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In a recent paper (European Journal of Operational Research, 158, 271-292, 2004), S. Greco, B. Matarazzo and R. Słowiński have stated without proof a result characterizing binary relations on product sets that can be represented using a discrete Sugeno integral. To our knowledge, this is the first result about a fuzzy integral that applies to non-necessarily homogeneous product sets and only uses a binary relation on this set as a primitive. This is of direct interest to MCDM. The main purpose of this note is to propose a proof of this important result. Thereby, we study the connections between the discrete Sugeno integral and a non-numerical model called the noncompensatory model. We also show that the main condition used in the result of S. Greco, B. Matarazzo and R. Słowiński can be factorized in such a way that the discrete Sugeno integral model can be viewed as a particular case of a general decomposable representation.

Introduction and motivation

In the area of decision-making under uncertainty, the use of fuzzy integrals, most notably the Choquet integral and its variants, has attracted much attention in recent years. It is a powerful and elegant way to extend the traditional model of (subjective) expected utility. Indeed, integrating with respect to a non-necessarily additive measure allows to weaken the independence hypotheses embodied in the additive representation of preferences underlying the expected utility model that have often been shown to be violated in experiments (see the pioneering experimental findings of [START_REF] Allais | Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'école américaine[END_REF][START_REF] Ellsberg | Risk, ambiguity and the Savage axioms[END_REF]. Models based on Choquet integrals have been axiomatized in a variety of ways (see [START_REF] Gilboa | Expected utility with purely subjective non-additive probabilities[END_REF][START_REF] Schmeidler | Subjective probability and expected utility without additivity[END_REF]or Wakker, 1989, Ch. 6. For related works in the area of decision-making under risk, see [START_REF] Quiggin | A theory of anticipated utility[END_REF][START_REF] Yaari | The dual theory of choice under risk[END_REF]. Recent reviews of this research trend can be found in [START_REF] Chateauneuf | Choquet expected utility model: A new approach to individual behavior under uncertainty and to social welfare[END_REF], [START_REF] Schmidt | Alternatives to expected utility: Some formal theories[END_REF], [START_REF] Starmer | Developments in non-expected utility theory: The hunt for a descriptive theory of choice under risk[END_REF] and [START_REF] Sugden | Alternatives to expected utility: Foundations[END_REF].

More recently, still in the area of decision-making under uncertainty, [START_REF] Dubois | Qualitative decision theory with Sugeno integrals[END_REF] have suggested to replace the Choquet integral by a Sugeno integral, the latter being a kind of "ordinal counterpart" of the former, and provided an axiomatic analysis of this model (special cases of the Sugeno integral are analyzed in [START_REF] Dubois | Decision-theoretic foundations of qualitative possibility theory[END_REF]. For a related analysis in the area of decision-making under risk, see [START_REF] Hougaard | Representation of preferences on fuzzy measures by a fuzzy integral[END_REF]. Dubois et al. (2001a) offer a nice survey of these developments.

Unsurprisingly, people working in the area of multiple criteria decision making (henceforth, MCDM) have considered following a similar path to build models weakening the independence hypotheses embodied in the additive value function model that underlies most of existing MCDM techniques. The work of [START_REF] Grabisch | Fuzzy integral in multicriteria decision making[END_REF][START_REF] Grabisch | The application of fuzzy integrals to multicriteria decision making[END_REF] has widely popularized the use of fuzzy integrals in MCDM. Since then, there has been many developments in this area. They are well surveyed in [START_REF] Grabisch | Application of the Choquet integral in multicriteria decision making[END_REF] and [START_REF] Grabisch | Fuzzy measures and integrals in MCDA[END_REF] (an alternative approach to weaken the independence hypotheses of the traditional model that does not use fuzzy integrals is suggested in [START_REF] Gonzales | GAI networks for decision making under cetainty[END_REF].

It is well known that decision-making under uncertainty and MCDM are related areas. When there is only a finite number of states of nature, acts may indeed be viewed as elements of a homogeneous Cartesian product in which the underlying set is the set of all consequences (this is the approach advocated and developped in Wakker, 1989, Ch. 4). In the area of MCDM, a Cartesian product structure is also used to model alternatives. However, in MCDM the product set is generally not homogeneous: alternatives are evaluated on several attributes that do not have to be expressed on the same scale.

The recent development of the use of fuzzy integrals in the area of MCDM should not obscure the fact that there is a major difficulty involved in the transposition of techniques coming from decision-making under uncertainty to the area of MCDM. In the former area, any two consequences can easily be compared: considering constant acts gives a straightforward way to transfer a preference relation on the set of acts to the set of consequences. The situation is vastly different in the area of MCDM. The fact that the underlying product set is not homogeneous invalidates the idea to consider "constant acts". Therefore, there is no obvious way to compare consequences on different attributes. Yet, such comparisons are a prerequisite for the application of models based on fuzzy integrals.

Traditional conjoint measurement models (see, e.g., [START_REF] Krantz | Additive and polynomial representations[END_REF], Ch. 6 or Wakker, 1989, Ch. 3) lead to compare preference differences between consequences. It is indeed easy to give a meaning to a statement like "the preference difference between consequences x i and y i on attribute i is equal to the preference difference between consequences x j and y j on attribute j" (e.g., because they exactly compensate the same preference difference expressed on a third attribute). These models do not lead to comparing in terms of preference consequences expressed on distinct attributes. Indeed, in the additive value function model a statement like "x i is better than x j " is easily seen to be meaningless (this is reflected in the fact that, in this model, the origin of the value function on each attribute may be changed independently on each attribute).

In order to bypass this difficulty, most studies involving fuzzy integrals in the area of MCDM postulate that the attributes are somehow "commensurate", while the precise content of this hypothesis is difficult to analyze and test (see, e.g., Dubois et al., 2000a). Less frequently, researchers have tried to build attributes so that this commensurability hypothesis is adequate. This is the path followed in [START_REF] Grabisch | On the extension of pseudo-boolean functions for the aggregation of interacting criteria[END_REF] who use the MACBETH technique (see Bana e [START_REF] Bana E Costa | MACBETH: An interactive path towards the construction of cardinal value functions[END_REF][START_REF] Bana E Costa | Applications of the MACBETH approach in the framework of an additive aggregation model[END_REF], 1999) to build such scales. Such an analysis requires the assessment of a neutral level on each attribute that is supposed to be "equally attractive". In practice, the assessment of such levels does not seem to be an easy task. On a more theoretical level, the precise properties of these commensurate neutral levels are not easy to devise.

A major breakthrough for the application of fuzzy integrals in MCDM has recently been done in [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF] who give conditions characterizing binary relations on product sets that can be represented using a discrete Sugeno integral, using this binary relation as the only primitive. This is an important result that paves the way to a measurement-theoretic analysis of fuzzy integrals in the area of MCDM [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF] also relate the discrete Sugeno integral model to models based on decision rules that they have advocated in [START_REF] Greco | The use of rough sets and fuzzy sets in MCDM[END_REF][START_REF] Greco | Conjoint measurement and rough set approach for multicriteria sorting problems in presence of ordinal criteria[END_REF]. It allows to analyze the discrete Sugeno integral model without any commensurateness hypothesis, which is of direct interest to MCDM.

Given the importance of the above result, it is a pity that [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF] offer no proof of it 3 . The purpose of this note is to propose such a proof, in the hope that this will contribute to popularize this result. In doing so, we will also study the relations between the discrete Sugeno integral model and a non-numerical model called the noncompensatory model that is inspired from the work of [START_REF] Bouyssou | An axiomatic approach to noncompensatory sorting methods in MCDM, II: The general case[END_REF] in the area of sorting methods in MCDM. We will also show that the main condition used in the result in [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF] can be factorized in such a way that the discrete Sugeno integral model can be viewed as a particular case of a general decomposable representation. This note is organized as follows. The result of [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF] is presented in Section 2. The following two sections present our proof: Section 3 is devoted to some intermediate results and Section 4 completes the proof. Section 5 presents examples showing that the conditions used in the main result are independent. Section 6 briefly concludes with the mention of some directions for future research.

The main result

Background on the discrete Sugeno integral

Let β = (β 1 , β 2 , . . . , β p ) ∈ [0, 1] p . Let (•) β be a permutation on P = {1, 2, . . . , p} such that β (1) β ≤ β (2) β ≤ • • • ≤ β (p) β .
A capacity on P is a function ν : 2 P → [0, 1] such that:

• ν(∅) = 0, • [A, B ∈ 2 P and A ⊆ B] ⇒ ν(A) ≤ ν(B).
The capacity ν is said to be normalized if, furthermore, ν(P ) = 1.

The discrete Sugeno integral of the vector (β 1 , β 2 , . . . , β p ) ∈ [0, 1] p w.r.t. the normalized capacity ν is defined by:

S ν [β] = p i=1 β (i) β ∧ ν(A (i) β ) ,
where A (i) β is the element of 2 P equal to {(i) β , (i + 1) β , . . . , (p) β }.

We refer the reader to Dubois et al. (2001a) and Marichal (2000a,b) for excellent surveys of the properties of the discrete Sugeno integral and its several possible equivalent in [START_REF] Słowiński | Axiomatization of utility, outranking and decision-rule preference models for multiple-criteria classification problems under partial inconsistency with the dominance principle[END_REF]. This result is a particular case of the one presented in [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF] for weak orders with a finite number of distinct equivalence classes. A complete and quite simple proof for this particular case was proposed in [START_REF] Bouyssou | An axiomatic approach to noncompensatory sorting methods in MCDM, II: The general case[END_REF], using comments made on an early version of the latter paper by Greco, Matarazzo, and Słowiński. definitions. Let us simply mention here that the reordering of the components of β in order to compute its Sugeno integral can be avoided noting that we may equivalently write:

S ν [β] = T ⊆P ν(T ) ∧ i∈T β i .

The model

Let be a binary relation on a set X = n i=1 X i with n ≥ 2. Elements of X will be interpreted as alternatives evaluated on a set N = {1, 2, . . . , n} of attributes. The relations ≻ and ∼ are defined as usual. We denote by X -i the set j∈N\{i} X j . We abbreviate Not[ x y ] as x y.

We say that has a representation in the discrete Sugeno integral model if there are a normalized capacity µ on N and functions u i :

X i → [0, 1] such that, for all x, y ∈ X, x y ⇔ S µ,u (x) ≥ S µ,u (y), where S µ,u (x) = S µ [(u 1 (x 1 ), u 2 (x 2 ), . . . , u n (x n ))].

Axioms and result

A weak order is a complete and transitive binary relation. The set Y ⊆ X is said to be dense in X for the weak order if for all x, y ∈ X, x ≻ y implies x z and z y, for some z ∈ Y . We say that the weak order on X satisfies the order-denseness condition (condition OD) if there is a finite or countably infinite set Y ⊆ X that is dense in X for . It is well-known (see [START_REF] Fishburn | Utility theory for decision-making[END_REF], p. 27 or Krantz et al., 1971, p. 40) that there is a real-valued function v on X such that, for all x, y ∈ X,

x y ⇔ v(x) ≥ v(y),
if and only if is a weak order on X satisfying the order-denseness condition.

Remark 1

Let be a weak order on X. It is clear that ∼ is an equivalence and that the elements of X/∼ are linearly ordered. We often abuse terminology and speak of equivalence classes of to mean the elements of X/∼. When X/∼ is finite, we speak of the first equivalence class of to mean the elements of X/∼ that precede all others in the induced linear order.

•

The relation on X is said to be strongly 2-graded on attribute i ∈ N (condition 2 * -graded i ) if, for all x, y, z, w ∈ X and all a i ∈ X i ,

x z and y w and z w

           ⇒    (a i , x -i ) z or (x i , y -i ) w, (2 * -graded i )
where (a i , x -i ) denotes the element of X obtained from x ∈ X by replacing its ith coordinate by a i ∈ X i . The binary relation will be said to be strongly 2-graded (condition 2 * -graded) if it is strongly 2-graded on all attributes i ∈ N.

Consider the particular case of condition 2 * -graded i in which z = w. Suppose that (x i , y -i ) w. Since (y i , y -i ) w and (x i , y -i ) w, we know that the level x i is worse than y i (with respect to the alternative w). In this case,

(x i , x -i ) w implies that (a i , x -i )
w, for all a i ∈ X i . This means that, once we know that some level y i is better than x i , there does not exist any level in X i that could be worse than x i , so that if (x i , x -i ) w the same will be true replacing x i by any element in X i . This roughly implies that, for each w ∈ X, we can partition the elements of X i into at most two categories of levels: the "satisfactory" ones and the "unsatisfactory" ones with respect to w. Condition 2 * -graded i implies these twofold partitions are not unrelated when considering distinct elements z and w in X. We have named this condition following [START_REF] Bouyssou | An axiomatic approach to noncompensatory sorting methods in MCDM, II: The general case[END_REF]. [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF] state the following:

Theorem 2 (Greco et al., 2004, Th. 3

, p. 284) Let be a binary relation on X. This relation has a representation in the discrete Sugeno integral model if and only if (iff) it is a weak order satisfying the order-denseness condition and being strongly 2-graded.

It is clear that if has a representation in the discrete Sugeno integral model, then it must be a weak order satisfying OD. It is not difficult to show that it must also satisfy 2 * -graded. Indeed, suppose that condition 2 * -graded i is violated, so that, for some x, y, z, w ∈ X and some a i ∈ X i , we have x z, y w, z w, (a i , x -i ) z and (x i , y -i ) w. Using y w and (x i , y -i ) w, we obtain

u i (x i ) < S µ,u (w). Because z w, we know that S µ,u (z) ≥ S µ,u (w), so that S µ,u (z) > u i (x i ). Since x z and S µ,u (z) > u i (x i ), there is some I ∈ 2 N such that i / ∈ I, µ(I) ≥ S µ,u (z) and u j (x j ) ≥ S µ,u (z), for all j ∈ I. This implies S µ,u ((a i , x -i )) ≥ S µ,u (z), so that (a i , x -i ) z, a contradiction.
The rest of this note is mainly devoted to a proof of the converse assertion.

Preliminary results

Factorization of 2 * -graded i

Let us first show how condition 2 * -graded i can be factorized using two conditions.

Let be a binary relation on X. We say that satisfies AC1 i if, for all x, y, z, w ∈ X, x y and z w

   ⇒    (z i , x -i ) y, or (x i , z -i ) w. (AC1 i )
We say that satisfies AC1 if it satisfies AC1 i for all i ∈ N. Condition AC1 was proposed and studied in [START_REF] Bouyssou | Preferences for multiattributed alternatives: Traces, dominance, and numerical representations[END_REF]. It plays a central rôle in the characterization of binary relations (that may be incomplete or intransitive) admitting a decomposable representation of the type:

x y ⇔ G[u 1 (x 1 ), . . . , u n (x n ), u 1 (y 1 ), . . . , u n (y n )] ≥ 0,
with G being nondecreasing (resp. nonincreasing) in its first (resp. last) n arguments (see Bouyssou and Pirlot, 2004, Theorem 2). We refer to [START_REF] Bouyssou | Preferences for multiattributed alternatives: Traces, dominance, and numerical representations[END_REF] for a detailed interpretation of this condition. Let us simply mention here that condition AC1 i , independently of any transitivity or completeness properties of , allows to order the elements of X i in such a way that this ordering is compatible with (see Lemma 5 below).

We say that is 2-graded on attribute i ∈ N (condition 2-graded i ) if, for all x, y, z, w ∈ X and all a i ∈ X i , x z and (y i , x -i ) z and y w and z w

                   ⇒    (a i , x -i ) z or (x i , y -i ) w. (2-graded i )
We say that is 2-graded (condition 2-graded) if it is 2-graded on all attributes i ∈ N. Condition 2-graded weakens condition 2 * -graded adjoining it the additional premise (y i , x -i ) z. It has a similar interpretation. We have:

Lemma 3

Let be a weak order on the set X. Then satisfies AC1 i and 2-graded i iff it satisfies 2 * -graded i .

PROOF [AC1 i & 2-graded i ⇒ 2 * -graded i ]. Suppose that x z, y w z w. Using AC1 i , x
z and y w implies either (y i , x -i ) z or (x i , y -i ) w. In the latter case, one of the two conclusions of 2 * -graded i holds. In the former case, we have x z, (y i , x -i ) z, y w and z w, so that 2-graded i implies either (a i , x -i ) z, for all a i ∈ X i or (x i , y -i ) w, which is the desired conclusion.

[2 * -graded i ⇒ AC1 i & 2-graded i ].
It is clear that 2 * -graded i implies 2-graded i since 2-graded i is obtained from 2 * -graded i by adding to it an additional premise. Suppose that x y and z w. Since is complete, we have either y w or w y. If y w, we have x y, z w and y w, so that 2 * -graded i implies (x i , z -i ) w or (a i , x -i ) y, for all a i ∈ X i . Taking a i = z i shows that AC1 i holds in this case. The proof is similar if it is supposed that w y.

2 Remark 4 When is a weak order, condition AC1 i is equivalent to supposing that, for all x i , y i ∈ X i and all

z -i , w -i ∈ X -i (x i , z -i ) ≻ (y i , z -i ) ⇒ (x i , w -i ) (y i , w -i ), i.e.
, that attribute i is weakly separable, using the terminology of [START_REF] Bouyssou | Preferences for multiattributed alternatives: Traces, dominance, and numerical representations[END_REF]. Indeed suppose that satisfies AC1 i and is such that attribute i is not weakly separable. Therefore there are x i , y i ∈ X i and z

-i , w -i ∈ X -i such that (x i , z -i ) ≻ (y i , z -i ) and (y i , w -i ) ≻ (x i , w -i ). Since is reflexive, we have (x i , z -i ) (x i , z -i ) and (y i , w -i ) (y i , w -i ). Using AC1 i , we have either y i i x i or x i i y i , so that either (y i , z -i ) (x i , z -i ) or (x i , w -i ) (y i , w -i ), a contradiction.
Conversely, suppose that is complete and transitive and that attribute i is weakly separable. Suppose that AC1 i is violated so that, since is complete, (x i , x -i ) y, (z i , z -i ) w, y ≻ (z i , x -i ) and w ≻ (x i , z -i ), for some x, y, z, w ∈ X. Since is a weak order, we obtain (x i , x -i ) ≻ (z i , x -i ) and (z i , z -i ) ≻ (x i , z -i ), which violates the weak separability of attribute i.

We say that a weak order is weakly separable if, for all i ∈ N, it is weakly separable for attribute i.

Hence, combining Lemma 3 with Theorem 2 shows that a relation has a representation in the discrete Sugeno integral model iff it is a weakly separable weak order satisfying OD and 2-graded. Bouyssou and Pirlot (2004, Propositions 8 and B.3) have shown that, for weak orders satisfying OD, weak separability is a necessary and sufficient condition to obtain a general decomposable representation in which, for all x, y ∈ X,

x y ⇔ F [u 1 (x 1 ), . . . , u n (x n )] ≥ F [u 1 (y 1 ), . . . , u n (y n )],
with F being nondecreasing in all its arguments (see also [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF], Theorem 1). Hence, condition 2-graded is exactly what must be added to go from this general decomposable representation to a representation in the discrete Sugeno integral model.

•

Traces

Consider an attribute i ∈ N. We define the left marginal trace on attribute i ∈ N letting, for all x i , y i ∈ X i , all a -i ∈ X -i and all z ∈ X,

x i i y i ⇔ [(y i , a -i ) z ⇒ (x i , a -i ) z].
Similarly, given a ∈ X, we define the left marginal trace on attribute i ∈ N with respect to a ∈ X, letting, for all x i , y i ∈ X i and all z -i ∈ X -i ,

x i a i y i ⇔ [(y i , z -i ) a ⇒ (x i , z -i ) a].
The symmetric and asymmetric parts of i (resp. a i ) are denoted ∼ i and ≻ i (resp. ∼ a i and ≻ a i ). It is clear that i and a i are always reflexive and transitive. They may be incomplete however.

We note a few useful obvious connections between a i , i and in the following lemma.

Lemma 5

We have, for all i ∈ N, all z, w ∈ X and all x i , y i ∈ X i , 1.

x i i y i ⇔ [x i a i y i , for all a ∈ X], 2. [z w, x i i z i ] ⇒ (x i , z -i ) w.
3. Furthermore, if is reflexive then, [z j ∼ j w j , for all j ∈ N] ⇒ z ∼ w.

The relation

i is complete iff AC1 i holds.
PROOF Parts 1 and 2 easily follow from the definitions. Part 3 follows from Part 2 and the fact that w w. It is obvious that negating the completeness of i is equivalent to negating AC1 i .

2

The following lemma makes precise the structure of the relations a i when is a weak order satisfying AC1 i and 2-graded i .

Lemma 6

Let be a weak order on X satisfying AC1 i and 2-graded i . Then 1. a i is complete for all a ∈ X,

2. x i ≻ a i y i ⇒ [x i b i y i for all b ∈ X],
3. a i has at most two distinct equivalence classes, for all a ∈ X,

4. [x i ∼ a i z i and x i ≻ a i y i ] ⇒ x i ∼ b i z i , for all b ∈ X such that a b.
5. If a b and both a i and b i are nontrivial then the first equivalence class of a i is included in the first equivalence class of b i . PROOF Parts 1 and 2 follow from Lemma 5 since AC1 i implies that i is complete.

Part 3. Suppose that a i has at least three distinct equivalence classes. This implies that

(x i , c -i ) a, (y i , c -i ) a, (y i , d -i ) a and (z i , d -i ) a, for some x i , y i , z i ∈ X i , some c -i , d -i ∈ X -i and some a ∈ X. Using AC1 i , (x i , c -i ) a, (y i , d -i ) a and (y i , c -i ) a imply (x i , d -i ) a. Using 2-graded i , (y i , d -i ) a, (x i , d -i ) a, (x i , c -i ) a and a a imply (y i , c -i ) a or (z i , d -i ) a, a contradiction. Part 4. Suppose that x i ∼ a i z i , x i ≻ a i y i , a b and x i ≻ b i z i (the proof for the case z i ≻ b i x i being similar). By construction, we have (x i , w -i ) b, (z i , w -i ) b, (x i , t -i ) a and (y i , t -i ) a. Since x i ∼ a i z i , we must have (z i , t -i ) a. Using AC1 i , (x i , w -i ) b, (z i , t -i ) a and (z i , w -i ) b imply (x i , t -i ) a. Using 2-graded i , (z i , t -i ) a, (x i , t -i ) a, (x i , w -i ) b and a b imply (z i , w -i ) b or (y i , t -i ) a, a contradiction. Part 5. Suppose that a b, x i ≻ a i y i and z i ≻ b i x i .
Using Part 2, we know that z i a i x i . Because we know from Part 3 that a i has at most two equivalence classes, we must have z i ∼ a i x i . Using Part 4, a b, z i ∼ a i x i and x i ≻ a i y i imply z i ∼ b i x i , a contradiction.

2

Let be a weak order on X satisfying AC1 i and 2-graded i . Let i ∈ N. For all a ∈ X, we know that either a i is trivial or a i has two distinct equivalence classes. Define B a i ⊂ X i as the empty set in the first case and as the elements in the first equivalence class in the second case. Define C a i letting:

C a i = {x∈X:x a} B x i .
The following lemma studies the properties of the sets C a i .

Lemma 7

Let be a weak order on X satisfying AC1 and 2-graded. For all x, y, z, w ∈ X and all i ∈ N,

1. z w ⇒ C z i ⊆ C w i , 2. {j ∈ N : y j ∈ C z j } ⊆ {j ∈ N : x j ∈ C z j } ⇒ [x i z i y i for all i ∈ N], 3. C x i X i . PROOF Part 1. We have x i ∈ C z i iff x i ∈ B a i
, for some a z. Because z w and is a weak order, we have a z. Hence, x i ∈ B a i , for some a w, so that x i ∈ C w i . Part 2. If z i is trivial, we have by definition x i ∼ z i y i . If z i is not trivial, it follows from Part 5 of Lemma 6 that C z i is equal to the first equivalence class of z i . If y i ∈ C z i , we have x i ∈ C z i , so that x i ∼ z i y i . If y i / ∈ C z i , then we have z i z i y i , for all z i ∈ X i . Part 3. By construction, B y i is strictly included in X i . As the set C x i is obtained by taking the union of sets B y i , the conclusion follows. 2

Lemma 8

Let be a weak order on X satisfying AC1 i and 2-graded i . Define, for all x ∈ X, the set G x ⊆ 2 N letting I ∈ G x whenever we have {i ∈ N : z i ∈ C x i } ⊆ I, for some z ∈ X such that z x. We have, for all x, y ∈ X,

1. x y ⇔ {i ∈ N : x i ∈ C y i } ∈ G y , 2. [I ∈ G x and I ⊆ J] ⇒ J ∈ G x , 3. x y ⇒ G x ⊆ G y . PROOF Part 1. By construction, if x y then {i ∈ N : x i ∈ C y i } ∈ G y .
Let us show that the reverse implication is true. Suppose that {i ∈ N :

x i ∈ C y i } ∈ G y . This implies that {i ∈ N : z i ∈ C y i } ⊆ {i ∈ N : x i ∈ C y i }, for some z ∈ X such that z y. Using Part 2 of Lemma 7, {i ∈ N : z i ∈ C y i } ⊆ {i ∈ N : x i ∈ C y i } implies x i y i z i
, for all i ∈ N. Hence, z y implies x y.

Part 2 follows from the definition of the sets G x . Part 3. Suppose that x y and let I ∈ G x . Let us show that we must have I ∈ G y . By construction, I ∈ G x implies that {i ∈ N : z i ∈ C x i } ⊆ I, for some z ∈ X such that z x. Consider the alternative w ∈ X defined in the following way.

• If z i ∈ C x i , let w i = z i . We have w i ∈ C x i .
Using Part 1 of Lemma 7, we know that this implies w i ∈ C y i .

• If z i / ∈ C x i . Using Part 3 of Lemma 7, we know that C y i X i . We take w i to be any element in X i \ C y i . Because, we know that C x i ⊆ C y i , we have w i / ∈ C x i .

By construction we have, for all

i ∈ N, z i ∈ C x i ⇔ w i ∈ C x i ⇔ w i ∈ C y i . Hence, we have {i ∈ N : z i ∈ C x i } = {i ∈ N : w i ∈ C x i } = {i ∈ N : w i ∈ C y i }.
The first equality implies w x. Using the fact that is a weak order, we obtain w y. Hence, we have {i ∈ N : w i ∈ C y i } ⊆ I and w y. This implies I ∈ G y . 2

The noncompensatory model for weak orders

The following model is used as an intermediary step in the construction of the discrete Sugeno integral model. It may be viewed as a kind of "non-numerical version" of the discrete Sugeno integral model.

Definition 9

A weak order on X has a representation in the noncompensatory model if for all x ∈ X, there are sets

1. A x i ⊆ X i , for all i ∈ N, 2. F x ⊆ 2 N such that [I ∈ F x and I ⊆ J ∈ 2 N ] ⇒ J ∈ F x , ( 1 
)
that are such that, for all x, y ∈ X,

x y ⇒    A x i ⊆ A y i and F x ⊆ F y (2)

and

x y ⇔ {i ∈ N :

x i ∈ A y i } ∈ F y . ( 3 
)
We often write A(x, y) instead of {i ∈ N :

x i ∈ A y i }.
The noncompensatory model for weak orders4 is inspired from the work of [START_REF] Bouyssou | An axiomatic approach to noncompensatory sorting methods in MCDM, II: The general case[END_REF] in the area of sorting model in MCDM. The results in [START_REF] Bouyssou | An axiomatic approach to noncompensatory sorting methods in MCDM, II: The general case[END_REF] may be viewed as dealing with the noncompensatory model for weak orders that have a finite number of equivalent classes (this is in [START_REF] Bouyssou | An axiomatic approach to noncompensatory sorting methods in MCDM, II: The general case[END_REF] phrased in the language of "ordered categories").

The noncompensatory model can be interpreted as follows. For each x ∈ X we isolate on each attribute a subset A x i ⊆ X i containing the levels on attribute i that are satisfactory for x. In order for an alternative to be at least as good as x, it must have evaluations that are satisfactory for x on a subset of attributes belonging to F x . The subsets of attributes belonging to F x are interpreted as subsets that are "sufficiently important" to warrant preference on x.

With this interpretation in mind, the constraint (2) means that if x is at least as good as y then every level that is satisfactory for x must be satisfactory for y. Furthermore, subsets of attributes that are "sufficiently important" to warrant preference on x must also be "sufficiently important" to warrant preference on y. Given the above interpretation of F x , the constraint (1) simply says that any superset of a set that is "sufficiently important" to warrant preference on x must have the same property.

Suppose that x y and that x i ∈ A y i , for some i ∈ N. In the noncompensatory model, we have (z i , x -i ) y, for all z i ∈ X i . It is therefore impossible, starting from x, to obtain an alternative that would be at least as good as y by modifying the evaluation of x on the ith attribute. In other terms, the fact that A(x, y) / ∈ F y cannot be compensated by improving the evaluation of x on an attribute in A(x, y). Hence, our name for this model.

A weak order having a representation in the noncompensatory model must satisfy AC1 and 2-graded. We have:

Lemma 10

If weak order on X has a representation in the noncompensatory model, then it satisfies AC1 and 2-graded.

PROOF [AC1 i

]. Suppose that x y, z w, (z i , x -i ) y and (x i , z -i ) w. It is easy to see that x y and (z i , x -i ) y imply x i ∈ A y i and z i / ∈ A y i . Similarly, z w and (x i , z -i ) w imply z i ∈ A w i and x i / ∈ A w i . Because is complete, we have either y w or w y. Hence, we have either A y i ⊆ A w i or A w i ⊆ A y i , a contradiction. [2-graded i ]. Suppose that 2-graded i is violated, so that, for some x, y, z, w ∈ X and some a i ∈ X i , (x i , x -i ) z, (y i , x -i ) z, (y i , y -i ) w, z w, (a i , x -i ) z and (x i , y -i ) w. Using the definition of the noncompensatory model, (y i , y -i ) w and (x i , y -i ) w imply y i ∈ A w i and

x i / ∈ A w i . Similarly, (x i , x -i ) z and (a i , x -i ) z imply x i ∈ A z i and a i / ∈ A z i . Since z w, we have A z i ⊆ A w i , a contradiction. 2 
The main result of this section says that, for weak orders, the noncompensatory model is fully characterized by the conjunction of AC1 and 2-graded. Notice that we may equivalently replace the conjunction of AC1 and 2-graded either by condition 2 * -graded or by the conjunction of weak separability and 2-graded.

Proposition 11

If a weak order on X satisfies AC1 and 2-graded then it has a representation in the noncompensatory model.

PROOF Define A x i = C x i and F x = G x .
The proof follows from combining Lemmas 7 and 8. 2

Completion of the proof

The main result in this section says that if a weak order has a representation in the noncompensatory model and has a numerical representation, then it has a representation in the discrete Sugeno integral model.

Proposition 12

Let be a weak order on X. Suppose that can be represented in the noncompensatory model and that there is a real function v on X such that, for all x, y ∈ X,

x y ⇔ v(x) ≥ v(y). ( 4 
)
Then has a representation in the discrete Sugeno integral model.

PROOF

Let be a weak order representable in the noncompensatory model and such that there is a real-valued function v satisfying (4). We may assume w.l.o.g. that, for all x ∈ X, v(x) ∈ [0, 1]. Furthermore, if there are minimal elements in X for , we may assume w.l.o.g. that v gives the value 0 to these elements. We consider now any such function v.

For all i ∈ N, define u i letting, for all x i ∈ X i ,

u i (x i ) =    sup {w∈X:x i ∈A w i } v(w) if ∃w : x i ∈ A w i , 0 otherwise. 
(

Define µ on 2 N letting, for all I ∈ 2 N ,

µ(I) =    sup {w∈X:I∈F w } v(w) if ∃w : I ∈ F w , 0 otherwise. (6) 
Since I ∈ F w and J ⊇ I entails J ∈ F w , we have that µ(J) ≥ µ(I). Hence, µ is a nondecreasing set function.

Let us show that µ(∅) = 0. If there is no w ∈ X such that ∅ ∈ F w , then we have, by construction, µ(∅) = 0. Suppose that X ∅ = {w ∈ X : ∅ ∈ F w } = ∅. From the definition of the noncompensatory model, it follows that, for all x ∈ X and all w ∈ X ∅ , we have x w. Hence, for all w ∈ X ∅ , w is minimal for . We therefore have v(w) = 0, for all w ∈ X ∅ and, hence, µ(∅) = 0. This shows that µ defined by ( 6) is a capacity on 2 N . It is not necessarily normalized, i.e., we may not have that µ(N) = 1.

Independently of the normalization of µ, we can compute, for all x ∈ X, S µ,u (x) letting:

S µ,u (x) = I⊆N µ(I) ∧ i∈I u i (x i ) . (7) 
It is clear that, for all y ∈ X, S µ,u (y) ∈ [0, 1]. Let us show that, for all y ∈ X, S µ,u (y) = v(y), which will complete the proof if µ happens to be normalized.

Let x, y ∈ X be such that x y. This implies A(x, y) = {i ∈ N :

x i ∈ A y i } ∈ F y . Hence, for all i ∈ A(x, y), y ∈ {w ∈ X : x i ∈ A w i }, so that u i (x i ) ≥ v(y).
Similarly, y ∈ {w ∈ X : A(x, y) ∈ F w }, so that µ(A(x, y)) ≥ v(y). Hence, for I = A(x, y), we have

µ(I) ∧ i∈I u i (x i ) ≥ v(y).
In view of ( 7), this implies S µ,u (x) ≥ v(y). Since is reflexive, this shows that, for all y ∈ X, S µ,u (y) ≥ v(y).

We now prove that, for all y ∈ X, S µ,u (y) ≤ v(y). If y is maximal for (i.e., y x, for all x ∈ X), we have v(y) ≥ v(x), for all x ∈ X. The definition of u i and µ obviously implies that they cannot exceed the maximal value of v on X. Hence, in this case, we have S µ,u (y) ≤ v(y).

Suppose henceforth that y ∈ X is not maximal for , so that x ≻ y, for some x ∈ X. This implies that A(y, x) = {i ∈ N :

y i ∈ A x i } ∈ F x . Define A y = z≻y A(y, z). Because A(y, z) ⊆ N, N is a finite set, and z ′ z implies A(y, z ′ ) ⊆ A(y, z), there is an element z 0 ∈ X with z 0 ≻ y that is such that A(y, z 0 ) = A y and A(y, z) = A y , for all z ∈ X such that z 0 z ≻ y.
We claim the following: Claim 1: for all j ∈ A y , u j (y j ) ≤ v(y), Claim 2: for all I ⊆ A y , µ(I) ≤ v(y).

Proof of Claim 1. Let j ∈ A y , so that y j / ∈ A z 0 j . If the set {w ∈ X : y j ∈ A w j } is empty, we have u j (y j ) = 0 and the claim trivially holds. Otherwise, let w ∈ X such that y j ∈ A w j . If w ≻ z 0 , we have A w j ⊆ A z 0 j , so that y j ∈ A w j implies y j ∈ A z 0 j , a contradiction. If z 0 w ≻ y, we know that A(y, w) = A(y, z 0 ). This is contradictory since y j ∈ A w j and y j ∈ A z 0 j . Hence, when j ∈ A y , we must have y w, for all w ∈ X such that y j ∈ A w j . This implies that u j (y j ) = sup {w∈X:y j ∈A w j } v(w) ≤ v(y), for all j ∈ A y .

Proof of Claim 2. Let I ⊆ A y . If the set {w ∈ X : I ∈ F w } is empty, we have µ(I) = 0 and the claim follows. Otherwise, let w ∈ X such that I ∈ F w . Suppose that w ≻ z 0 . This implies F w ⊆ F z 0 , so that I ∈ F z 0 . Because I ⊆ A y , we obtain A y ∈ F z 0 . This is contradictory since z 0 ≻ y implies that A y = A(y, z 0 ) ∈ F z 0 . Suppose now that z 0 w ≻ y. We have A(y, w) = A y / ∈ F w . But, since I ∈ F w and I ⊆ A y , we obtain A y ∈ F w , a contradiction. Hence, for all w ∈ X such that I ∈ F w , we have y w. This implies µ(I) = sup {w∈X:I∈F w } v(w) ≤ v(y).

Using Claims 1 and 2, we establish that S µ,u (y) ≤ v(y) for any y ∈ X that is not maximal. Let I ⊆ N. We distinguish two cases in order to compute

µ(I) ∧ i∈I u i (x i ) .
1. If I is not included in A y , we know that there is j ∈ I such that j ∈ A y . Hence, using Claim 1, u j (y j ) ≤ v(y) so that µ(I) ∧ i∈I u i (y i ) ≤ v(y).

2. If I is included in A y , using Claim 2, we have µ(I) ≤ v(y). Hence, we know that µ(I) ∧ i∈I u i (y i ) ≤ v(y).

Hence, for all I ⊆ N, we have µ(I) ∧ i∈I u i (y i ) ≤ v(y), so that S µ,u (y) ≤ v(y). This proves that, for all y ∈ X, S µ,u (y) = v(y).

It remains to show that we may always build a representation in the discrete Sugeno integral model using a normalized capacity, i.e., a capacity ν such that ν(N) = 1.

Using the above construction, the value of µ(N) is obtained using (6). We have µ(N) = sup w∈X v(w), since for all w ∈ X, N ∈ F w . If the weak order is not trivial, we have µ(N) > 0. In order to obtain a representation leading to a normalized capacity, it suffices to apply the above construction to the function u obtained by dividing v by µ(N). If the weak order is trivial, it is easy to see that it has a representation in the noncompensatory model such that, for all x ∈ X and all i ∈ N, A x i = X i and F x = {N}. Defining, for all i ∈ N and all x i ∈ X i , u i (x i ) = 1, µ(N) = 1 and µ(A) = 0, for all A N, leads to a representation of this trivial weak order in the discrete Sugeno integral model.

2

The sufficiency proof of Theorem 2 follows from combining Lemma 3 with Propositions 11 and 12. This amounts to characterizing the discrete Sugeno integral model by the conjunction of any of the following three equivalent sets of conditions:

• completeness, transitivity, OD, AC1 and 2-graded,

• completeness, transitivity, OD, weak separability and 2-graded,

• completeness, transitivity, OD and 2 * -graded.

The examples in the following section show no condition in the first set is redundant.

Remark 13

Consider a nontrivial weak order on X that satisfies the hypotheses of Proposition 12. The proof of this proposition establishes that any function v : X → [0, 1] satisfying (4)

and giving a value 0 to the minimal elements in X for (if any) can be used to define a representation in the Sugeno integral model. The functions u i and the (non necessarily normalized) capacity µ used in this representation can be defined on the basis of v using ( 5) and ( 6). Furthermore, as shown in this proof, ( 5) and ( 6) can be viewed as inversion formulas for the discrete Sugeno integral model in the following sense. If we know the value of S µ,u (x), for all x ∈ X, without knowing the functions µ and u i , it is possible to use ( 5) and ( 6) to build functions u j and a capacity µ that allow to reconstruct all these values using the discrete Sugeno integral formula (7).

•

Independence of conditions Proposition 14

Let be a binary relation on X. The following conditions are independent:

1. is complete, 2. is transitive, 3. satisfies AC1, 4 
. is 2-graded.

PROOF

We provide the required four examples.

Example 15

Let X = {x 1 , y 1 } × {x 2 , y 2 }. Let be identical to the weak order

(y 1 , y 2 ) ≻ [(x 1 , y 2 ), (y 1 , x 2 )] ≻ (x 1 , x 2 ), 3 
except that we have removed two arcs from , so as to have (x 1 , y 2 ) (y 1 , x 2 ) and (y 1 , x 2 ) (x 1 , y 2 ). It is clear that is transitive but is not complete. Since X 1 and X 2 have only two elements, condition 2-graded trivially holds. It is not difficult to check that we have y 1 ≻ 1 x 1 and y 2 ≻ 2 x 2 , so that AC1 holds.

Example 16

Let X = {x 1 , y 1 } × {x 2 , y 2 }. Let be identical to the trivial weak order except that we have removed one arc from , so as to have (x 1 , x 2 ) (y 1 , y 2 ). It is not difficult to see that the resulting relation is complete but not transitive (it is a semi-order). Since X 1 and X 2 have only two elements, condition 2-graded trivially holds. It is not difficult to check that we have y 1 ≻ 1 x 1 and y 2 ≻ 2 x 2 , so that AC1 holds.

Example 17 X = {x 1 , y 1 , z 1 } × {x 2 , y 2 } × {x 3 , y 3 }. Let be the weak order such that:

[(x 1 , x 2 , x 3 ), (y 1 , x 2 , x 3 )] ≻ [(x 1 , x 2 , y 3 ), (x 1 , y 2 , x 3 ), (y 1 , x 2 , y 3 ), (y 1 , y 2 , x 3 ), (y 1 , y 2 , y 3 ), (z 1 , x 2 , x 3 ), (z 1 , x 2 , y 3 ), (z 1 , y 2 , x 3 )] ≻ [(z 1 , y 2 , y 3 ), (x 1 , y 2 , y 3 )].

We have y 1 ≻ 1 x 1 ≻ 1 z 1 , x 2 ≻ 2 y 2 and x 3 ≻ 3 y 3 , which shows that AC1 holds. Conditions 2-graded 2 and 2-graded 3 are trivially satisfied. Condition 2-graded 1 is violated since (x 1 , x 2 , x 3 ) (y 1 , x 2 , x 3 ), (y 1 , x 2 , x 3 ) (y 1 , x 2 , x 3 ), (y 1 , y 2 , y 3 ) (x 1 , x 2 , y 3 ) and (y 1 , x 2 , x 3 ) (x 1 , x 2 , y 3 ) but (z 1 , x 2 , x 3 ) (y 1 , x 2 , x 3 ) and (x 1 , y 2 , y 3 ) (x 1 , x 2 , y 3 ). 3

Example 18

Let X = {x 1 , y 1 } × {x 2 , y 2 } × {x 3 , y 3 }. Let be the weak order such that:

[(x 1 , x 2 , x 3 ), (x 1 , y 2 , x 3 ), (y 1 , y 2 , x 3 )] ≻ [(y 1 , y 2 , y 3 ), (y 1 , x 2 , x 3 )] ≻ [(x 1 , x 2 , y 3 ), (x 1 , y 2 , y 3 ), (y 1 , x 2 , y 3 )].
Condition 2-graded trivially holds. We have y 2 ≻ 2 x 2 and x 3 ≻ 3 y 3 , so that conditions AC1 2 and AC1 3 hold. Since (x 1 , x 2 , x 3 ) (y 1 , y 2 , x 3 ) and (y 1 , y 2 , y 3 ) (y 1 , x 2 , x 3 ) but (y 1 , x 2 , x 3 ) (y 1 , y 2 , x 3 ) and (x 1 , y 2 , y 3 ) (y 1 , x 2 , x 3 ), condition AC1 1 is violated. 3 2

Remark 19

It is easy to check that the weak order in Example 18 satisfies the following condition x y and z y

   ⇒    (z i , x -i ) y, or (x i , z -i ) y,
for all x, y, z ∈ X. This condition is a weakening of AC1 i obtained by requiring that y = w in the expression of AC1 i (it is equivalent to requiring that all relations a i are complete). It is therefore not possible to weaken AC1 i in this way.

Similarly, it is easy to check that the weak order in Example 17 satisfies the weakening of 2-graded i obtained by requiring that z = w in the expression of 2-graded i (and, hence, removing the last redundant premise), i.e., for all x, y, z ∈ X and all a i ∈ X i , x z and (y i , x -i ) z and y z

           ⇒    (a i , x -i ) z or (x i , y -i ) z,
Hence, condition 2-graded i cannot be weakened in this way.

•

Finally, as shown by the following example, there are weak orders satisfying AC1 and 2-graded but violating OD.

Example 20

Let X = 2 R × {0, 1}. We consider the weak order on X such that (x 1 , x 2 ) (y 1 , y 2 ) if [x 2 = 1] or [x 2 = 0, y 2 = 0 and x 1 ≥ * y 1 ], where ≥ * is any linear order on 2 R . It is easy to see that is a weak order. It violates OD since the restriction of to 2 R × {0} is isomorphic to ≥ * on 2 R and ≥ * violates OD. The relation has a representation in the noncompensatory model. Indeed, for all x = (x 1 , 1), take A x 1 = ∅, A x 2 = {1} and F x = {{2}, {1, 2}}. For all x = (x 1 , 0), take A x 1 = {y 1 ∈ 2 R : y 1 ≥ * x 1 }, A x 2 = {1} and F x = {{1}, {2}, {1, 2}}. It is easy to check that this defines a representation of the weak order in the noncompensatory model. Using Lemma 10, this implies that satisfies AC1 and 2-graded.

3

Discussion

This note has proposed a proof of Greco et al. (2004, Theorem 3), in the hope that this will contribute to popularize this useful result. By the same token, we have analyzed the relations between the discrete Sugeno integral model and the noncompensatory model as well as proposed a factorization of the main condition used in Greco et al. (2004, Theorem 3). Many questions are nevertheless left open. Let us briefly mention here what seem to us the most important ones.

The result in [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF] is a first step in the systematic study of models using fuzzy integrals in MCDM. A first and major open problem is to derive a similar result for the discrete Choquet integral. This appears very difficult and we have no satisfactory answer at this time. A second open problem is to use the above result as a building block to study particular cases of the discrete Sugeno integral. This was started in [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF] who showed how to characterize ordered weighted minimum and maximum. There are nevertheless many other particular cases of the discrete Sugeno integral that would be worth investigating. A third problem is to investigate assessment protocols of the various parameters of the discrete Sugeno integral model using the above result and conditions. This will clearly require to investigate the uniqueness properties of a representation in the discrete Sugeno integral model. This will allow to understand better the type of commensurateness that is implied by the noncompensatory model for weak orders and the discrete Sugeno integral model5 . Finally, it should be mentioned that we have mainly used here the noncompensatory model for weak orders as a tool for obtaining a proof of the result of [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF]. The noncompensatory model that we introduced can be extended in many possible directions. This will be the subject of a subsequent paper.

To our knowledge, Greco, Matarazzo, and Słowiński have never presented or published their proof. It should be mentioned that a related result for the case of ordered categories is presented without proof

The noncompensatory model for weak orders must not be confused with "noncompensatory preferences" as introduced in[START_REF] Fishburn | Noncompensatory preferences[END_REF]. Noncompensatory preferences in the sense of[START_REF] Fishburn | Noncompensatory preferences[END_REF] are preferences that result form an "ordinal aggregation" in the context of MCDM that is quite close from the type of aggregation studied in social choice theory in the vein of[START_REF] Arrow | Social choice and individual values[END_REF]. For a recent analysis of such preferences, see[START_REF] Bouyssou | A characterization of concordance relations[END_REF].

The noncompensatory model for weak orders allows, indirectly, to compare in terms of preference levels on distinct attributes. Indeed, the level x i ∈ X i can be considered as "better" than the level x j ∈ X j if we have x i ∈ A z i and x j ∈ A z j , for some z ∈ X. In other terms, x i is better than x j if, for some z ∈ X, some y i ∈ X i , some y j ∈ X j , some a -i ∈ X -i and some b -j ∈ X -j , we have (x i , a -i ) z, (y i , a -i ) z, (y j , b -j ) z and (x j , b -j ) z. The constraints of the noncompensatory model ensure that this will never lead to contradictory information of the type "x i is better than x j " and "x j is better than x i ". They also imply that this relation is transitive.