to

−2ρ1(n) − log(Eα
mn

(Wn)) ≤ logL(k, n) − log n− log(Eα
mn

(k)) ≤ − log(Eα
mn

(Wn)) + ρ1(n),(2.13)

rearranging the terms and using A.1 (Appendix Lemma A.1) we get

1

log n
(Rα

n(k) − 2ρ1(n)) ≤ Ŝn
k − Sn

k,mn
≤

1

log n
(Rα

n(k) − ρ1(n)) (2.14)

where Rα
n(k) = log

(

αmn

βk
ak,mn

)

− log(Eα
mn

(Wn)) and ak,mn
is given by A.2. Now using A.4 and

Property 2.5 we get the Theorem. The proof of Proposition 2.5 is based on the following results
(Lemma 2.6) of [Andreoletti(2005)],

2.2.1 Known facts

Let where ρ(n) a positive decreasing sequence such that limn→∞ ρ(n) = 0, we define

A1 =

{
∣

∣

∣

∣

L(mn, n)

n
−

1

Eα
mn

(Wn)

∣

∣

∣

∣

>
ρ(n)

Eα
mn

(Wn)

}

, (2.15)

A2 =
{

Tmn ≤ n/(log n)4,L(Wn, n) = 1
}

. (2.16)

Lemma 2.6. Assume 1.2, 1.3 and 1.4 hold, there exists a constant b1 > 0 such that for all γ > 6,
there exists n0 such that for all n > n0 there exists Gn ⊂ Ω1 with Q [Gn] ≥ 1 − φ1(n) and

sup
α∈G′

n

{Pα
0 [A1]} ≤ r1(n), (2.17)

where r1(n) = b1/(log n)γ−6.
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Proof.
We do not give the details of the computations because the reader can find it in the referenced paper
(Theorem 3.8 of [Andreoletti(2006)]), just notice that comparing to the Theorem 3.8 we have a better
rate of convergence for the probability because we have used a weaker result for the concentration of
the walk. �

We will also need the following elementary fact :

Lemma 2.7. Assume 1.2, 1.3 and 1.4 hold, there exists a constant b2 > 0 such that for all γ > 2,
there exists n0 such that for all n > n0 there exists Gn ⊂ Ω1 with Q [Gn] ≥ 1 − φ1(n) and

sup
α∈G′

n

{Pα
0 [A2]} ≤ r2(n), (2.18)

where r2(n) = b2/(log n)γ−2.

Proof.
Once again this can be find in [Andreoletti(2006)]: Proposition 4.7 and Lemma 4.8. �

Using these results we can give the proof of Proposition 2.5 in two steps :

2.2.2 Step 1

Let us define the following subsets :

v̄n
1 ≡ {k ∈ Z, Sk − Smn ≤ log n− γ/2 log2 n} (2.19)

v̄n
2 ≡ {k ∈ Z, log n− ( max

k≤j≤mn

Sj − Smn) > γ log2 n} (2.20)

and

V γ
n = v̄n

1 ∩ v̄n
2 ∩Wn. (2.21)

In words v̄n
1 implies that the difference of potential between an arbitrary k and mn is smaller than

log n − γ/2 log2 n, for the walk this means that we can be sharp for the potential only if the walk
starting from mn can hit k a number of time large enough. v̄n

2 has almost the same meaning and says
that the largest difference of potential between mn and k must be smaller than log n− γ/2 log2 n, for
the walk this means that the walk will hit k again even after it has reach mn (see figure 5 and 6).

First let us prove the following Lemma :

Lemma 2.8. Assume 1.2, 1.3 and 1.4 hold, there exists a constant b3 > 0 such that for all γ > 6,
there exists n0 such that for all n > n0 there exists Gn ⊂ Ω1 with Q [Gn] ≥ 1 − φ1(n)

sup
α∈G′

n

{P
α
0 [Lγ

n ⊂ V γ
n ]} ≥ 1 − r3(n), (2.22)

where r3(n) = b3/(log n)γ/2.

Notice that L
γ
n is a P random variable whereas V γ

n is only a Q random variable, this Lemma makes
the link between a trajectory of the walk and the random environment.
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Dγ
n

(k ∈ Z)mn

0M ′

n Mn

log n − γ/2 log
2

n

(Sk, k)

V γ
n

Figure 5: V γ
n with mn > 0, case 1: Dγ

n ≡ maxk∈v̄1
maxk≤j≤mn

(Sj − Smn) ≤ log n− γ log2 n

0

(k ∈ Z)mn

M ′

n Mn

log n − γ/2 log
2

n

(Sk, k)

Dγ
n

V γ
n

Figure 6: V γ
n with mn > 0, case 2: Dγ

n ≡ maxk∈v̄1
maxk≤j≤mn

(Sj − Smn) > log n− γ log2 n

Proof.
To prove this Lemma we use Proposition 1.9. First notice that

P
α
0 [Lγ

n ⊂ V γ
n ] = 1 − P

α
0





⋃

k∈(v1
n∪v2

n)

{k ∈ Ln}



 (2.23)

where

vn
1 = {k ∈ Z, Sk − Smn > log n− γ/2 log2 n}, (2.24)

vn
2 = {k ∈ Z, log n− ( max

k≤j≤mn

Sj − Smn) ≤ γ log2 n}. (2.25)
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. Let k ∈ vn
1 let us give an upper bound for

P
α
0

[

k ∈ Ln, |Tk∗ − Tmn | ≤ (log n)3
]

≤ P
α
0





n
∑

j=Tk∗

IXj=k ≥ (log n)γ , |Tk∗ − Tmn | ≤ (log n)3





≤ P
α
0





n
∑

j=Tmn

IXj=k ≥ (log n)γ − (log n)3





≤ P
α
mn





Tmn,n
∑

j=1

IXj=k ≥ (log n)γ − (log n)3



 , (2.26)

for the third inequality we have used the strong Markov property and that for all j ≥ 2

Tmn,j ≡

{

inf{k > Tmn,j−1, Xk = mn},
+∞, if such k does not exist.

Tmn,1 ≡ Tmn (see 1.23).

Now using the Markov inequality and Lemma A.1 we get

P
α
0

[

k ∈ Ln, |Tk∗ − Tmn | ≤ (log n)3
]

≤
nE

α
mn

[L(k, Tmn)]

(log n)γ − log n
(2.27)

≤
n

η0 exp(Sk − Smn)((log n)γ − (log n)3)
(2.28)

≤
1

η0(log n)γ/2(1 − (log n)/(log n)γ)
, (2.29)

notice that in the last inequality we have used the fact that k ∈ vn
1 . Now let k ∈ vn

2 , let us give an
upper bound for

P
α
0

[

k ∈ Ln, |Tk∗ − Tmn | ≤ (log n)3
]

≤ P
α
0





n
∑

j=Tmn

IXj=k > (L(k, Tmn )) ∨ (log n)γ − (log n)3



 (2.30)

Let us denote g(n) = exp (maxk≤j≤mn−1(Sj − Sk)) (log n)−γ/2. It is easy to check that

P
α
0 [L(k, Tmn) ≥ g(n)] ≥ 1 −

1

η0

1

(log n)γ/2
. (2.31)

Now denote g′(n) = g(n) ∨ (log n)γ − (log n)3, we have :

P
α
0





n
∑

j=Tmn

IXj=k > g′(n)



 ≤ P
α
mn





Tmn,n
∑

j=1

IXj=k > g′(n)



 (2.32)

≤
nE

α
mn

[L(k, Tmn)]

g′(n)
, (2.33)
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for the first inequality we have used that Tmn ≥ 0 and Tmn,n ≥ n and for the second one the Markov
inequality. Using Lemma A.1 we know that E

α
mn

[L(k, Tmn)] ≤ (η0 exp(Sk − Smn))−1 and using that
k ∈ vn

2 we get that

P
α
0

[

k ∈ Ln, |Tk∗ − Tmn | ≤ (log n)3
]

≤
1

η0(log n)γ/2(1 − (log n)3/(log n)γ/2)
. (2.34)

Collecting what we did above, and using 1.32 we get the Lemma. �

2.2.3 Step 2

This second step is devoted to the proof of the following Lemma.

Lemma 2.9. For all α and n we have

P
α
0

[
∣

∣

∣

∣

L(k, n)

n
−

Eα
mn

(k)

Eα
mn

(Wn)

∣

∣

∣

∣

> wk,n, A1, A2

]

≤ 2 exp(−n/2ψα
2 (n)) (2.35)

recall that wk,n = ρ1(n)
Eα

mn
(k)

Eα
mn

(Wn) and ψα
2 (n) = 2 (ρ1(n)−ρ(n))2

1+ρ(n)
(αmn∧βmn )

|k−mn|

exp(−(SMk
−Smn))

Eα
mn

(Wn) . Mk is such

that SMk
= maxmn+1≤j≤k Sj if k > mn and conversly if k < mn SMk

= maxk≤j≤mn−1 Sj.

Proof.
We essentially use an inequality of concentration (see [Ledoux(2001)]), for simplicity we only give the
proof for k > mn, the other case (k ≤ mn) is very similar. Using the Markov property and the fact
that L(k, Tmn) = 0, we get

P
α
0

[∣

∣

∣

∣

L(k, n)

n
−

Eα
mn

(k)

Eα
mn

(Wn)

∣

∣

∣

∣

> wk,n,A1,A2

]

≤ P
α
mn

[∣

∣

∣

∣

L(k, n)

n
−

Eα
mn

(k)

Eα
mn

(Wn)

∣

∣

∣

∣

> wk,n,A1

]

.(2.36)

We have

P
α
mn

[

L(k, n)

n
−

Eα
mn

(k)

Eα
mn

(Wn)
> wk,n,A1

]

≤ P
α
mn

[

L(k, n)

n
−

Eα
mn

(k)

Eα
mn

(Wn)
> wk,n,

L(mn, n)

n
−

1

Eα
mn

(Wn)
≤

ρ(n)

Eα
mn

(Wn)

]

(2.37)

≤ P
α
mn

[

L(k, Tmn,n1
)

n
−

Eα
mn

(k)

Eα
mn

(Wn)
> wk,n

]

(2.38)

≡ P
α
mn

[

L(k, Tmn,n1
)

n
−

Eα
mn

(k)

Eα
mn

(Wn)
(1 + ρ(n)) > w′

k,n

]

(2.39)

where n1 = n
Eα

mn
(Wn) (1 + ρ(n)), actually n1 is not necessarily an integer but for simplicity we disregard

that, and w′
k,n =

Eα
mn

(k)

Eα
mn

(Wn)(ρ1(n) − ρ(n)). The strong Markov property implies that L(k, Tmn,n1
) is a

sum of n1 i.i.d. random variables, the inequality of concentration gives

P
α
mn

[

L(k, Tmn,n1
)

n
−

Eα
mn

(k)

Eα
mn

(Wn)
> w′

k,n,A1

]

≤ exp

[

−
n

2

Eα
mn

(Wn)

Varmn(L(k, Tmn))

(w′
k,n)2

1 + ρ(n)

]

.(2.40)

With the same method we also get

P
α
mn

[

L(k, Tmn,n1
)

n
−

Eα
mn

(k)

Eα
mn

(Wn)
< −w′

k,n,A1

]

≤ exp

[

−
n

2

Eα
mn

(Wn)

Varmn(L(k, Tmn))

(w′
k,n)2

1 + ρ(n)

]

.(2.41)

Using A.3 we get Lemma 2.9. �
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2.2.4 End of the proof of the Theorem

Using Lemmata 2.6, 2.7 and 2.8 we have:

P
α
0





⋃

k∈La
n

{
∣

∣

∣

∣

L(k, n)

n
−

Eα
mn

(k)

Eα
mn

(Wn)

∣

∣

∣

∣

> wk,n

}





≤ |V γ
n | sup

k∈V γ
n

P
α
0

[∣

∣

∣

∣

L(k, n)

n
−

Eα
mn

(k)

Eα
mn

(Wn)

∣

∣

∣

∣

> wk,n,A1,A2

]

+ 3 max
1≤i≤3

{ri(n)},

then using Lemma 2.9 we get

sup
k∈V γ

n

P
α
0

[
∣

∣

∣

∣

L(k, n)

n
−

Eα
mn

(k)

Eα
mn

(Wn)

∣

∣

∣

∣

> wk,n,A1,A2

]

≤ 2 sup
k∈V γ

n

exp(−n/2ψα
2 (k, n))

≤ 2 exp(−(log n)γ/2−2/(ρ1(n) log2 n)), (2.42)

where the last inequality comes from the definition of V γ
n (see 2.21) and the Properties 2.5 and 2.4.

To end we use again the Property 2.4 together with the definition of V γ
n .

3 Sketch of proof of Proposition 1.9 and 1.10

1.31 is an optimization of Corollary 3.17 of [Andreoletti(2006)] so we get a better convergence for the
probability. To get 1.32, we have used the same idea of the proof of Corollary 3.17 of [Andreoletti(2006)],
so once again we will not repeat the computations here. The intuitive idea is that once the walk has
reached k∗, we know from 1.31 that mn is at most at a distance (log2 n)2, therefore the walk need
at most exp(

√

((log2 n)2)) = (log n) to reach the end of the interval. We take (log n)3 for a technical
reason.

4 Algorithm and Numerical simulations

4.1 General and recall of the main definitions

First notice that we have no criteria to determine wether or not we can apply this method to an
unknown series of data. All we know is that it works for Sinai’s walk, however we can apply the
following algorithm to every process. Let us recall the basic random variables that will be used for
our simulations, let x ∈ Z, n ∈ N,

Tx =

{

inf{k ∈ N
∗, Xk = x}

+∞, if such k does not exist.
, (4.1)

L (x, n) ≡

n
∑

i=1

I{Xi=x}, (4.2)

L∗(n) = max
k∈Z

(L(k, n)) , Fn = {k ∈ Z, L(k, n) = L∗(n)} , (4.3)

k∗ = inf{|k|, k ∈ Fn}. (4.4)

(4.5)
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We recall also the set L
γ
n, the function of the potential we want to estimate and its estimator:

L
γ
n =







k ∈ Z,
n

∑

j=Tk∗

IXj=k ≥ ((log n)γ) ∨ (L(k, Tk∗))







, (4.6)

Sn
k,mn

= 1 −
1

log n
(Sk − Smn), (4.7)

Ŝn
k =

log(L(k, n))

log n
, (4.8)

We also recall that thanks to Proposition 1.9, in probability we have mn − k∗ ≤ O(log2 n)2.

4.2 Main steps of the algorithm

Step 1: We have to determine L
γ
n and to get it we have to compute Tk∗ and therefore the local time of

the process. First we compute L(k, n) for every k, notice that L(k, n) is not equal to zero only if k has
been visited by the walk within the interval of time [1, n]. Then we can compute L∗(n) and determine
k∗ and Tk∗ . Notice that Tk∗ is not a stopping time. We are now able to determine L

γ
n computing

∑n
j=Tk∗

IXj=k and L(k, Tk∗).

Step 2: We can check that L
γ
n is connex, contains k∗ and that its size is of the order of a typical

fluctuation of the walk. Now, keeping only the k that belongs to L
γ
n we compute for those k: Ŝn

k =
log(L(k,n))

log n the estimator of the potential. We localize the bottom of the valley mn using k∗.

4.3 Simulations

For the first simulation we show a case where L
γ
n is large i.e. L

γ
n contains most of the points visited

by the walk. The trajectory of the random potential is in red the interval of confidence in blue and

−20 0 20 40 60 80 100 120 140
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

space x

Estimation of the potential using the local time

Figure 7: in red Sn
x,mn

, in blue Ŝn
x − un, in green Ŝn

x + un

green. We took n = 500000 and γ = 7, notice that the larger is γ, the is smaller L
γ
n but better is

the rate of convergence of the probability. We get that L
γ
n = [10, 94]. In the next figure we plot the
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difference Sn
x,mn

− Ŝn
x and its the linear regression. We notice that the slope of the linear regression is

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

space x

Difference between the potential and the logarithm of the local time, and its linear regression

 
y = − 2.6e−05*x − 0.068

 difference

   linear

Figure 8: in magenta Sn
x,mn

− Ŝn
x , in red the linear regression

of order 10−5, and therefore almost null. We also notice that we take n = 500000, and therefore the
error function un ≈

log3 n
log n ≈ 0, 7 this match with the maxx(Sn

x,mn
− Ŝn

x ) ≈ 0.8 for this simulation. Now

let us choose another example where L
γ
n is much more smaller. For the following simulation we have

only changed the sequence of random number. We get that L
γ
n = [−150,−85]. We notice that for

−160 −140 −120 −100 −80 −60 −40 −20 0 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

space x

Estimation of the potential using the local time

Figure 9: in red Sn
x,mn

, in blue Ŝn
x − un, in green Ŝn

x + un

the coordinates larger than -85 and especially after -40, our estimator is not good at all. In fact once
the walk has reached the minimum of the valley (coordinate -111) it will never reach again one of the
points of coordinate larger than -40 before n = 500000, so our estimator can not say anything about
the difference Sn

x,mn
− Ŝn

x . However if we look in the past of the walk and especially at a the time T ∗

which is the first time it has reached the coordinate −111, the favorite point for this time is localized
around the point −2, so a good estimator between the coordinate -40 and 10 is given by log(L(k,T ∗))

log T ∗ .
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For the difference Sn
x,mn

− Ŝn
x and the linear regression in the interval L

γ
n = [−150,−85] we get:

−150 −140 −130 −120 −110 −100 −90 −80
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

space x

Difference between the potential and the logarithm of the local time, and its linear regression

 
y = − 5.5e−05*x − 0.18

difference
   linear

Figure 10: in magenta Sn
x,mn

− Ŝn
x , in red the linear regression

A Basic results for birth and death processes

For completeness we recall an explicit expression for the mean and an upper bound for the variance
of the local times at a certain stopping time, we can be found a proof of these elementary facts in
[Révész(1989)] (page 279)

Lemma A.1. For all α, Let k > mn

E
α
mn

[L(k, Tmn)] =
αmn

βk

1

eSk−Smn
ak,mn

, where (A.1)

ak,mn
=

∑k−1
i=mn+1 e

Si + eSk

∑k−1
i=mn+1 e

Si + eSmn

. (A.2)

Varmn [L(k, Tmn)] ≤ 2E
α
mn

[L(k, Tmn)]
eSMk

−Sk

βk
|k −mn|. (A.3)

Mk is such that SMk
= maxmn+1≤j≤k Sj . For Q-a.a. environment α

η0

1 − η0
≤
αmn

βk
ak,mn

≤
1

η0
. (A.4)

A similar result is true for k < mn and E
α
mn

[L(k, Tmn)] = 1.
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[Révész(1989)] P. Révész. Random walk in random and non-random environments. World Scientific, 1989.

Laboratoire MAPMO - C.N.R.S. UMR 6628 - Fédération Denis-Poisson
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