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A conjoint measurement approach to the
discrete Sugeno integral

A note on a result of Greco, Matarazzo and Słowiński
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Abstract

In a recent paper (European Journal of Operational Research,158, 271–292,
2004), S. Greco, B. Matarazzo and R. Słowiński have stated without proof a result
characterizing binary relations on product sets that can be represented using a dis-
crete Sugeno integral. To our knowledge, this is the first result about a fuzzy integral
that applies to non-necessarily homogeneous product sets and only uses a binary
relation on this set as a primitive. This is of direct interest to MCDM. The main pur-
pose of this note is to propose a proof of this important result. Thereby, we study the
connections between the discrete Sugeno integral and a non-numerical model called
the noncompensatory model. We also show that the main condition used in the result
of S. Greco, B. Matarazzo and R. Słowiński can be factorized in such a way that
the discrete Sugeno integral model can be viewed as a particular case of a general
decomposable representation.
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A conjoint measurement approach to the discrete Sugeno integral

1 Introduction and motivation

In the area of decision-making under uncertainty, the use of fuzzy integrals, most no-
tably the Choquet integral and its variants, has attracted much attention in recent years.
It is a powerful and elegant way to extend the traditional model of (subjective) expected
utility. Indeed, integrating with respect to a non-necessarily additive measure allows to
weaken the independence hypotheses embodied in the additive representation of prefer-
ences underlying the expected utility model that have often been shown to be violated
in experiments (see the pioneering experimental findings of Allais, 1953 and Ellsberg,
1961). Models based on Choquet integrals have been axiomatized in a variety of ways
(see Gilboa, 1987, Schmeidler, 1989 or Wakker, 1989, Ch. 6. For related works in the
area of decision-making under risk, see Quiggin, 1982 and Yaari, 1987). Recent reviews
of this research trend can be found in Chateauneuf and Cohen (2000), Schmidt (2004),
Starmer (2000) and Sugden (2004).

More recently, still in the area of decision-making under uncertainty, Dubois et al.
(2000b) have suggested to replace the Choquet integral by a Sugeno integral, the latter
being a kind of “ordinal counterpart” of the former, and provided an axiomatic analysis of
this model (special cases of the Sugeno integral are analyzed in Dubois et al., 2001b. For
a related analysis in the area of decision-making under risk, see Hougaard and Keiding,
1996). Dubois et al. (2001a) offer a nice survey of these developments.

Unsurprisingly, people working in the area of multiple criteria decision making (hence-
forth, MCDM) have considered following a similar path to build models weakening the
independence hypotheses embodied in the additive value function model that underlies
most of existing MCDM techniques. The work of Grabisch (1995, 1996) has widely pop-
ularized the use of fuzzy integrals in MCDM. Since then, there has been many develop-
ments in this area. They are well surveyed in Grabisch and Roubens (2000) and Grabisch
and Labreuche (2004) (an alternative approach to weaken the independence hypotheses
of the traditional model that does not use fuzzy integrals is suggested in Gonzales and
Perny, 2005).

It is well known that decision-making under uncertainty and MCDM are related ar-
eas. When there is only a finite number of states of nature, acts may indeed be viewed as
elements of a homogeneous Cartesian product in which the underlying set is the set of all
consequences (this is the approach advocated and developped in Wakker, 1989, Ch. 4). In
the area of MCDM, a Cartesian product structure is also used to model alternatives. How-
ever, in MCDM the product set is generally not homogeneous: alternatives are evaluated
on several attributes that do not have to be expressed on the same scale.

The recent development of the use of fuzzy integrals in the area of MCDM should not
obscure the fact that there is a major difficulty involved in the transposition of techniques
coming from decision-making under uncertainty to the area of MCDM. In the former area,
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any two consequences can easily be compared: considering constant acts gives a straight-
forward way to transfer a preference relation on the set of acts to the set of consequences.
The situation is vastly different in the area of MCDM. The fact that the underlying product
set is not homogeneous invalidates the idea to consider “constant acts”. Therefore, there is
no obvious way to compare consequences on different attributes. Yet, such comparisons
are a prerequisite for the application of models based on fuzzy integrals.

Traditional conjoint measurement models (see, e.g., Krantz et al., 1971, Ch. 6 or
Wakker, 1989, Ch. 3) lead to comparepreference differencesbetween consequences. It
is indeed easy to give a meaning to a statement like “the preference difference between
consequencesxi andyi on attributei is equal to the preference difference between conse-
quencesxj andyj on attributej” (e.g., because they exactly compensate the same prefer-
ence difference expressed on a third attribute). These models donot lead to comparing in
terms of preference consequences expressed on distinct attributes. Indeed, in the additive
value function model a statement like “xi is better thanxj” is easily seen to be meaning-
less (this is reflected in the fact that, in this model, the origin of the value function on each
attribute may be changed independently on each attribute).

In order to bypass this difficulty, most studies involving fuzzy integrals in the area
of MCDM postulate that the attributes are somehow “commensurate”, while the precise
content of this hypothesis is difficult to analyze and test (see, e.g., Dubois et al., 2000a).
Less frequently, researchers have tried to build attributes so that this commensurability
hypothesis is adequate. This is the path followed in Grabisch et al. (2003) who use the
MACBETH technique (see Bana e Costa and Vansnick, 1994, 1997, 1999) to build such
scales. Such an analysis requires the assessment of a neutral level on each attribute that
is supposed to be “equally attractive”. In practice, the assessment of such levels does
not seem to be an easy task. On a more theoretical level, the precise properties of these
commensurate neutral levels are not easy to devise.

A major breakthrough for the application of fuzzy integrals in MCDM has recently
been done in Greco et al. (2004) who give conditions characterizing binary relations
on product sets that can be represented using a discrete Sugeno integral, using this bi-
nary relation as the only primitive. This is an important result that paves the way to a
measurement-theoretic analysis of fuzzy integrals in the area of MCDM (Greco et al.,
2004 also relate the discrete Sugeno integral model to models based on decision rules that
they have advocated in Greco et al., 1999, 2001). It allows to analyze the discrete Sugeno
integral model without any commensurateness hypothesis, which is of direct interest to
MCDM.

Given the importance of the above result, it is a pity that Greco et al. (2004) offer no
proof of it 3. The purpose of this note is to propose such a proof, in the hope that this will

3 To our knowledge, Greco, Matarazzo, and Słowiński have never presented or published their proof.
It should be mentioned that a related result for the case of ordered categories is presented without proof
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contribute to popularize this result. In doing so, we will also study the relations between
the discrete Sugeno integral model and a non-numerical model called the noncompen-
satory model that is inspired from the work of Bouyssou and Marchant (2006) in the area
of sorting methods in MCDM. We will also show that the main condition used in the result
in Greco et al. (2004) can be factorized in such a way that the discrete Sugeno integral
model can be viewed as a particular case of a general decomposable representation.

This note is organized as follows. The result of Greco et al. (2004) is presented in Sec-
tion 2. The following two sections present our proof: Section 3 is devoted to some inter-
mediate results and Section 4 completes the proof. Section 5 presents examples showing
that the conditions used in the main result are independent. Section 6 briefly concludes
with the mention of some directions for future research.

2 The main result

2.1 Background on the discrete Sugeno integral

Let β = (β1, β2, . . . , βp) ∈ [0, 1]p. Let (·)β be a permutation onP = {1, 2, . . . , p} such
thatβ(1)β

≤ β(2)β
≤ · · · ≤ β(p)β

.

A capacity onP is a functionν : 2P → [0, 1] such that:

• ν(∅) = 0,

• [A,B ∈ 2P andA ⊆ B] ⇒ ν(A) ≤ ν(B).

The capacityν is said to be normalized if, furthermore,ν(P ) = 1.

The discrete Sugeno integral of the vector(β1, β2, . . . , βp) ∈ [0, 1]p w.r.t. the normal-
ized capacityν is defined by:

Sν [β] =

p∨

i=1

[
β(i)β

∧ ν(A(i)β
)
]
,

whereA(i)β
is the element of2P equal to{(i)β, (i + 1)β, . . . , (p)β}.

We refer the reader to Dubois et al. (2001a) and Marichal (2000a,b) for excellent
surveys of the properties of the discrete Sugeno integral and its several possible equivalent

in Słowiński et al. (2002). This result is a particular case of the one presented in Greco et al. (2004) for
weak orders with a finite number of distinct equivalence classes. A complete and quite simple proof for this
particular case was proposed in Bouyssou and Marchant (2006), using comments made on an early version
of the latter paper by Greco, Matarazzo, and Słowiński.
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definitions. Let us simply mention here that the reordering of the components ofβ in order
to compute its Sugeno integral can be avoided noting that we may equivalently write:

Sν [β] =
∨

T⊆P

[
ν(T ) ∧

(
∧

i∈T

βi

)]
.

2.2 The model

Let % be a binary relation on a setX =
∏n

i=1 Xi with n ≥ 2. Elements ofX will
be interpreted as alternatives evaluated on a setN = {1, 2, . . . , n} of attributes. The
relations≻ and∼ are defined as usual. We denote byX−i the set

∏
j∈N\{i} Xj. We

abbreviateNot [ x % y ] asx 6% y.

We say that% has a representation in thediscrete Sugeno integral modelif there are a
normalized capacityµ onN and functionsui : Xi → [0, 1] such that, for allx, y ∈ X,

x % y ⇔ S〈µ,u〉(x) ≥ S〈µ,u〉(y),

whereS〈µ,u〉(x) = Sµ[(u1(x1), u2(x2), . . . , un(xn))].

2.3 Axioms and result

A weak orderis a complete and transitive binary relation. The setY ⊆ X is said to be
dense inX for the weak order% if for all x, y ∈ X, x ≻ y impliesx % z andz % y, for
somez ∈ Y . We say that the weak order% onX satisfies theorder-denseness condition
(conditionOD) if there is a finite or countably infinite setY ⊆ X that is dense inX for
%. It is well-known (see Fishburn, 1970, p. 27 or Krantz et al., 1971, p. 40) that there is a
real-valued functionv onX such that, for allx, y ∈ X,

x % y ⇔ v(x) ≥ v(y),

if and only if % is a weak order onX satisfying the order-denseness condition.

Remark 1
Let % be a weak order onX. It is clear that∼ is an equivalence and that the elements of
X/∼ are linearly ordered. We often abuse terminology and speak of equivalence classes
of % to mean the elements ofX/∼. WhenX/∼ is finite, we speak of the first equivalence
class of% to mean the elements ofX/∼ that precede all others in the induced linear
order. •
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The relation% on X is said to be strongly 2-graded on attributei ∈ N (condition
2∗-gradedi) if, for all x, y, z, w ∈ X and allai ∈ Xi,

x % z
and

y % w
and

z % w





⇒





(ai, x−i) % z
or

(xi, y−i) % w,
(2∗-gradedi)

where (ai, x−i) denotes the element ofX obtained fromx ∈ X by replacing itsith
coordinate byai ∈ Xi. The binary relation will be said to bestrongly 2-graded(condition
2∗-graded) if it is strongly 2-graded on all attributesi ∈ N .

Consider the particular case of condition2∗-gradedi in which z = w. Suppose that
(xi, y−i) 6% w. Since(yi, y−i) % w and (xi, y−i) 6% w, we know that the levelxi is
worse thanyi (with respect to the alternativew). In this case,(xi, x−i) % w implies that
(ai, x−i) % w, for all ai ∈ Xi. This means that, once we know that some levelyi is
better thanxi, there does not exist any level inXi that could be worse thanxi, so that
if (xi, x−i) % w the same will be true replacingxi by any element inXi. This roughly
implies that, for eachw ∈ X, we can partition the elements ofXi into at most two cate-
gories of levels: the “satisfactory” ones and the “unsatisfactory” ones with respect tow.
Condition2∗-gradedi implies these twofold partitions are not unrelated when considering
distinct elementsz andw in X. We have named this condition following Bouyssou and
Marchant (2006).

Greco et al. (2004) state the following:

Theorem 2 (Greco et al., 2004, Th. 3, p. 284)
Let% be a binary relation onX. This relation has a representation in the discrete Sugeno
integral model if and only if (iff) it is a weak order satisfying the order-denseness condition
and being strongly 2-graded.

It is clear that if% has a representation in the discrete Sugeno integral model, then it must
be a weak order satisfyingOD. It is not difficult to show that it must also satisfy2∗-graded.
Indeed, suppose that condition2∗-gradedi is violated, so that, for somex, y, z, w ∈ X and
someai ∈ Xi, we havex % z, y % w, z % w, (ai, x−i) 6% z and(xi, y−i) 6% w. Using
y % w and(xi, y−i) 6% w, we obtainui(xi) < S〈µ,u〉(w). Becausez % w, we know that
S〈µ,u〉(z) ≥ S〈µ,u〉(w), so thatS〈µ,u〉(z) > ui(xi). Sincex % z andS〈µ,u〉(z) > ui(xi),
there is someI ∈ 2N such thati /∈ I, µ(I) ≥ S〈µ,u〉(z) anduj(xj) ≥ S〈µ,u〉(z), for all
j ∈ I. This impliesS〈µ,u〉((ai, x−i)) ≥ S〈µ,u〉(z), so that(ai, x−i) % z, a contradiction.

The rest of this note is mainly devoted to a proof of the converse assertion.
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3 Preliminary results

3.1 Factorization of2∗-gradedi

Let us first show how condition2∗-gradedi can be factorized using two conditions.

Let% be a binary relation onX. We say that% satisfiesAC1i if, for all x, y, z, w ∈ X,

x % y
and

z % w



 ⇒





(zi, x−i) % y,
or

(xi, z−i) % w.
(AC1i)

We say that% satisfiesAC1 if it satisfiesAC1i for all i ∈ N . ConditionAC1 was pro-
posed and studied in Bouyssou and Pirlot (2004). It plays a central rôle in the characteriza-
tion of binary relations (that may be incomplete or intransitive) admitting a decomposable
representation of the type:

x % y ⇔ G[u1(x1), . . . , un(xn), u1(y1), . . . , un(yn)] ≥ 0,

with G being nondecreasing (resp. nonincreasing) in its first (resp. last)n arguments (see
Bouyssou and Pirlot, 2004, Theorem 2). We refer to Bouyssou and Pirlot (2004) for a
detailed interpretation of this condition. Let us simply mention here that conditionAC1i,
independently of any transitivity or completeness properties of%, allows to order the
elements ofXi in such a way that this ordering is compatible with% (see Lemma 5
below).

We say that% is 2-graded on attributei ∈ N (condition2-gradedi) if, for all x, y, z, w ∈
X and allai ∈ Xi,

x % z
and

(yi, x−i) % z
and

y % w
and

z % w





⇒





(ai, x−i) % z
or

(xi, y−i) % w.
(2-gradedi)

We say that% is 2-graded(condition 2-graded) if it is 2-graded on all attributesi ∈
N . Condition2-graded weakens condition2∗-graded adjoining it the additional premise
(yi, x−i) % z. It has a similar interpretation. We have:

Lemma 3
Let % be a weak order on the setX. Then% satisfiesAC1i and2-gradedi iff it satisfies
2∗-gradedi.
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PROOF

[AC1i & 2-gradedi ⇒ 2∗-gradedi]. Suppose thatx % z, y % w z % w. UsingAC1i,
x % z and y % w implies either(yi, x−i) % z or (xi, y−i) % w. In the latter case,
one of the two conclusions of2∗-gradedi holds. In the former case, we havex % z,
(yi, x−i) % z, y % w andz % w, so that2-gradedi implies either(ai, x−i) % z, for all
ai ∈ Xi or (xi, y−i) % w, which is the desired conclusion.

[2∗-gradedi ⇒ AC1i & 2-gradedi]. It is clear that2∗-gradedi implies2-gradedi since
2-gradedi is obtained from2∗-gradedi by adding to it an additional premise. Suppose that
x % y andz % w. Since% is complete, we have eithery % w or w % y. If y % w, we
havex % y, z % w andy % w, so that2∗-gradedi implies(xi, z−i) % w or (ai, x−i) % y,
for all ai ∈ Xi. Takingai = zi shows thatAC1i holds in this case. The proof is similar if
it is supposed thatw % y. 2

Remark 4
When% is a weak order, conditionAC1i is equivalent to supposing that, for allxi, yi ∈ Xi

and allz−i, w−i ∈ X−i (xi, z−i) ≻ (yi, z−i) ⇒ (xi, w−i) % (yi, w−i), i.e., that attributei
is weakly separable, using the terminology of Bouyssou and Pirlot (2004).

Indeed suppose that% satisfiesAC1i and is such that attributei is not weakly sepa-
rable. Therefore there arexi, yi ∈ Xi andz−i, w−i ∈ X−i such that(xi, z−i) ≻ (yi, z−i)
and (yi, w−i) ≻ (xi, w−i). Since% is reflexive, we have(xi, z−i) % (xi, z−i) and
(yi, w−i) % (yi, w−i). UsingAC1i, we have eitheryi %i xi or xi %i yi, so that either
(yi, z−i) % (xi, z−i) or (xi, w−i) % (yi, w−i), a contradiction.

Conversely, suppose that% is complete and transitive and that attributei is weakly
separable. Suppose thatAC1i is violated so that, since% is complete,(xi, x−i) % y,
(zi, z−i) % w, y ≻ (zi, x−i) andw ≻ (xi, z−i), for somex, y, z, w ∈ X. Since% is a
weak order, we obtain(xi, x−i) ≻ (zi, x−i) and(zi, z−i) ≻ (xi, z−i), which violates the
weak separability of attributei.

We say that a weak order% is weakly separableif, for all i ∈ N , it is weakly separable
for attributei.

Hence, combining Lemma 3 with Theorem 2 shows that a relation has a representation
in the discrete Sugeno integral model iff it is a weakly separable weak order satisfyingOD
and2-graded.

Bouyssou and Pirlot (2004, Propositions 8 and B.3) have shown that, for weak orders
satisfyingOD, weak separability is a necessary and sufficient condition to obtain a general
decomposable representation in which, for allx, y ∈ X,

x % y ⇔ F [u1(x1), . . . , un(xn)] ≥ F [u1(y1), . . . , un(yn)],

with F being nondecreasing in all its arguments (see also Greco et al., 2004, Theorem 1).
Hence, condition2-graded is exactly what must be added to go from this general decom-
posable representation to a representation in the discrete Sugeno integral model.•
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3.2 Traces

Consider an attributei ∈ N . We define theleft marginal traceon attributei ∈ N letting,
for all xi, yi ∈ Xi, all a−i ∈ X−i and allz ∈ X,

xi %i yi ⇔ [(yi, a−i) % z ⇒ (xi, a−i) % z].

Similarly, givena ∈ X, we define the left marginal trace on attributei ∈ N with respect
to a ∈ X, letting, for allxi, yi ∈ Xi and allz−i ∈ X−i,

xi %
a
i yi ⇔ [(yi, z−i) % a ⇒ (xi, z−i) % a].

The symmetric and asymmetric parts of%i (resp.%a
i ) are denoted∼i and≻i (resp.∼a

i

and≻a
i ). It is clear that%i and%a

i are always reflexive and transitive. They may be
incomplete however.

We note a few useful obvious connections between%a
i , %i and% in the following

lemma.

Lemma 5
We have, for alli ∈ N , all z, w ∈ X and allxi, yi ∈ Xi,

1. xi %i yi ⇔ [xi %a
i yi, for all a ∈ X],

2. [z % w, xi %i zi] ⇒ (xi, z−i) % w.

3. Furthermore, if% is reflexive then,[zj ∼j wj, for all j ∈ N ] ⇒ z ∼ w.

4. The relation%i is complete iffAC1i holds.

PROOF

Parts 1 and 2 easily follow from the definitions. Part 3 follows from Part 2 and the fact
thatw % w. It is obvious that negating the completeness of%i is equivalent to negating
AC1i. 2

The following lemma makes precise the structure of the relations%a
i when% is a weak

order satisfyingAC1i and2-gradedi.

Lemma 6
Let% be a weak order onX satisfyingAC1i and2-gradedi. Then

1. %a
i is complete for alla ∈ X,

2. xi ≻
a
i yi ⇒ [xi %b

i yi for all b ∈ X],

3. %a
i has at most two distinct equivalence classes, for alla ∈ X,
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4. [xi ∼
a
i zi andxi ≻

a
i yi] ⇒ xi ∼

b
i zi, for all b ∈ X such thata % b.

5. If a % b and both%a
i and%b

i are nontrivial then the first equivalence class of%a
i is

included in the first equivalence class of%b
i .

PROOF

Parts 1 and 2 follow from Lemma 5 sinceAC1i implies that%i is complete.

Part 3. Suppose that%a
i has at least three distinct equivalence classes. This implies

that(xi, c−i) % a, (yi, c−i) 6% a, (yi, d−i) % a and(zi, d−i) 6% a, for somexi, yi, zi ∈ Xi,
somec−i, d−i ∈ X−i and somea ∈ X. Using AC1i, (xi, c−i) % a, (yi, d−i) % a
and(yi, c−i) 6% a imply (xi, d−i) % a. Using2-gradedi, (yi, d−i) % a, (xi, d−i) % a,
(xi, c−i) % a anda % a imply (yi, c−i) % a or (zi, d−i) % a, a contradiction.

Part 4. Suppose thatxi ∼a
i zi, xi ≻a

i yi, a % b andxi ≻b
i zi (the proof for the

casezi ≻b
i xi being similar). By construction, we have(xi, w−i) % b, (zi, w−i) 6% b,

(xi, t−i) % a and(yi, t−i) 6% a. Sincexi ∼
a
i zi, we must have(zi, t−i) % a. UsingAC1i,

(xi, w−i) % b, (zi, t−i) % a and (zi, w−i) 6% b imply (xi, t−i) % a. Using 2-gradedi,
(zi, t−i) % a, (xi, t−i) % a, (xi, w−i) % b anda % b imply (zi, w−i) % b or (yi, t−i) % a,
a contradiction.

Part 5. Suppose thata % b, xi ≻a
i yi andzi ≻b

i xi. Using Part 2, we know that
zi %a

i xi. Because we know from Part 3 that%a
i has at most two equivalence classes,

we must havezi ∼
a
i xi. Using Part 4,a % b, zi ∼

a
i xi andxi ≻

a
i yi imply zi ∼

b
i xi, a

contradiction. 2

Let % be a weak order onX satisfyingAC1i and2-gradedi. Let i ∈ N . For alla ∈ X, we
know that either%a

i is trivial or %a
i has two distinct equivalence classes. DefineBa

i ⊂ Xi

as the empty set in the first case and as the elements in the first equivalence class in the
second case. DefineCa

i letting:

Ca
i =

⋃

{x∈X:x%a}

Bx
i .

The following lemma studies the properties of the setsCa
i .

Lemma 7
Let% be a weak order onX satisfyingAC1 and2-graded. For allx, y, z, w ∈ X and all
i ∈ N ,

1. z % w ⇒ Cz
i ⊆ Cw

i ,

2. {j ∈ N : yj ∈ Cz
j } ⊆ {j ∈ N : xj ∈ Cz

j } ⇒ [xi %z
i yi for all i ∈ N ],

3. Cx
i ( Xi.
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PROOF

Part 1. We havexi ∈ Cz
i iff xi ∈ Ba

i , for somea % z. Becausez % w and% is a weak
order, we havea % z. Hence,xi ∈ Ba

i , for somea % w, so thatxi ∈ Cw
i .

Part 2. If%z
i is trivial, we have by definitionxi ∼

z
i yi. If %z

i is not trivial, it follows
from Part 5 of Lemma 6 thatCz

i is equal to the first equivalence class of%z
i . If yi ∈ Cz

i ,
we havexi ∈ Cz

i , so thatxi ∼
z
i yi. If yi /∈ Cz

i , then we havezi %z
i yi, for all zi ∈ Xi.

Part 3. By construction,By
i is strictly included inXi. As the setCx

i is obtained by
taking the union of setsBy

i , the conclusion follows. 2

Lemma 8
Let % be a weak order onX satisfyingAC1i and2-gradedi. Define, for allx ∈ X, the
setGx ⊆ 2N letting I ∈ Gx whenever we have{i ∈ N : zi ∈ Cx

i } ⊆ I, for somez ∈ X
such thatz % x. We have, for allx, y ∈ X,

1. x % y ⇔ {i ∈ N : xi ∈ Cy
i } ∈ Gy,

2. [I ∈ Gx andI ⊆ J ] ⇒ J ∈ Gx,

3. x % y ⇒ Gx ⊆ Gy.

PROOF

Part 1. By construction, ifx % y then{i ∈ N : xi ∈ Cy
i } ∈ Gy. Let us show that the

reverse implication is true. Suppose that{i ∈ N : xi ∈ Cy
i } ∈ Gy. This implies that

{i ∈ N : zi ∈ Cy
i } ⊆ {i ∈ N : xi ∈ Cy

i }, for somez ∈ X such thatz % y. Using Part 2
of Lemma 7,{i ∈ N : zi ∈ Cy

i } ⊆ {i ∈ N : xi ∈ Cy
i } impliesxi %

y
i zi, for all i ∈ N .

Hence,z % y impliesx % y.

Part 2 follows from the definition of the setsGx.

Part 3. Suppose thatx % y and letI ∈ Gx. Let us show that we must haveI ∈ Gy.
By construction,I ∈ Gx implies that{i ∈ N : zi ∈ Cx

i } ⊆ I, for somez ∈ X such that
z % x. Consider the alternativew ∈ X defined in the following way.

• If zi ∈ Cx
i , let wi = zi. We havewi ∈ Cx

i . Using Part 1 of Lemma 7, we know that
this implieswi ∈ Cy

i .

• If zi /∈ Cx
i . Using Part 3 of Lemma 7, we know thatCy

i ( Xi. We takewi to be any
element inXi \ Cy

i . Because, we know thatCx
i ⊆ Cy

i , we havewi /∈ Cx
i .

By construction we have, for alli ∈ N , zi ∈ Cx
i ⇔ wi ∈ Cx

i ⇔ wi ∈ Cy
i . Hence, we

have{i ∈ N : zi ∈ Cx
i } = {i ∈ N : wi ∈ Cx

i } = {i ∈ N : wi ∈ Cy
i }. The first equality

impliesw % x. Using the fact that% is a weak order, we obtainw % y. Hence, we have
{i ∈ N : wi ∈ Cy

i } ⊆ I andw % y. This impliesI ∈ Gy. 2
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3.3 The noncompensatory model for weak orders

The following model is used as an intermediary step in the construction of the discrete
Sugeno integral model. It may be viewed as a kind of “non-numerical version” of the
discrete Sugeno integral model.

Definition 9
A weak order% on X has a representation in thenoncompensatory modelif for all
x ∈ X, there are sets

1. Ax
i ⊆ Xi, for all i ∈ N ,

2. F x ⊆ 2N such that

[I ∈ F x andI ⊆ J ∈ 2N ] ⇒ J ∈ F x, (1)

that are such that, for allx, y ∈ X,

x % y ⇒





Ax
i ⊆ Ay

i

and
F x ⊆ F y

(2)

and
x % y ⇔ {i ∈ N : xi ∈ Ay

i } ∈ F y. (3)

We often writeA(x, y) instead of{i ∈ N : xi ∈ Ay
i }.

The noncompensatory model for weak orders4 is inspired from the work of Bouyssou
and Marchant (2006) in the area of sorting model in MCDM. The results in Bouyssou and
Marchant (2006) may be viewed as dealing with the noncompensatory model for weak
orders that have a finite number of equivalent classes (this is in Bouyssou and Marchant
(2006) phrased in the language of “ordered categories”).

The noncompensatory model can be interpreted as follows. For eachx ∈ X we isolate
on each attribute a subsetAx

i ⊆ Xi containing the levels on attributei that are satisfactory
for x. In order for an alternative to be at least as good asx, it must have evaluations that
are satisfactory forx on a subset of attributes belonging toF x. The subsets of attributes
belonging toF x are interpreted as subsets that are “sufficiently important” to warrant
preference onx.

4 The noncompensatory model for weak orders must not be confused with “noncompensatory prefer-
ences” as introduced in Fishburn (1976). Noncompensatory preferences in the sense of Fishburn (1976) are
preferences that result form an “ordinal aggregation” in the context of MCDM that is quite close from the
type of aggregation studied in social choice theory in the vein of Arrow (1963). For a recent analysis of
such preferences, see Bouyssou and Pirlot (2005).

50



Annales du LAMSADE n˚6

With this interpretation in mind, the constraint (2) means that ifx is at least as good
asy then every level that is satisfactory forx must be satisfactory fory. Furthermore,
subsets of attributes that are “sufficiently important” to warrant preference onx must also
be “sufficiently important” to warrant preference ony. Given the above interpretation of
F x, the constraint (1) simply says that any superset of a set that is “sufficiently important”
to warrant preference onx must have the same property.

Suppose thatx 6% y and thatxi ∈ Ay
i , for somei ∈ N . In the noncompensatory

model, we have(zi, x−i) 6% y, for all zi ∈ Xi. It is therefore impossible, starting fromx,
to obtain an alternative that would be at least as good asy by modifying the evaluation of
x on theith attribute. In other terms, the fact thatA(x, y) /∈ F y cannot be compensated by
improving the evaluation ofx on an attribute inA(x, y). Hence, our name for this model.

A weak order having a representation in the noncompensatory model must satisfy
AC1 and2-graded. We have:

Lemma 10
If weak order% onX has a representation in the noncompensatory model, then it satisfies
AC1 and2-graded.

PROOF

[AC1i]. Suppose thatx % y, z % w, (zi, x−i) 6% y and(xi, z−i) 6% w. It is easy to see that
x % y and(zi, x−i) 6% y imply xi ∈ Ay

i andzi /∈ Ay
i . Similarly, z % w and(xi, z−i) 6% w

imply zi ∈ Aw
i andxi /∈ Aw

i . Because% is complete, we have eithery % w or w % y.
Hence, we have eitherAy

i ⊆ Aw
i or Aw

i ⊆ Ay
i , a contradiction.

[2-gradedi]. Suppose that2-gradedi is violated, so that, for somex, y, z, w ∈ X and
someai ∈ Xi, (xi, x−i) % z, (yi, x−i) % z, (yi, y−i) % w, z % w, (ai, x−i) 6% z and
(xi, y−i) 6% w. Using the definition of the noncompensatory model,(yi, y−i) % w and
(xi, y−i) 6% w imply yi ∈ Aw

i andxi /∈ Aw
i . Similarly, (xi, x−i) % z and(ai, x−i) 6% z

imply xi ∈ Az
i andai /∈ Az

i . Sincez % w, we haveAz
i ⊆ Aw

i , a contradiction. 2

The main result of this section says that, for weak orders, the noncompensatory model is
fully characterized by the conjunction ofAC1 and2-graded. Notice that we may equiv-
alently replace the conjunction ofAC1 and2-graded either by condition2∗-graded or by
the conjunction of weak separability and2-graded.

Proposition 11
If a weak order onX satisfiesAC1 and 2-graded then it has a representation in the
noncompensatory model.

PROOF

DefineAx
i = Cx

i andF x = Gx. The proof follows from combining Lemmas 7 and 8.2
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4 Completion of the proof

The main result in this section says that if a weak order has a representation in the non-
compensatory model and has a numerical representation, then it has a representation in
the discrete Sugeno integral model.

Proposition 12
Let% be a weak order onX. Suppose that% can be represented in the noncompensatory
model and that there is a real functionv onX such that, for allx, y ∈ X,

x % y ⇔ v(x) ≥ v(y). (4)

Then% has a representation in the discrete Sugeno integral model.

PROOF

Let % be a weak order representable in the noncompensatory model and such that there
is a real-valued functionv satisfying (4). We may assume w.l.o.g. that, for allx ∈ X,
v(x) ∈ [0, 1]. Furthermore, if there are minimal elements inX for %, we may assume
w.l.o.g. thatv gives the value0 to these elements. We consider now any such functionv.

For all i ∈ N , defineui letting, for allxi ∈ Xi,

ui(xi) =





sup
{w∈X:xi∈Aw

i
}

v(w) if ∃w : xi ∈ Aw
i ,

0 otherwise.
(5)

Defineµ on2N letting, for allI ∈ 2N ,

µ(I) =





sup
{w∈X:I∈F w}

v(w) if ∃w : I ∈ Fw,

0 otherwise.
(6)

SinceI ∈ Fw andJ ⊇ I entailsJ ∈ Fw, we have thatµ(J) ≥ µ(I). Hence,µ is a
nondecreasing set function.

Let us show thatµ(∅) = 0. If there is now ∈ X such that∅ ∈ Fw, then we have,
by construction,µ(∅) = 0. Suppose thatX∅ = {w ∈ X : ∅ ∈ Fw} 6= ∅. From the
definition of the noncompensatory model, it follows that, for allx ∈ X and allw ∈ X∅,
we havex % w. Hence, for allw ∈ X∅, w is minimal for%. We therefore havev(w) = 0,
for all w ∈ X∅ and, hence,µ(∅) = 0. This shows thatµ defined by (6) is a capacity on
2N . It is not necessarily normalized, i.e., we may not have thatµ(N) = 1.

Independently of the normalization ofµ, we can compute, for allx ∈ X, Sµ,u(x)
letting:

S〈µ,u〉(x) =
∨

I⊆N

[
µ(I) ∧

(
∧

i∈I

ui(xi)

)]
. (7)
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It is clear that, for ally ∈ X, S〈µ,u〉(y) ∈ [0, 1]. Let us show that, for ally ∈ X,
S〈µ,u〉(y) = v(y), which will complete the proof ifµ happens to be normalized.

Let x, y ∈ X be such thatx % y. This impliesA(x, y) = {i ∈ N : xi ∈ Ay
i } ∈ F y.

Hence, for alli ∈ A(x, y), y ∈ {w ∈ X : xi ∈ Aw
i }, so thatui(xi) ≥ v(y). Similarly,

y ∈ {w ∈ X : A(x, y) ∈ Fw}, so thatµ(A(x, y)) ≥ v(y). Hence, forI = A(x, y), we
have

µ(I) ∧

(
∧

i∈I

ui(xi)

)
≥ v(y).

In view of (7), this impliesS〈µ,u〉(x) ≥ v(y). Since% is reflexive, this shows that, for all
y ∈ X, S〈µ,u〉(y) ≥ v(y).

We now prove that, for ally ∈ X, S〈µ,u〉(y) ≤ v(y). If y is maximal for% (i.e.,y % x,
for all x ∈ X), we havev(y) ≥ v(x), for all x ∈ X. The definition ofui andµ obviously
implies that they cannot exceed the maximal value ofv on X. Hence, in this case, we
haveS〈µ,u〉(y) ≤ v(y).

Suppose henceforth thaty ∈ X is not maximal for%, so thatx ≻ y, for somex ∈ X.
This implies thatA(y, x) = {i ∈ N : yi ∈ Ax

i } 6∈ F x. DefineAy =
⋃

z≻y A(y, z).
BecauseA(y, z) ⊆ N , N is a finite set, andz′ % z impliesA(y, z′) ⊆ A(y, z), there is
an elementz0 ∈ X with z0 ≻ y that is such thatA(y, z0) = Ay andA(y, z) = Ay, for all
z ∈ X such thatz0 % z ≻ y.

We claim the following:

Claim 1: for allj 6∈ Ay, uj(yj) ≤ v(y),

Claim 2: for allI ⊆ Ay, µ(I) ≤ v(y).

Proof of Claim 1.Let j 6∈ Ay, so thatyj /∈ Az0

j . If the set{w ∈ X : yj ∈ Aw
j } is empty, we

haveuj(yj) = 0 and the claim trivially holds. Otherwise, letw ∈ X such thatyj ∈ Aw
j .

If w ≻ z0, we haveAw
j ⊆ Az0

j , so thatyj ∈ Aw
j implies yj ∈ Az0

j , a contradiction. If
z0 % w ≻ y, we know thatA(y, w) = A(y, z0). This is contradictory sinceyj ∈ Aw

j and
yj 6∈ Az0

j . Hence, whenj 6∈ Ay, we must havey % w, for all w ∈ X such thatyj ∈ Aw
j .

This implies thatuj(yj) = sup{w∈X:yj∈Aw
j
} v(w) ≤ v(y), for all j 6∈ Ay.

Proof of Claim 2.Let I ⊆ Ay. If the set{w ∈ X : I ∈ Fw} is empty, we haveµ(I) = 0
and the claim follows. Otherwise, letw ∈ X such thatI ∈ Fw. Suppose thatw ≻ z0.
This impliesFw ⊆ F z0, so thatI ∈ F z0. BecauseI ⊆ Ay, we obtainAy ∈ F z0. This
is contradictory sincez0 ≻ y implies thatAy = A(y, z0) 6∈ F z0. Suppose now that
z0 % w ≻ y. We haveA(y, w) = Ay /∈ Fw. But, sinceI ∈ Fw andI ⊆ Ay, we obtain
Ay ∈ Fw, a contradiction. Hence, for allw ∈ X such thatI ∈ Fw, we havey % w. This
impliesµ(I) = sup{w∈X:I∈F w} v(w) ≤ v(y).
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Using Claims 1 and 2, we establish thatS〈µ,u〉(y) ≤ v(y) for anyy ∈ X that is not
maximal. LetI ⊆ N . We distinguish two cases in order to compute

µ(I) ∧

(
∧

i∈I

ui(xi)

)
.

1. If I is not included inAy, we know that there isj ∈ I such thatj 6∈ Ay. Hence,
using Claim 1,uj(yj) ≤ v(y) so thatµ(I) ∧

(∧
i∈I ui(yi)

)
≤ v(y).

2. If I is included inAy, using Claim 2, we haveµ(I) ≤ v(y). Hence, we know that
µ(I) ∧

(∧
i∈I ui(yi)

)
≤ v(y).

Hence, for allI ⊆ N , we haveµ(I) ∧
(∧

i∈I ui(yi)
)
≤ v(y), so thatS〈µ,u〉(y) ≤ v(y).

This proves that, for ally ∈ X, S〈µ,u〉(y) = v(y).

It remains to show that we may always build a representation in the discrete Sugeno
integral model using anormalizedcapacity, i.e., a capacityν such thatν(N) = 1.

Using the above construction, the value ofµ(N) is obtained using (6). We have
µ(N) = supw∈X v(w), since for allw ∈ X, N ∈ Fw. If the weak order% is not
trivial, we haveµ(N) > 0. In order to obtain a representation leading to a normalized
capacity, it suffices to apply the above construction to the functionu obtained by dividing
v by µ(N). If the weak order% is trivial, it is easy to see that it has a representation in the
noncompensatory model such that, for allx ∈ X and alli ∈ N , Ax

i = Xi andF x = {N}.
Defining, for all i ∈ N and allxi ∈ Xi, ui(xi) = 1, µ(N) = 1 andµ(A) = 0, for all
A ( N , leads to a representation of this trivial weak order in the discrete Sugeno integral
model. 2

The sufficiency proof of Theorem 2 follows from combining Lemma 3 with Proposi-
tions 11 and 12. This amounts to characterizing the discrete Sugeno integral model by the
conjunction of any of the following three equivalent sets of conditions:

• completeness, transitivity,OD, AC1 and2-graded,

• completeness, transitivity,OD, weak separability and2-graded,

• completeness, transitivity,OD and2∗-graded.

The examples in the following section show no condition in the first set is redundant.

Remark 13
Consider a nontrivial weak order% on X that satisfies the hypotheses of Proposition 12.
The proof of this proposition establishes thatany functionv : X → [0, 1] satisfying (4)
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and giving a value0 to the minimal elements inX for % (if any) can be used to define
a representation in the Sugeno integral model. The functionsui and the (non necessarily
normalized) capacityµ used in this representation can be defined on the basis ofv using
(5) and (6). Furthermore, as shown in this proof, (5) and (6) can be viewed asinversion
formulasfor the discrete Sugeno integral model in the following sense. If we know the
value ofS〈µ,u〉(x), for all x ∈ X, without knowing the functionsµ andui, it is possible
to use (5) and (6) to build functionsuj and a capacityµ that allow to reconstruct all these
values using the discrete Sugeno integral formula (7). •

5 Independence of conditions

Proposition 14
Let% be a binary relation onX. The following conditions are independent:

1. % is complete,

2. % is transitive,

3. % satisfiesAC1,

4. % is 2-graded.

PROOF

We provide the required four examples.

Example 15
Let X = {x1, y1} × {x2, y2}. Let % be identical to the weak order

(y1, y2) ≻ [(x1, y2), (y1, x2)] ≻ (x1, x2), 3

except that we have removed two arcs from%, so as to have(x1, y2) 6% (y1, x2) and
(y1, x2) 6% (x1, y2). It is clear that% is transitive but is not complete. SinceX1 andX2

have only two elements, condition2-graded trivially holds. It is not difficult to check that
we havey1 ≻1 x1 andy2 ≻2 x2, so thatAC1 holds.

Example 16
Let X = {x1, y1} × {x2, y2}. Let % be identical to the trivial weak order except that we
have removed one arc from%, so as to have(x1, x2) 6% (y1, y2). It is not difficult to see
that the resulting relation is complete but not transitive (it is a semi-order). SinceX1 and
X2 have only two elements, condition2-graded trivially holds. It is not difficult to check
that we havey1 ≻1 x1 andy2 ≻2 x2, so thatAC1 holds.
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Example 17
X = {x1, y1, z1} × {x2, y2} × {x3, y3}. Let % be the weak order such that:

[(x1, x2, x3), (y1, x2, x3)]

≻

[(x1, x2, y3), (x1, y2, x3), (y1, x2, y3), (y1, y2, x3),

(y1, y2, y3), (z1, x2, x3), (z1, x2, y3), (z1, y2, x3)]

≻

[(z1, y2, y3), (x1, y2, y3)].

We havey1 ≻1 x1 ≻1 z1, x2 ≻2 y2 andx3 ≻3 y3, which shows thatAC1 holds. Con-
ditions 2-graded2 and2-graded3 are trivially satisfied. Condition2-graded1 is violated
since(x1, x2, x3) % (y1, x2, x3), (y1, x2, x3) % (y1, x2, x3), (y1, y2, y3) % (x1, x2, y3) and
(y1, x2, x3) % (x1, x2, y3) but (z1, x2, x3) 6% (y1, x2, x3) and(x1, y2, y3) 6% (x1, x2, y3). 3

Example 18
Let X = {x1, y1} × {x2, y2} × {x3, y3}. Let % be the weak order such that:

[(x1, x2, x3), (x1, y2, x3), (y1, y2, x3)]

≻

[(y1, y2, y3), (y1, x2, x3)]

≻

[(x1, x2, y3), (x1, y2, y3), (y1, x2, y3)].

Condition2-graded trivially holds. We havey2 ≻2 x2 andx3 ≻3 y3, so that conditions
AC12 andAC13 hold. Since(x1, x2, x3) % (y1, y2, x3) and(y1, y2, y3) % (y1, x2, x3) but
(y1, x2, x3) 6% (y1, y2, x3) and(x1, y2, y3) 6% (y1, x2, x3), conditionAC11 is violated. 3

2

Remark 19
It is easy to check that the weak order in Example 18 satisfies the following condition

x % y
and

z % y



 ⇒





(zi, x−i) % y,
or
(xi, z−i) % y,

for all x, y, z ∈ X. This condition is a weakening ofAC1i obtained by requiring that
y = w in the expression ofAC1i (it is equivalent to requiring that all relations%a

i are
complete). It is therefore not possible to weakenAC1i in this way.

Similarly, it is easy to check that the weak order in Example 17 satisfies the weakening
of 2-gradedi obtained by requiring thatz = w in the expression of2-gradedi (and, hence,
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removing the last redundant premise), i.e., for allx, y, z ∈ X and allai ∈ Xi,

x % z
and

(yi, x−i) % z
and

y % z





⇒





(ai, x−i) % z
or

(xi, y−i) % z,

Hence, condition2-gradedi cannot be weakened in this way. •

Finally, as shown by the following example, there are weak orders satisfyingAC1 and
2-graded but violatingOD.

Example 20
Let X = 2R × {0, 1}. We consider the weak order onX such that(x1, x2) % (y1, y2)
if [x2 = 1] or [x2 = 0, y2 = 0 andx1 ≥∗ y1], where≥∗ is any linear order on2R. It is
easy to see that% is a weak order. It violatesOD since the restriction of% to 2R × {0}
is isomorphic to≥∗ on 2R and≥∗ violatesOD. The relation% has a representation in
the noncompensatory model. Indeed, for allx = (x1, 1), takeAx

1 = ∅, Ax
2 = {1} and

F x = {{2}, {1, 2}}. For allx = (x1, 0), takeAx
1 = {y1 ∈ 2R : y1 ≥

∗ x1}, Ax
2 = {1} and

F x = {{1}, {2}, {1, 2}}. It is easy to check that this defines a representation of the weak
order% in the noncompensatory model. Using Lemma 10, this implies that% satisfies
AC1 and2-graded. 3

6 Discussion

This note has proposed a proof of Greco et al. (2004, Theorem 3), in the hope that this
will contribute to popularize this useful result. By the same token, we have analyzed the
relations between the discrete Sugeno integral model and the noncompensatory model
as well as proposed a factorization of the main condition used in Greco et al. (2004,
Theorem 3). Many questions are nevertheless left open. Let us briefly mention here what
seem to us the most important ones.

The result in Greco et al. (2004) is a first step in the systematic study of models using
fuzzy integrals in MCDM. A first and major open problem is to derive a similar result
for the discrete Choquet integral. This appears very difficult and we have no satisfac-
tory answer at this time. A second open problem is to use the above result as a building
block to study particular cases of the discrete Sugeno integral. This was started in Greco
et al. (2004) who showed how to characterize ordered weighted minimum and maximum.
There are nevertheless many other particular cases of the discrete Sugeno integral that
would be worth investigating. A third problem is to investigate assessment protocols of
the various parameters of the discrete Sugeno integral model using the above result and
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conditions. This will clearly require to investigate the uniqueness properties of a represen-
tation in the discrete Sugeno integral model. This will allow to understand better the type
of commensurateness that is implied by the noncompensatory model for weak orders and
the discrete Sugeno integral model5. Finally, it should be mentioned that we have mainly
used here the noncompensatory model for weak orders as a tool for obtaining a proof of
the result of Greco et al. (2004). The noncompensatory model that we introduced can be
extended in many possible directions. This will be the subject of a subsequent paper.
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Greco, S., Matarazzo, B., and Słowiński, R. (1999). The use of rough sets and fuzzy sets in
MCDM. In: T. Gal, T. Hanne, and T. Stewart (Eds.)Multicriteria decision making, Advances
in MCDM models, algorithms, theory and applications, pp. 14.1–14.59. Kluwer, Dordrecht.
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and B. Roy (Eds.)A-MCD-A, Aide Multicrit̀ereà la Décision / Multiple Criteria Decision Aid,

59



A conjoint measurement approach to the discrete Sugeno integral

pp. 117–144. European Commission, Joint Research Centre.
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