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A conjoint measurement approach to the
discrete Sugeno integral

A note on a result of Greco, Matarazzo and Sfoski
Denis Bouyssoy Thierry Marchant Marc Pirlot

Abstract

In a recent paper (European Journal of Operational Resed8, 271-292,
2004), S. Greco, B. Matarazzo and R. Stoski have stated without proof a result
characterizing binary relations on product sets that can be represented using a dis-
crete Sugeno integral. To our knowledge, this is the first result about a fuzzy integral
that applies to non-necessarily homogeneous product sets and only uses a binary
relation on this set as a primitive. This is of direct interest to MCDM. The main pur-
pose of this note is to propose a proof of this important result. Thereby, we study the
connections between the discrete Sugeno integral and a non-numerical model called
the noncompensatory model. We also show that the main condition used in the result
of S. Greco, B. Matarazzo and R. St@wski can be factorized in such a way that
the discrete Sugeno integral model can be viewed as a particular case of a general
decomposable representation.
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A conjoint measurement approach to the discrete Sugeno integral

1 Introduction and motivation

In the area of decision-making under uncertainty, the use of fuzzy integrals, most no-
tably the Choquet integral and its variants, has attracted much attention in recent years.
It is a powerful and elegant way to extend the traditional model of (subjective) expected
utility. Indeed, integrating with respect to a non-necessarily additive measure allows to
weaken the independence hypotheses embodied in the additive representation of prefer-
ences underlying the expected utility model that have often been shown to be violated
in experiments (see the pioneering experimental findings of Allais, 1953 and Ellsberg,
1961). Models based on Choquet integrals have been axiomatized in a variety of ways
(see Gilboa, 1987, Schmeidler, 1989 or Wakker, 1989, Ch. 6. For related works in the
area of decision-making under risk, see Quiggin, 1982 and Yaari, 1987). Recent reviews
of this research trend can be found in Chateauneuf and Cohen (2000), Schmidt (2004),
Starmer (2000) and Sugden (2004).

More recently, still in the area of decision-making under uncertainty, Dubois et al.
(2000b) have suggested to replace the Choguet integral by a Sugeno integral, the latter
being a kind of “ordinal counterpart” of the former, and provided an axiomatic analysis of
this model (special cases of the Sugeno integral are analyzed in Dubois et al., 2001b. For
a related analysis in the area of decision-making under risk, see Hougaard and Keiding,
1996). Dubois et al. (2001a) offer a nice survey of these developments.

Unsurprisingly, people working in the area of multiple criteria decision making (hence-
forth, MCDM) have considered following a similar path to build models weakening the
independence hypotheses embodied in the additive value function model that underlies
most of existing MCDM techniques. The work of Grabisch (1995, 1996) has widely pop-
ularized the use of fuzzy integrals in MCDM. Since then, there has been many develop-
ments in this area. They are well surveyed in Grabisch and Roubens (2000) and Grabisch
and Labreuche (2004) (an alternative approach to weaken the independence hypotheses
of the traditional model that does not use fuzzy integrals is suggested in Gonzales and
Perny, 2005).

It is well known that decision-making under uncertainty and MCDM are related ar-
eas. When there is only a finite number of states of nature, acts may indeed be viewed as
elements of a homogeneous Cartesian product in which the underlying set is the set of all
conseguences (this is the approach advocated and developped in Wakker, 1989, Ch. 4). In
the area of MCDM, a Cartesian product structure is also used to model alternatives. How-
ever, in MCDM the product set is generally not homogeneous: alternatives are evaluated
on several attributes that do not have to be expressed on the same scale.

The recent development of the use of fuzzy integrals in the area of MCDM should not
obscure the fact that there is a major difficulty involved in the transposition of techniques
coming from decision-making under uncertainty to the area of MCDM. In the former area,
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any two consequences can easily be compared: considering constant acts gives a straight-
forward way to transfer a preference relation on the set of acts to the set of consequences.
The situation is vastly different in the area of MCDM. The fact that the underlying product
setis not homogeneous invalidates the idea to consider “constant acts”. Therefore, there is
no obvious way to compare consequences on different attributes. Yet, such comparisons
are a prerequisite for the application of models based on fuzzy integrals.

Traditional conjoint measurement models (see, e.g., Krantz et al., 1971, Ch. 6 or
Wakker, 1989, Ch. 3) lead to compgpeeference differencdsetween consequences. It
is indeed easy to give a meaning to a statement like “the preference difference between
consequences; andy; on attributes is equal to the preference difference between conse-
quences:; andy; on attribute;” (e.g., because they exactly compensate the same prefer-
ence difference expressed on a third attribute). These modelstéizad to comparing in
terms of preference consequences expressed on distinct attributes. Indeed, in the additive
value function model a statement like;"is better than;” is easily seen to be meaning-
less (this is reflected in the fact that, in this model, the origin of the value function on each
attribute may be changed independently on each attribute).

In order to bypass this difficulty, most studies involving fuzzy integrals in the area
of MCDM postulate that the attributes are somehow “commensurate”, while the precise
content of this hypothesis is difficult to analyze and test (see, e.g., Dubois et al., 2000a).
Less frequently, researchers have tried to build attributes so that this commensurability
hypothesis is adequate. This is the path followed in Grabisch et al. (2003) who use the
MACBETH technique (see Bana e Costa and Vansnick, 1994, 1997, 1999) to build such
scales. Such an analysis requires the assessment of a neutral level on each attribute that
is supposed to be “equally attractive”. In practice, the assessment of such levels does
not seem to be an easy task. On a more theoretical level, the precise properties of these
commensurate neutral levels are not easy to devise.

A major breakthrough for the application of fuzzy integrals in MCDM has recently
been done in Greco et al. (2004) who give conditions characterizing binary relations
on product sets that can be represented using a discrete Sugeno integral, using this bi-
nary relation as the only primitive. This is an important result that paves the way to a
measurement-theoretic analysis of fuzzy integrals in the area of MCDM (Greco et al.,
2004 also relate the discrete Sugeno integral model to models based on decision rules that
they have advocated in Greco et al., 1999, 2001). It allows to analyze the discrete Sugeno
integral model without any commensurateness hypothesis, which is of direct interest to
MCDM.

Given the importance of the above result, it is a pity that Greco et al. (2004) offer no
proof of it3. The purpose of this note is to propose such a proof, in the hope that this will

3To our knowledge, Greco, Matarazzo, and Slwski have never presented or published their proof.
It should be mentioned that a related result for the case of ordered categories is presented without proof
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contribute to popularize this result. In doing so, we will also study the relations between
the discrete Sugeno integral model and a non-numerical model called the noncompen-
satory model that is inspired from the work of Bouyssou and Marchant (2006) in the area
of sorting methods in MCDM. We will also show that the main condition used in the result
in Greco et al. (2004) can be factorized in such a way that the discrete Sugeno integral
model can be viewed as a particular case of a general decomposable representation.

This note is organized as follows. The result of Greco et al. (2004) is presented in Sec-
tion 2. The following two sections present our proof: Section 3 is devoted to some inter-
mediate results and Section 4 completes the proof. Section 5 presents examples showing
that the conditions used in the main result are independent. Section 6 briefly concludes
with the mention of some directions for future research.

2 The main result

2.1 Background on the discrete Sugeno integral

Let3 = (51, B, ...,0B,) € [0,1]7. Let(-)s be a permutation o = {1,2,...,p} such
that ), < By, < -+ < B,

A capacity onP is a functionv : 27 — [0, 1] such that:

e [A,Be2PandA C B] = v(A) < v(B).

The capacity is said to be normalized if, furthermoreP) = 1.

The discrete Sugeno integral of the veat@r, fs, . .., 3,) € [0, 1]? w.r.t. the normal-
ized capacity is defined by:

p

Su[ﬁ] = \/ [5(75)(3 A V(A(Z)ﬂ)] )

i=1
whereA;, is the element 02" equal to{ (i), (i +1)s, ..., (p)s}-

We refer the reader to Dubois et al. (2001a) and Marichal (2000a,b) for excellent
surveys of the properties of the discrete Sugeno integral and its several possible equivalent

in Stowihski et al. (2002). This result is a particular case of the one presented in Greco et al. (2004) for
weak orders with a finite number of distinct equivalence classes. A complete and quite simple proof for this
particular case was proposed in Bouyssou and Marchant (2006), using comments made on an early version
of the latter paper by Greco, Matarazzo, and Stski.
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definitions. Let us simply mention here that the reordering of the componefiis ofder
to compute its Sugeno integral can be avoided noting that we may equivalently write:

(1)

2.2 The model

Let 7~ be a binary relation on a séf = [[", X; with n > 2. Elements ofX will
be interpreted as alternatives evaluated on a\set {1,2,...,n} of attributes. The
relations- and ~ are defined as usual. We denote Ky, the set[], ., X;. We
abbreviateNot[z =~ y] asz 7 y.

We say that- has a representation in tdescrete Sugeno integral modéthere are a
normalized capacity on N and functions; : X; — [0, 1] such that, for alk;,y € X,

T Y & S () > S (y),

whereS , uy(2) = Su[(u1(x1), ua(22), . .., up(zn))].

2.3 Axioms and result

A weak orderis a complete and transitive binary relation. Thesef X is said to be
dense inX for the weak ordet: if for all z,y € X, z > y impliesz - z andz - y, for
somez € Y. We say that the weak order on X satisfies therder-denseness condition
(conditionOD) if there is a finite or countably infinite s&t C X that is dense X for

~. Itis well-known (see Fishburn, 1970, p. 27 or Krantz et al., 1971, p. 40) that there is a
real-valued function on X such that, for alk;, y € X,

v Zy e v(r) 2 uy),

if and only if - is a weak order oX satisfying the order-denseness condition.

Remark 1

Let > be a weak order oX. Itis clear that~ is an equivalence and that the elements of
X/~ are linearly ordered. We often abuse terminology and speak of equivalence classes
of 7~ to mean the elements &f/~. WhenX/~ is finite, we speak of the first equivalence
class ofZ- to mean the elements of /~ that precede all others in the induced linear
order. .
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The relation, on X is said to be strongly 2-graded on attribute= N (condition
2*-gradeq) if, for all z,y, z,w € X and alla; € X,

Tz
and (aj,x_;) 7 2

yow p = or (2*-graded))
and (zi,y-i) Z w,

Zrw

where (a;, z_;) denotes the element of obtained fromz € X by replacing itsith
coordinate by;; € X;. The binary relation will be said to ksrongly 2-gradedcondition
2*-graded) if it is strongly 2-graded on all attributes N.

Consider the particular case of conditidfrgraded in which z = w. Suppose that
(z3,y—) Z w. Since(y;,y—;) 7 w and(z;,y—;) 7 w, we know that the levek; is
worse thary; (with respect to the alternative). In this case(z;, z_;) 77 w implies that
(a;,x_;) 7 w, for all ¢; € X;. This means that, once we know that some laygb
better thanr,, there does not exist any level i; that could be worse than;, so that
if (z;,2_;) 7 w the same will be true replacing by any element inX;. This roughly
implies that, for eaclhw € X, we can partition the elements & into at most two cate-
gories of levels: the “satisfactory” ones and the “unsatisfactory” ones with respect to
Condition2*-graded implies these twofold partitions are not unrelated when considering
distinct elementg andw in X. We have named this condition following Bouyssou and
Marchant (2006).

Greco et al. (2004) state the following:

Theorem 2 (Greco et al., 2004, Th. 3, p. 284)

Let- be a binary relation onX. This relation has a representation in the discrete Sugeno
integral model if and only if (iff) it is a weak order satisfying the order-denseness condition
and being strongly 2-graded.

Itis clear that if> has a representation in the discrete Sugeno integral model, then it must
be aweak order satisfyir@D. It is not difficult to show that it must also satisfi~graded.
Indeed, suppose that conditidhgraded s violated, so that, for some y, 2z, w € X and
someq; € X;, we haver = z,y =~ w, z 7~ w, (a;,2_;) 7 zand(z;,y_;) Z w. Using

y Zwand(x;,y-;) Z w, we Obtalnul(xl) < Siuu(w). Because: 2 w, we know that
Stuuy(2) 2 Sty (w), S0 thatS, ., (2) > u;(x;). Sincex 7 z and S, (2) > ui(;),

there is somd € 2V such thati ¢ I, u(I) > S(,(2) andu;(z;) > Sy, (), for all

j € 1. ThisimpliesS, v ((a;, 2_;)) > Siuw(2), SO that(a;, z_;) 77 z, a contradiction.

The rest of this note is mainly devoted to a proof of the converse assertion.
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3 Preliminary results

3.1 Factorization of2*-graded,

Let us first show how conditio2*-graded can be factorized using two conditions.
Let’- be a binary relation oX . We say that_ satisfiesdC1; if, forall z,y, z, w € X,

TZY (zi,2-6) 29,
and = or (AC1)

ZZw (@i, 2-4) Z w.

We say that: satisfiesAC1 if it satisfiesAC1; for all i € N. Condition AC'1 was pro-
posed and studied in Bouyssou and Pirlot (2004). It plays a cebtedhrthe characteriza-

tion of binary relations (that may be incomplete or intransitive) admitting a decomposable
representation of the type:

z ré Y= G[ul(xl)’ R Un((lﬁn)/ ul(y1)7 v 7un(yn)} > Oa

with G being nondecreasing (resp. nonincreasing) in its first (respsiastuments (see
Bouyssou and Pirlot, 2004, Theorem 2). We refer to Bouyssou and Pirlot (2004) for a
detailed interpretation of this condition. Let us simply mention here that conditioh,
independently of any transitivity or completeness propertieg ollows to order the
elements ofX; in such a way that this ordering is compatible with(see Lemma 5
below).

We say that; is 2-graded on attributec N (condition2-graded) if, forall «,y, 2, w €

X and alla; € X,
Tz
and
(yi,xi) Z 2 (ai,z) = 2
and = or (2-graded)

yZw (@3, y-1) Z w.

and
Z W

We say that- is 2-graded(condition 2-graded) if it is 2-graded on all attributése
N. Condition2-graded weakens conditidi-graded adjoining it the additional premise
(yi,z_;) 7 z. Ithas a similar interpretation. We have:

Lemma 3
Let - be a weak order on the séf. Thenz; satisfiesAC1; and2-graded iff it satisfies
2*-graded.
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PROOF

[AC1; & 2-graded = 2*-graded]. Suppose that = z, y 27 w z 77 w. Using AC1,,
r 7 zandy 7 w implies either(y;,x_;) - z or (z;,y—;) 7 w. Inthe latter case,
one of the two conclusions &f-graded holds. In the former case, we have z,
(yi,x—i) 7o 2,y Z wandz 7 w, so that2-graded implies either(a;, z_;) 7~ 2, for all
a; € X;or(z;,y—;) - w, which is the desired conclusion.

[2*-graded = AC1; & 2-graded]. It is clear that2*-graded implies 2-graded since
2-graded is obtained fron2*-graded by adding to it an additional premise. Suppose that
x 7, yandz Z w. SinceZ is complete, we have eithgr- w orw = y. If y 7= w, we
haver > Ty z > w andy - w, so that*-gradedimplies (z;, z_;) 7~ w or (a;,z_;) 7 y,
for all a; € X;. Taklngal = z; shows thatdAC'1; holds in this case. The proof is similar if
it is supposed that - y. 0
Remark 4
When’- is a weak order, conditioAC'1; is equivalent to supposing that, for all y; € X;
and allz_;,w_; € X_; (x5,2-5) = (yi, 2-i) = (@, w_y) 7 (v, w_;), iI.€., that attribute
is weakly separable, using the terminology of Bouyssou and Pirlot (2004).

Indeed suppose that satisfiesAC1; and is such that attributeis not weakly sepa-
rable. Therefore there arg, y; € X; andz_;,w_; € X_; such thatz;, z_;) > (v;,2-)
and (v, w—;) > (z;,w_;). Sincer is reflexive, we havgz;, z_;) = (z;,2-;) and
(yi,w—;) 7= (yi,w—;). Using AC1;, we have eithey; 7-; x; or x; =; y;, SO that either
(i, 2—i) 7 (@i, 2—4) OF (23, w—;) 7 (i, w—;), & contradiction.

Conversely, suppose thaf is complete and transitive and that attributis weakly
separable. Suppose thdt'1; is violated so that, sincg, is complete,(z;,z_;) 7 v,
(ziy2—i) Zw, y = (z,r_;) andw > (z;,2_;), for somex,y, z,w € X. SinceZ is a
weak order, we obtaifw;, z_;) > (z;,z_;) and(z;, z—;) > (x;,2—;), which violates the
weak separability of attribute

We say that a weak orderis weakly separabld, for all i € NV, itis weakly separable
for attributei.

Hence, combining Lemma 3 with Theorem 2 shows that a relation has a representation
in the discrete Sugeno integral model iff it is a weakly separable weak order sati€fiping
and2-graded.

Bouyssou and Pirlot (2004, Propositions 8 and B.3) have shown that, for weak orders
satisfyingOD, weak separability is a necessary and sufficient condition to obtain a general
decomposable representation in which, foralj € X,

x 7y e Flu(z), ... un(zn)] > Flur(y), - un(yn)],
with F' being nondecreasing in all its arguments (see also Greco et al., 2004, Theorem 1).

Hence, conditior2-graded is exactly what must be added to go from this general decom-
posable representation to a representation in the discrete Sugeno integral modehk
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3.2 Traces

Consider an attributee N. We define thdeft marginal traceon attribute; € NV letting,
forall z;,y; € X;, alla_; € X_;and allz € X,

=zl

~

T Zi Y & (i ami) 72 = (25,a-)

Similarly, givena € X, we define the left marginal trace on attribute N with respect
toa € X, letting, for allz;, y; € X; and allz_; € X,

v 5y e (i 2mi) D oa = (4,22) 2 al.

The symmetric and asymmetric parts:of (resp.Z¢) are denoted-; and:-; (resp.~¢
and>-?). Itis clear that—; and ¢ are always reflexive and transitive. They may be
incomplete however.

We note a few useful obvious connections betwegn =, and 2 in the following
lemma.

Lemma5
We have, forall € N, all z,w € X and allz;, y; € X,

1o iy & [o 20y, forall a € X],

i
2. [z w,x; 7oz = (2, 22) 7w

~

3. Furthermore, if is reflexive thenjz; ~; w;, forall j € N] = z ~ w.

4. The relationz; is complete iffAC'1; holds.

PROOF

Parts 1 and 2 easily follow from the definitions. Part 3 follows from Part 2 and the fact
thatw - w. It is obvious that negating the completenesg pfs equivalent to negating
AC1,. O

The following lemma makes precise the structure of the relatighwhen?; is a weak
order satisfyingAC'1; and2-graded.

Lemma 6
Let - be a weak order otX satisfyingAC'1; and2-graded. Then

1. =% is complete for alb € X,
2. x; =0y = [ Zby; forall b e X],

~I

3. ¢ has at most two distinct equivalence classes, foual X,
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4, [z; ~¢ z;andxz; =% y;] = z; ~L 2, forall b € X such thata = b.

5. If a = band bothzz¢ and =-? are nontrivial then the first equivalence classgfis
included in the first equivalence class/of.

PROOF
Parts 1 and 2 follow from Lemma 5 sine&”'1; implies that-; is complete.

Part 3. Suppose that? has at least three distinct equivalence classes. This implies
that(z;,c—;) = a, (yi,c—i) Z a, (yi,d_;) 7 aand(z;, d_;) Z a, for somez;, y;, z; € X;,
somec_;,d_; € X_; and somex € X. Using AC1;, (z;,¢;) = a, (yi,d—;) = a
and (y;, c—;) 7 aimply (z;,d_;) 77 a. Using2-gradeq, (vi,d—;) = a, (zi,d—;) 7 a,
(x;,c-;) 7 aanda Z aimply (y;, c_;) 7~ aor (z;,d_;) = a, a contradiction.

Part 4. Suppose that ~¢ z;, z; =% y;, a = bandz; =% z (the proof for the
casez »? z; being similar). By construction, we have;, w_;) = b, (z;,w_;) Z b,
(z4,t_;) 7 aand(y;, t_;) 7 a. Sincex; ~¢ z;, we must havéz;, ¢t_;) 7 a. Using AC1;,
(zy,w_;) 7 b, (zi,t—;) 77 a and(z;,w_;) Z bimply (z;,t-;) = a. Using2-graded,
(zi,t) 7 a, (i, ) 72 a, (x;,w_;) 7 banda 77 bimply (z;,w_;) Z bor (y;,t;) 7 a,
a contradiction.

Part 5. Suppose that = b, z; =% y; andz; =% z;. Using Part 2, we know that
z 7% x;. Because we know from Part 3 thaf' has at most two equivalence classes,

we must have; ~¢ x;. Using Part 4g = b, z; ~¢ z; andz; =% y; imply z; ~! 2;, @
contradiction. O

Let - be aweak order o satisfyingAC'1; and2-graded. Leti € N. Foralla € X, we

know that eithei-? is trivial or Z¢ has two distinct equivalence classes. DefiifeC X;

as the empty set in the first case and as the elements in the first equivalence class in the
second case. Defir€" letting:

c= J B
{zeX:xZa}
The following lemma studies the properties of the ggts

Lemma 7
Let”- be a weak order oiX satisfyingAC'1 and2-graded. For allz, y, z,w € X and all
i €N,

l.zz-w=CrCCP,

2.{jeN:y; €C;} C{jeN 2; € Ci} = [x; ZF yi forall i € N,

3. 07 C X,
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PROOF
Part 1. We have; € C7? iff z; € B, for somea - 2. Because: 77 w and/ is a weak
order, we have - 2. Henceg; € B¢, for somea - w, so thatr; € C".

Part 2. If2Z# is trivial, we have by definition:; ~7 y;. If -7 is not trivial, it follows
from Part 5 of Lemma 6 that? is equal to the first equivalence classgf. If y; € C7?,
we haver; € C?, so thaty; ~ y;. If y; ¢ C7, then we have; =7 y;, for all 2; € X;.

3 ~1

Part 3. By constructionB! is strictly included inX;. As the setC? is obtained by
taking the union of set8?, the conclusion follows. |
Lemma 8
Let - be a weak order oX satisfyingAC'1; and2-graded. Define, for allz € X, the
setG® C 2V letting I € G* whenever we havgi € N : z; € C7} C [, for somez € X
such that: =~ =. We have, foralk;, y € X,

l.aorzye{ie N:z,eCl} ey,
2. [[eG"andl C J|= J € G*,
zrmy=G"CGY.

PROOF

Part 1. By construction, if 7 y then{i € N : z; € C/} € GY. Let us show that the
reverse implication is true. Suppose thate N : z; € C/} € GY. This implies that
{ieN:zeC!} C{ie N:ux e Cl}, forsomez € X such that 7 y. Using Part 2
ofLemma7{ie N :z e€C/} C{ie N:x € C/}impliesx; =/ z;, foralli € N.
Hencez 7~ y impliesz = .

Part 2 follows from the definition of the set¥'.
Part 3. Suppose that - y and let/ € G*. Let us show that we must havec GY.

By construction/ € G” implies that{i € N : z; € C7} C I, for somez € X such that
z 7~ x. Consider the alternative € X defined in the following way.

o If 2, € C7, letw; = z;. We havew; € CF. Using Part 1 of Lemma 7, we know that
this impliesw; € C?.

o If z; ¢ C7. Using Part 3 of Lemma 7, we know th@f C X;. We takew; to be any
elementinX; \ C}. Because, we know that? C C?, we havew; ¢ C.

By construction we have, for alle N, z; € CF < w; € CFf < w; € C}. Hence, we
have{i € N:z € Cf} ={i e N:w; € C¥} = {i € N : w; € C!}. The first equality
impliesw 7~ x. Using the fact that; is a weak order, we obtaim - y. Hence, we have
{ie N:w; €C/} CIandw z y. Thisimplies! € GY. 0
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3.3 The noncompensatory model for weak orders

The following model is used as an intermediary step in the construction of the discrete
Sugeno integral model. It may be viewed as a kind of “hon-numerical version” of the
discrete Sugeno integral model.

Definition 9
A weak orderz on X has a representation in theoncompensatory modeif for all
z € X, there are sets

1. A7 C X;,forallie N,
2. F* C 2V such that

[[e€Fandl CJe2V]= JeF" (1)

that are such that, for alt, y € X,

Ar C AY
roy= and 2
e CFY
and
rrye{ie Nixe AV} € FY. €))

We often writed(z, y) instead of(i € N : z; € AY}.

The noncompensatory model for weak ordeis inspired from the work of Bouyssou

and Marchant (2006) in the area of sorting model in MCDM. The results in Bouyssou and
Marchant (2006) may be viewed as dealing with the noncompensatory model for weak
orders that have a finite number of equivalent classes (this is in Bouyssou and Marchant
(2006) phrased in the language of “ordered categories”).

The noncompensatory model can be interpreted as follows. Foreacki we isolate
on each attribute a subséf C X, containing the levels on attributehat are satisfactory
for z. In order for an alternative to be at least as good,asmust have evaluations that
are satisfactory fox: on a subset of attributes belongingf6. The subsets of attributes
belonging toF™ are interpreted as subsets that are “sufficiently important” to warrant
preference on.

4The noncompensatory model for weak orders must not be confused with “noncompensatory prefer-
ences” as introduced in Fishburn (1976). Noncompensatory preferences in the sense of Fishburn (1976) are
preferences that result form an “ordinal aggregation” in the context of MCDM that is quite close from the
type of aggregation studied in social choice theory in the vein of Arrow (1963). For a recent analysis of
such preferences, see Bouyssou and Pirlot (2005).
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With this interpretation in mind, the constraint (2) means thatig at least as good
asy then every level that is satisfactory farmust be satisfactory fay. Furthermore,
subsets of attributes that are “sufficiently important” to warrant prefereneenaust also
be “sufficiently important” to warrant preference gnGiven the above interpretation of
F*, the constraint (1) simply says that any superset of a set that is “sufficiently important”
to warrant preference onmust have the same property.

Suppose that 7 y and thaty; € AY, for somei € N. In the noncompensatory
model, we havéz;, z_;) 7 y, for all z; € X;. Itis therefore impossible, starting from
to obtain an alternative that would be at least as goagkasmodifying the evaluation of
x on theith attribute. In other terms, the fact th&tz, y) ¢ FY cannot be compensated by
improving the evaluation of on an attribute iM(z, ). Hence, our name for this model.

A weak order having a representation in the noncompensatory model must satisfy
AC'1 and2-graded. We have:

Lemma 10
If weak orderZ on X has a representation in the noncompensatory model, then it satisfies
AC1 and2-graded.

PROOF

[AC1;]. Suppose that - y, 2 77 w, (2, 2—;) Z yand(z;, z_;) Z w. Itis easy to see that
rryand(z,x) Zy |mpIy z; € A andz; ¢ AY. Similarly, z 7~ w and(z;, z_;) Z w
imply z; € A andz; ¢ AY. Because: is complete, we have eithgr’z w orw 7 y.
Hence, we have eithet! C A or A C AY, a contradiction.

[2-graded]. Suppose that-graded is violated, so that, for some, y, z, w € X and
someq; € X;, (x,2-;) 7 2, (Yi,x—i) 7= 2, (Yi,y—i) 5w, 2 2w, (a;,2—;) 7 2 and
(z;,y—;) 7 w. Using the definition of the noncompensatory model,y_;) =~ w and
(z,y—) Z wimply y; € AY andx; ¢ AY. Similarly, (z;,z_;) == z and(a;,z_;) 7 =2
imply z; € A7 anda; ¢ A?. Sincez 77 w, we haveA? C AY, a contradiction. a

The main result of this section says that, for weak orders, the noncompensatory model is
fully characterized by the conjunction dfC'1 and2-graded. Notice that we may equiv-
alently replace the conjunction gfC'1 and2-graded either by conditio2i-graded or by

the conjunction of weak separability apejraded.

Proposition 11
If a weak order onX satisfiesAC'1 and 2-graded then it has a representation in the
noncompensatory model.

PROOF
DefineA? = C7 and F* = G*. The proof follows from combining Lemmas 7 and &3
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4 Completion of the proof

The main result in this section says that if a weak order has a representation in the non-
compensatory model and has a numerical representation, then it has a representation in
the discrete Sugeno integral model.

Proposition 12
Let”- be a weak order oX. Suppose that can be represented in the noncompensatory
model and that there is a real functieron X such that, for allz, y € X,

v Zy <) 2 v(y). 4)

Thenz has a representation in the discrete Sugeno integral model.

PrROOF

Let 7~ be a weak order representable in the noncompensatory model and such that there
is a real-valued function satisfying (4). We may assume w.l.0.g. that, forale X,

v(x) € [0,1]. Furthermore, if there are minimal elementsXnfor -, we may assume
w.l.0.g. thatv gives the valu@ to these elements. We consider now any such funetion

Foralli € N, definey; letting, for allz; € X,

sup  o(w) if Jw:z; € AY,
ul(xl) — {wEX:IiGA;"} (5)
0 otherwise.

Definey on 2" letting, for all I € 2V,

sup  o(w) ifJw:IeF",
H(I) = { {weX:IeFv} (6)
0 otherwise.

Sincel € F* andJ D I entails] € F, we have thap(J) > u(I). Henceu is a
nondecreasing set function.

Let us show thati(@) = 0. If there is now € X such thatz € [, then we have,
by constructiony(@) = 0. Suppose thaky, = {w € X : @ € F*} # @. From the
definition of the noncompensatory model, it follows that, foralt X and allw € X,
we haver 7 w. Hence, for allv € X4, w is minimal for’-. We therefore have(w) = 0,
forallw € X and, henceu (@) = 0. This shows that defined by (6) is a capacity on
2V It is not necessarily normalized, i.e., we may not have tat) = 1.

Independently of the normalization pf we can compute, for alt € X, S, ()

letting:
Stu (z) = \/ [N(I) A (/\ Uz(%))] . (7

ICN i€l
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It is clear that, for ally € X, Sy, .(y) € [0,1]. Let us show that, for all € X,
St (y) = v(y), which will complete the proof if: happens to be normalized.

Letz,y € X be such that 7 y. This impliesA(z,y) = {i € N : x; € AV} € FV,
Hence, for alli € A(z,y), y € {w € X : 2; € A"}, so thatu;(x;) > v(y). Similarly,
y€{we X : Alx,y) € F*}, so thatu(A(z,y)) > v(y). Hence, forl = A(z,y), we

have
() A (/\ Uz‘(%‘)) > v(y)-

In view of (7), this impliesSy, ., () > v(y). SinceZ is reflexive, this shows that, for all

We now prove that, for alj € X, Sy, (y) < v(y). If yis maximal forz (i.e.,y = z,
for all z € X), we havev(y) > v(z), for all z € X. The definition ofu; and: obviously
implies that they cannot exceed the maximal value oh X. Hence, in this case, we
haves(, . (y) < v(y).

Suppose henceforth thate X is not maximal for-, so thatz > y, for somer € X.
This implies thatA(y,z) = {i € N : y; € Af} ¢ F*. Defined, = |, A(y, 2).
Becaused(y, z) C N, N is a finite set, and’ 7 z implies A(y, ') C A(y, z), there is
an element, € X with z, > y thatis such thati(y, zo) = A, andA(y, z) = A,, for all
z € X such thaty 7 z > y.

We claim the following:

Claim 1: forallj & A, u;(y;) <v(y),

Claim 2: foralll C A, u(I) < v(y).

Proof of Claim 1.Letj ¢ A, sothaty; ¢ A7°. Ifthe set{w € X : y; € A} is empty, we
haveu;(y;) = 0 and the claim trivially holds. Otherwise, let € X such thaty; € A.

If w > z, we haveA;” C Ajo, so thaty; € A;’ impliesy; € Ajo, a contradiction. If
20 2w =y, we know thatA(y, w) = A(y, z0). This is contradictory sincg; € A} and
y; ¢ A. Hence, when ¢ A,, we must have - w, for allw € X such thaty; € AY.

This implies thaty;(y;) = SUD {e Xy, ev} v(w) < wv(y), forall j ¢ A,.

Proof of Claim 2.Let I C A,. If the set{w € X : I € I} is empty, we have (/) = 0
and the claim follows. Otherwise, lat € X such that/ € F™. Suppose tha > z.
This impliesF™ C F*, so that/ € F*. Becausd C A,, we obtainA, € F*. This
is contradictory since, > y implies thatA, = A(y,z) ¢ F*. Suppose now that
2 77w > y. We haveA(y,w) = A, ¢ F*. But, sincel € F* andl C A,, we obtain
A, € F, a contradiction. Hence, for alt € X such that/ € F**, we havey 7 w. This

implies (1) = supg,ex.repvy v(w) < v(y).
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Using Claims 1 and 2, we establish thaf, ., (y) < v(y) for anyy € X that is not
maximal. Let/ C N. We distinguish two cases in order to compute

w(I) A (/\ ui(xi)> .

iel

1. If I'is not included inA,, we know that there ig € I such thatj ¢ A,. Hence,
using Claim 1u;(y;) < v(y) so thatu(I) A (/\iel ui(yi)) < u(y).

2. If I'is included in4,, using Claim 2, we have(I) < v(y). Hence, we know that
(D) A (Nieg walyi) < o(y)-

Hence, for alll C N, we haveu(I) A (A;e; ui(yi)) < v(y), S0 thatS(, . (y) < v(y).
This proves that, for alj € X, Sy, (y) = v(y).

It remains to show that we may always build a representation in the discrete Sugeno
integral model using aormalizedcapacity, i.e., a capacitysuch that/(N) = 1.

Using the above construction, the valuedfN) is obtained using (6). We have
W(N) = sup,ey v(w), since for allw € X, N € F. If the weak orderz is not
trivial, we haveu(N) > 0. In order to obtain a representation leading to a normalized
capacity, it suffices to apply the above construction to the funetiobtained by dividing
v by u(N). If the weak order is trivial, it is easy to see that it has a representation in the
noncompensatory model such that, forat X and alli € N, A? = X; andF* = {N}.
Defining, for alli € N and allz; € X;, u;(z;) = 1, p(N) = 1 andpu(A) = 0, for all
A C N, leads to a representation of this trivial weak order in the discrete Sugeno integral
model. O

The sufficiency proof of Theorem 2 follows from combining Lemma 3 with Proposi-
tions 11 and 12. This amounts to characterizing the discrete Sugeno integral model by the
conjunction of any of the following three equivalent sets of conditions:

o completeness, transitivithD, AC1 and2-graded,
o completeness, transitivit)D, weak separability angtgraded,

o completeness, transitivit®D and2*-graded.

The examples in the following section show no condition in the first set is redundant.

Remark 13
Consider a nontrivial weak order on X that satisfies the hypotheses of Proposition 12.
The proof of this proposition establishes tlaaty functionv : X — [0, 1] satisfying (4)
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and giving a valud to the minimal elements iX for = (if any) can be used to define

a representation in the Sugeno integral model. The functipasd the (non necessarily
normalized) capacity, used in this representation can be defined on the basisising

(5) and (6). Furthermore, as shown in this proof, (5) and (6) can be viewiedersion
formulasfor the discrete Sugeno integral model in the following sense. If we know the
value of Sy, ., (), for all z € X, without knowing the functiong andu;, it is possible

to use (5) and (6) to build functions and a capacity: that allow to reconstruct all these
values using the discrete Sugeno integral formula (7). o

5 Independence of conditions

Proposition 14
Let’- be a binary relation onX. The following conditions are independent:

1. 7~ is complete,
2. 7 is transitive,
3. 7 satisfiesAC1,
4. = is 2-graded.

PROOF
We provide the required four examples.

Example 15
Let X = {x1, 11} % {2,92}. LetZ be identical to the weak order

(y17y2) - [($1,y2), (ylvx2)] ~ (331,332), %

except that we have removed two arcs frgmso as to havéz;,ys) 7 (y1,z2) and
(y1,m2) Z (z1,y2). Itis clear that- is transitive but is not complete. Sinég and X,
have only two elements, conditi@graded trivially holds. It is not difficult to check that
we havey; > x; andys >o x9, SO thatAC'1 holds.

Example 16

Let X = {z1,y1} x {2,92}. LetZ; be identical to the trivial weak order except that we
have removed one arc fropy, so as to havér,, x9) 7 (y1,v2). Itis not difficult to see
that the resulting relation is complete but not transitive (it is a semi-order). Sinead
X, have only two elements, conditi@agraded trivially holds. It is not difficult to check
that we havey, = z; andy, >5 x5, S0 thatAC1 holds.
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Example 17
X ={z1,y1, 21} X {x2, 42} x {x3,y3}. Let = be the weak order such that:

(21,22, 73), (Y1, T2, 73)]
—
[(961,962,113)7 (45173/27303)7 (y1,l‘2-,y3), (91,y2,$3)»
(y1,y27y3), (2’1,962,333), (21,«@2,93)7 (217112,1‘3)]
-
[(21,92,93), (1, Y2, y3)]-
We havey; =1 x1 =1 21, 3 =2 Yo andxzs =3 y3, Which shows thatdC'1 holds. Con-
ditions 2-graded and2-graded are trivially satisfied. Conditior2-gradeq is violated
since(zy, x2, x3) 27 (1, T2, 23), (Y1, T2, T3) 22 (Y1, T2, 23), (Y1, Y2, Y3) Z (21,22, y3) and
(y1, 79, 3) Z (21, %9,y3) UL (21, 29, 23) Z (y1, o, 73) ANA (21, Y2, Y3) Z (21,22, y3). ©

Example 18
Let X = {x1, 1} X {z2, 92} X {z3,y3}. Let be the weak order such that:

[(z1, 72, 23), (21, Y2, T3), (Y1, Y2, T3)]
—
[(y1,Y2,93), (Y1, T2, 23)]
—
(21,22, 43), (21,92, Y3), (1, 22, y3)].-

Condition2-graded trivially holds. We havg, =, z, andz; =3 3, SO that conditions
AOlQ andACl3 hold. Since<$1,$2,l'3) i: <y1, yQ,.Tg) and(yl., Ya, y3) i: (yl; g, .733) but
(y1, 2, 23) 7 (y1, Y2, 23) @nd(z1, y2,y3) Z (y1, 2, x3), conditionAC1, is violated. <&

O
Remark 19
It is easy to check that the weak order in Example 18 satisfies the following condition
Ty (zi,724) Z Y,
and » =< or
22y (i, 224) Z Y,

for all z,y,2 € X. This condition is a weakening ofC'1; obtained by requiring that
y = w in the expression ofiC1; (it is equivalent to requiring that all relatiors? are
complete). Itis therefore not possible to weakéfi1; in this way.

Similarly, it is easy to check that the weak order in Example 17 satisfies the weakening
of 2-graded obtained by requiring that = w in the expression di-graded (and, hence,
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removing the last redundant premise), i.e., foral}, z € X and allg; € X,

Tz
and (ai,x_;) 7 2
(Visz—i) Tz ¢ = or
and (Ti,y-i) Z 2,
yzz
Hence, conditior2-graded cannot be weakened in this way. o

Finally, as shown by the following example, there are weak orders satisfiigand
2-graded but violatingdD.

Example 20

Let X = 2% x {0,1}. We consider the weak order oi such that(z;, z5) = (y1,2)

if [zo = 1] or [z, = 0, y» = 0 andz; >* y;], where>* is any linear order on¥. It is

easy to see that is a weak order. It violate®D since the restriction of; to 2% x {0}

is isomorphic to>* on 2% and >* violatesOD. The relationz has a representation in
the noncompensatory model. Indeed, foraak= (zy,1), take A7 = @, A5 = {1} and
F*={{2},{1,2}}. Forallz = (z1,0), take Ay = {y, € 2% : y; >* 2,}, A3 = {1} and

Fr ={{1},{2},{1,2}}. Itis easy to check that this defines a representation of the weak
order’Z in the noncompensatory model. Using Lemma 10, this implies:thaatisfies
AC'1 and2-graded. &

6 Discussion

This note has proposed a proof of Greco et al. (2004, Theorem 3), in the hope that this
will contribute to popularize this useful result. By the same token, we have analyzed the
relations between the discrete Sugeno integral model and the noncompensatory model
as well as proposed a factorization of the main condition used in Greco et al. (2004,
Theorem 3). Many questions are nevertheless left open. Let us briefly mention here what
seem to us the most important ones.

The result in Greco et al. (2004) is a first step in the systematic study of models using
fuzzy integrals in MCDM. A first and major open problem is to derive a similar result
for the discrete Choquet integral. This appears very difficult and we have no satisfac-
tory answer at this time. A second open problem is to use the above result as a building
block to study particular cases of the discrete Sugeno integral. This was started in Greco
et al. (2004) who showed how to characterize ordered weighted minimum and maximum.
There are nevertheless many other particular cases of the discrete Sugeno integral that
would be worth investigating. A third problem is to investigate assessment protocols of
the various parameters of the discrete Sugeno integral model using the above result and
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conditions. This will clearly require to investigate the uniqueness properties of a represen-
tation in the discrete Sugeno integral model. This will allow to understand better the type
of commensurateness that is implied by the noncompensatory model for weak orders and
the discrete Sugeno integral moéeFinally, it should be mentioned that we have mainly
used here the noncompensatory model for weak orders as a tool for obtaining a proof of
the result of Greco et al. (2004). The noncompensatory model that we introduced can be
extended in many possible directions. This will be the subject of a subsequent paper.
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