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Abstract

In this paper we would like to thoroughly cover the problem of computing all
kernels, i.e. minimal outranking and/or outranked independent choices in a bipolar-
valued outranking digraph. First we introduce in detail the concept of bipolar-valued
characterisation of outranking digraphs, choices and kernels. In a second section we
present and discuss several algorithms for enumerating the kernels in a crisp digraph.
A third section will be concerned with extending these algorithms to bipolar-valued
outranking digraphs.
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Introduction

Minimal independent and outranking or outranked choices, i.e. kernels, in valued out-
ranking digraphs are an essential formal tool for solving best unique choice problems
in the context of our multicriteria decision aid methodology [10]. It appears, following
recent formal results [8], that computing these kernels may rely on the enumeration of
all kernels observed in the associated crisp median cut outranking digraph. Knowing
these crisp kernels allows one to compute the associated bipolar-valued kernel via the
fixpoints of the kernel bipolar-valued characteristic equation systems. In this article we
shall therefore, first, present the bipolar-valued concepts of outranking digraphs and in-
dependent outranking and outranked choices, each associated with their corresponding
median cut crisp concept. In a second section, we shall then discuss general algorithms
for enumerating crisp outranking and/or outranked choices in a bipolar-valued digraph.
A third section will be devoted to extending these algorithms in order to compute the
corresponding bipolar-valued choices.

1 Kernels in bipolar valued directed graphs

In this first section we introduce the fundamental concepts and notations about bipolar-
valued outranking graphs and kernels.

1.1 Bipolar-valued credibility calculus

Let ξ be a propositional statement like –decision alternativea is a best choice– or –
decision alternativea is at least as good as decision alternativeb. In a decision process,
a decision maker may either accept or reject these statements following his degree of
confidence in their truth [6].

Definition 1 (Bipolar-valued credibility calculus)
The degree of confidence in the truth – thecredibility – of a statement may be represented
with the help of a rational credibility scaleL = [−1, 1] supporting the following truth-
denotation semantics:

1. Letr ∈ L denote the credibility of a statementξ. If r = +1 (resp.r = −1) then it
is assumed thatξ is certainly true(resp.false). If 0 < r < +1 (resp.−1 < r < 0)
then it is assumed thatξ is more true than false(resp.more false than true). If r = 0
thenξ is logically undetermined, i.e. ξ could be either true or false;
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2. Let ξ andψ be two propositional statements to which are associated credibilitiesr
ands ∈ L. If r > s > 0 (resp.r < s < 0) then it is assumed that thetruth (resp.
falsity) of ξ is more credible than that ofψ;

3. Let ξ andψ be two propositional statements to which are associated credibilitiesr
ands ∈ L. The truthfulness of thedisjunctionξ ∨ ψ (resp. theconjunctionξ ∧ ψ)
of these statements corresponds to the maximum of their credibilities:max(r, s)
(resp. the minimum of their credibilities:min(r, s)).

4. If r ∈ L denotes the degree of confidence in the truth of a propositional statement
ξ, then−r ∈ L denotes the degree of confidence in its untruth, i.e. the credibility
of thelogical negationof ξ (¬ξ).

The credibility degree associated with the truth of a propositional statementξ and defined
in a credibility domainL verifying properties (1) to (4), will be called abipolar-valued
characterisation ofξ.

A consequence of Definition 1 is that the graduation of confidence degrees concerns nec-
essarily at the same time theaffirmationas well as thenegationof a propositional state-
ment [30]. Starting from+1 (certainly true) and−1 (certainly false) one can approach
the central undetermined degree of credibility0 by a gradual weakening of the degrees of
confidence. This central point inL is a so-callednegational fixpoint[6; 7].

Definition 2
The degree of logical determination(determinatenessfor short)D(ξ) of a propositional
statementξ is given by the absolute value of its bipolar-valued characterisation:D(ξ) =
|r|.

For both a certainly true and a certainly false statement, the determinateness will be1. On
the contrary, for an undetermined statement, this determinateness will be0.

This clearly establishes the central degree0 as an importantneutralvalue in the bipolar
credibility calculus. Propositions characterised with this degree0 may be seen, either as
suspended, or asmissingstatements[7]. This situation corresponds to what we call a
suspension of judgment. It is a temporary delay in characterising the actual truth or falsity
of a propositional statement, which may become eventually determined, either as a more
true than false, or as a more false than true statement, in a later stage of the decision aiding
process.

We will now define the concept of bipolar-valued outranking digraph.
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1.2 The bipolar-valued outranking digraph

Our starting point is a decision aiding problem on a finite setX = {x, y, z, . . .} of deci-
sion objects (or alternatives), evaluated on a finite, coherent familyF = {1, . . . , p} of p
criteria. To each criterionj of F is associated its significance represented by a rational
numberwj from the open interval]0, 1[ such that

∑p
j=1 wj = 1. Besides, to each criterion

j is connected a rational (normalised) preference scale in[0, 1] which allows to compare
the performances of the decision objects on the corresponding preference dimension.

Let gj(x) andgj(y) be the performances of two alternativesx andy of X on criterion
j. The difference of the performancesgj(x) − gj(y) is written∆j(x, y). Each preference
scale for each criterionj supports a rational indifference thresholdhj ∈ [0, 1[, a weak
preference thresholdqj ∈ [hj, 1[, a weak veto thresholdwvj ∈ [qj, 1] ∪ {2} and a strong
veto thresholdvj ∈ [wvj, 1] ∪ {2}, where the complete absence of veto is modelled via
the value2.

Classically, an outranking situationx S y between two decision alternativesx andy
of X is assumed to hold if there is a sufficient majority of criteria which support an “at
least as good” preferential statement and there is no criterion which raises a veto against
it [24]. As we are going to show, this definition leads quite naturally to a bipolar-valued
characterisation of binary outranking statements.

Indeed, in order to characterise a local “at least as good” situation between alterna-
tives x and y of X on each criterionj ∈ F , we use the following criterion-function:
Cj : X × X → {−1, 0, 1} such that:

Cj(x, y) =





1 if ∆j(x, y) > −hj ;

−1 if ∆j(x, y) ≤ −qj ;

0 otherwise.

Following the truth-denotation semantics of the bipolar-valued characterisation, deter-
minateness0 is assigned toCj(x, y) in case it cannot be determined whether alternativex
is at least as good as alternativey or not (see Subsection 1.1).

Similarly, the local veto situation on each criterionj ∈ F is characterised via a crite-
rion based veto-function:Vj : X × X → {−1, 0, 1} where:

Vj(x, y) =





1 if ∆j(x, y) ≤ −vj ;

−1 if ∆j(x, y) > −wvj ;

0 otherwise.

According again to the semantics of the bipolar-valued characterisation, the veto function
Vj renders a logically undetermined response when the loss in performances between two
alternatives lies in between the weak and the strong veto thresholdswvj andvj.
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The global outranking index̃S, defined between all pairs of alternativesx, y ∈ X,
conjunctively combines a global concordance index – aggregating all local “at least as
good” statements –, and the absence of a veto observed on an individual criterion.

S̃(x, y) = min{C̃(x, y),−V1(x, y), . . . ,−Vp(x, y)}, (1)

where the global concordance indexC̃(x, y) is defined as follows:

C̃(x, y) =
∑

j∈F

(
wj · Cj(x, y)

)
∀x, y ∈ X. (2)

The min operator in Formula (1) translates the conjunction between the global concor-
dance indexC̃(x, y) and thenegatedcriterion based veto indexes−Vj(x, y) (∀j ∈ F ).
in the case of absence of veto, the resulting outranking indexS̃ equals the global con-
cordance index̃C. Following Formulas (1) and (2),̃S is a function fromX × X to L
representing the degree of confidence in the truth of the outranking situation observed
between each pair of alternatives.S̃ will be called the bipolar-valued characterisation of
the outranking situationS, or for short abipolar-valued outranking relation.

The maximum possible value of the valuationS̃(x, y) = +1 is reached in the case of
unanimous concordance, whereas the minimum valueS̃(x, y) = −1 is obtained either in
the case of unanimous discordance, or if we observe a veto situation on some criterion.
The median situation0 represents a case of indeterminateness: either there are neither
enough arguments in favour nor against a given outranking statement or, a potentially
sufficient majority in favour of the outranking is outbalanced by an undetermined, i.e.
potential veto situation.

We can easily recover the truth-denotation semantics from the previous Subsection (1.1).
For any two alternativesx andy of X,

– S̃(x, y) = +1 signifies that the statement “xS y” is certainly true;

– S̃(x, y) > 0 signifies that statement “xS y” is more true than false. A sufficient
majority of criteria warrants the truth of the outranking;

– S̃(x, y) = 0 signifies that statement “xS y” is logically undetermined, i.e. could be
either true or false;

– S̃(x, y) < 0 signifies that assertion “xS y” is more false than true. There is only a
minority of the criteria which warrants the truth of the outranking. This is equivalent
to saying that a sufficient majority of criteria warrants the truth of the negation of
the outranking;

– S̃(x, y) = −1 signifies that assertion “xS y” is certainly false.
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Definition 3
The setX associated to a bipolar-valued characterisationS̃ of the outranking relation

S ∈ X × X is called abipolar-valued outranking digraph, denotedG̃(X, S̃).

From the truth-denotation semantics of a bipolar-valued characterisation it results that we
can recover thecrisp outrankingS characterised viãS as the set of pairs(x, y) such that
S̃(x, y) > 0. We writeG(X, S) the corresponding so-calledstrict 0-cut crisp outranking
digraphassociated tõG(X, S̃).

Example 1
In order to illustrate the concept of bipolar-valued outranking graph, we consider a set
X1 = {a, b, c, d, e} of five decision alternatives evaluated on a coherent familyF1 =
{1, . . . , 5} of five criteria of equal significance. On each criterion we observe a rational
preference scale from0 to 1 with an indifference threshold of0.1, a preference thresh-
old of 0.2, a weak veto threshold of0.6, and a veto threshold of0.8. Table 1 shows a
randomly generated performance table [11]. Based on the performances of the five al-

decision coherent family of criteria
objects 1 2 3 4 5

a 0.52 0.82 0.07 1.00 0.04
b 0.96 0.27 0.43 0.83 0.32
c 0.85 0.31 0.61 0.41 0.98
d 0.30 0.60 0.74 0.02 0.02
e 0.18 0.11 0.23 0.94 0.63

Table 1: Example 1: Random performance table

ternatives on each criterion, we compute the bipolar-valued outranking relationS̃1 shown
in table 2. Thestrict 0-cutcrisp digraphG1(X1, S1) associated to the bipolar-valued

S̃1 a b c d e

a 1.0 -0.2 -1.0 0.6 0.4
b 0.4 1.0 0.2 0.2 0.4
c 0.2 0.4 1.0 0.4 0.6
d -1.0 -1.0 -1.0 1.0 -1.0
e 0.2 0.2 -0.4 0.0 1.0

Table 2: Example 1: Bipolar-valued outranking relation
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? e

b
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c

Figure 1: Example 1: Associated strict 0-cut digraph and undetermined arc

outranking digraph̃G1(X1, S̃1) is shown in figure 1. We have also represented the unde-
termined arc from alternativee to d which represents an undetermined outranking. This
situation is not expressible in a standard Boolean-valued characterisation of the outrank-
ing. Consequently, the (‘positive’) negation of the generalS̃ relation is not identical with
the complement ofS in X × X.

Let us finish this subsection by introducing some concepts which will be used in the
sequel.

A bipolar-valued digraph̃G(X, S̃) such that̃S(x, y) > 0 for all x, y in X will be called
determined. If̃S(x, y) = 0 for some pairs(x, y), we callG̃ partly determined.

Theordern of the digraphG̃(X, S̃) is given by the cardinality ofX, whereas thesize
m of G̃ is given by the cardinality ofS. As X is a finite set ofn alternatives, the sizem
of the digraphG̃ is also finite. Thearc densityδ of G̃ is given by the ratio of the size over
the maximal number of possible arcs in the graph:

δ =
m

n × n
(3)

In example 1, the order of̃G1 equals 5 and its size 13, such that its arc density is 52%.

A digraphG̃(X, S̃) is said to beemptyif the size ofG(X, S) equals0, i.e. S = ∅. On
the opposite, a digraph̃G(X, S̃) is said to becompleteif G(X, S) = Kn, i.e. S = X ×X.
A digraph G̃(X, S̃) of order n is said to beconnectedif the symmetric and transitive
closure ofG(X, S) equalsKn.

A path of orderm ≤ n in G̃(X, S̃) is a sequence(xi)
m
i=1 of alternatives ofX such

that S̃(xi, xi+1) > 0, ∀i ∈ {1, . . . ,m − 1}. A circuit of orderm ≤ n is a path of order
m such that̃S(xm, x1) ≥ 0. An cordless circuit(xi)

m
i=1 is a circuit of orderm such that

S̃(xi, xi+1) > 0, ∀i ∈ {1, . . . ,m−1}, S̃(xm, x1) > 0 andS̃(xi, xj) < 0 otherwise. A path
or circuit will be calledweakwhen it contains one or more zero-valued arcs.

Following a result by Bouyssou [12; 13] it appears that, apart from certainly being
reflexive, the bipolar-valued outranking digraphs do not necessarily possess any special
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relational properties such as transitivity or complete comparability. Indeed, with a suf-
ficient number of criteria, it is always possible to define an ad hoc performance table
such that the associated crisp 0-cut outranking digraph renders any given reflexive binary
relation. This rather positive result from a methodological point of view – the outrank-
ing based methodology is universal – bears however a negative algorithmic consequence.
Enumerating all kernels in a bipolar-valued outranking digraph becomes a non trivial al-
gorithmic problem in case of non-transitive and partial outrankings, as we will show in
the next section.

Before tackling this main topic of this work, let us, first, finish this section with intro-
ducing bipolar-valued choices and kernels.

1.3 On choices and kernels in bipolar-valued outranking digraphs

A choice in a given bipolar-valued outranking digraph is a non-empty subset of decision
objects.

Definition 4
1. A choiceY in G̃(X, S̃) is said to beoutranking(resp. outranked) if and only if

x 6∈ Y ⇒ ∃y ∈ Y : S̃(y, x) > 0 (resp.S̃(x, y) > 0);

2. Y is said to beindependent(resp. weakly independent) if and only if for allx 6= y
in Y we havẽS(x, y) < 0 (resp.S̃(x, y) 6 0;

3. An outranking (resp. outranked) and independent choice will be called anoutrank-
ing (resp.outranked) kernel;

4. An outranking (resp. outranked) and weakly independent choice will be called a
weakoutranking (resp. outranked)kernel.

Example 2 (Example 1 continued)
In the strict0-cut crisp digraphG1 (see Figure 1) we can observe two outranking kernels,
namely the single choices{b} and {c}. The digraph also contains a weak outranked
kernel, namely the pair{d, e}. Indeed, alternativesd ande are only weakly independent
one from the other.

Let us finish this first section with presenting some interesting properties that ker-
nels in their quality as independent outranking, resp. outranked, choices do possess. To
illustrate this part, we use the following example.

Example 3 (B. Roy (2005), private communication)
Let G̃2(X, S̃1) be the bipolar-valued digraph where:X2 = {a, b, c, d, e} andS̃2 is given
as follows:

9



On enumerating the kernels in a bipolar-valued outranking digraph

S̃2 a b c d e
a - 0.6 -1.0 -0.7 -0.9
b -0.8 - 0.9 1.0 0.0
c -1.0 -1.0 - 0.6 0.9
d 0.8 -0.8 -1.0 - -0.7
e -1.0 -0.9 -0.7 -0.8 -

?
b

a

d

c e

The associated strict 0-cut digraph

b

a

d

c e

{a, b, d, e} is an outranking choice.

b

a

d

c e

{b, d, e} is an outranked choice.

In example (3), we may notice that the outranking choice{a, b, d, e} in G̃2 (see exam-
ple 3) may be reduced without loosing the property of being outranking. The outranked
choice in the same example (3) may not however be reduced without loosing its out-
rankedness property. Minimal or maximal cardinality of choices with respect to a given
qualification is formally captured in the following definition.

Definition 5 (Qualified choices of minimal or maximal cardinality)
A choiceY in G̃, verifying a propertyP , is minimal with this property whenever,∀Y ′ ∈

G̃ which verify the same propertyP , we haveY ′ 6⊆ Y . Similarly, a choiceY in G̃,
verifying a propertyP , is maximalwith this property whenever,∀Y ′ ∈ G̃ which verify
propertyP , we haveY ′ 6⊇ Y .

Example 4 (Minimal qualified choices inG̃2)

b

a

d

c e

{a, c} is a minimal outranking choice.

b

a

d

c e

{b, d, e} is a minimal outranked choice
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Comparing the outranking choice{a, b, d, e} in example (3) with the minimal out-
ranking choice{a, c} in example (4) we may notice that minimality of outrankingness,
resp. outrankedness, is related to the neighbourhoods of the nodes of the digraph.

We denoteN+(x) = {y ∈ X / S̃(x, y) > 0} theopen outranked neighbourhoodof a
nodex ∈ X. We denoteN+[x] = N+(x) ∪ {x} theclosedoutranked neighbourhood of
x. We denoteN−(x) = {y ∈ X / S̃(y, x) > 0} the openoutrankingneighbourhood of a
nodex. We denoteN−[x] = N−(x) ∪ {x} the closed outranking neighbourhood ofx.

The neighbourhood concept may easily be extended to a choice. The closed and open
outranked neighbourhoodof a choiceY in G̃ are given by the union of the respective
neighbourhoods of the members of the choice:

N+[Y ] =
⋃

x∈Y

N+[x], N+(Y ) =
⋃

x∈Y

N+(x). (4)

The closed and openoutranking neighbourhoodof a choiceY in G̃ are similarly given by
the union of the respective elementary outranking neighbourhoods:

N−[Y ] =
⋃

x∈Y

N−[x], N−(Y ) =
⋃

x∈Y

N−(x). (5)

Definition 6 (Private neighbourhood)
The (closed)private outranked neighbourhoodN+

Y [x] of a nodex in a choiceY contain-
ing x is defined as follows:N+

Y [x] = N+[x] − N+[Y − {x}]. Similarly, the (closed)
privateoutrankingneighbourhoodN−

Y [x] of a nodex in a choiceY is defined as follows:
N−

Y [x] = N−[x] − N−[Y − {x}]. In case of a single choice, both the outranked and the
outranking neighbourhood are considered to be private by convention.

In the outranking choiceY = {a, b, d, e} of example (3), we may notice that actiona
for instance has no private outranked neighbourhood. IndeedN+

Y [a] = N+[a]−N+[Y −
{a}] whereN+[a] = {a, b} andN+[Y − {a}] = X. Action b however has actionc
as private outranked neighbourhood. The concept of private neighbourhoods leads us
naturally to the notion of irredundant choices.

Definition 7 (±-irredundant choice)
An outranking choiceY in G̃ is called+irredundantif and only if all its members have
a non empty private outranked neighbourhood, i.e.∀x ∈ Y : N+

Y [x] 6= ∅. Similarly,
an outranked choiceY in G̃ is called -irredundantif and only if all its members have a
private outranking neighbourhood, i.e.∀x ∈ Y : N−

Y [x] 6= ∅.

In example (4), the outranking choice{a, c} is +irredundant asN+
{a,c}[a] = {a, b}

and N+
{a,c}[c] = {c, d, e}. Similarly the outranked choice{b, d, e} is -irredundant as

N−
{b,d,e}[b] = {a, b}, N−

{b,d,e}[d] = {c} andN−
{b,d,e}[e] = {e}.

11
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Minimality of outrankingness (resp. outrankedness) and maximality of±-irredundancy
are evidently linked.

Proposition 1
(i) An outranking (resp. outranked) choiceY in G̃ is minimal outranking (resp. out-
ranked) if and only if it is outranking (resp. outranked) and +irredundant (resp. -irredundant)
(Cockayne, Hedetniemi, Miller 1978).

(ii) Every minimal outranking (resp. outranked) choiceY in G̃ is maximal +irredundant
(resp. -irredundant) (Bollob́as, Cockayne, 1979).

Proof: Property (i) following easily from property (2), we demonstrate only the latter
one.

[⇒] Let us suppose thatY is minimal outranking but not maximal +irredundant. This
implies that there exists a nodex ∈ X −Y such thatY ∪{x} is +irredundant, i.e.N+(Y )
is a proper subset ofN+(Y ∪{x}). This contradicts however the fact thatY is outranking.

[⇐] The other way round, let us suppose thatY is maximal +irredundant but not
minimal outranking. This implies that there must exist any ∈ Y such thatY − {y}
still remains outranking, i.e. thisy cannot have a private outranked neighbourhood with
respect toY . This contradicts however the hypothesis thatY is +irredundant.

A similar reasoning is valid for outranked and -irredundant choices.2

Similarly, maximal independence and minimal outrankingness or outrankedness are
tightly related.

Proposition 2 (Berge, 1958)
Let G̃(X, S̃) be adeterminedbipolar-valued digraph. (i) Every kernel is a minimal out-
ranking (resp. outranked) choice. (ii) Every minimal outranking (resp. outranked) and
independent choice is maximal independent.

Proof: (1) Let us suppose that an outranking kernelY is indeed not a minimal outrank-
ing (respectively outranked) choice. This implies that there exists an outranking (respec-
tively outranked) choiceY ′ ⊂ Y such thatY ′ is still outranking (respectively outranked).
This implies that∀y ∈ Y − Y ′ there must exist somey′ ∈ Y ′ such that(y, y′) ∈ S
(respectively(y′, y) ∈ S. This is contradictory with the fact thatY is independent. (2)
Let us suppose that an outranking kernelY is indeed not a maximal independent choice.
This implies that there must exist aY ′ ⊃ Y such thatY ′ is still independent. ButY is by
hypothesis an outranking (respectively outranked) choice, i.e.∀y′ ∈ Y ′ − Y there must
exist somey ∈ Y such that(y, y′) ∈ S (respectively(y′, y) ∈ S. Hence there appears
again a contradiction.2
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Not all minimal outranking (resp. outranked) choices are independent, i.e. kernels. In
digraphG̃2 of example 3, for instance, we observe the following four minimal outranking
choices, of which only choice{a, c} is independent and therefore an outranking kernel.

b

a

d

c e

minimal outranking choice,

b

a

d

c e

minimal outranking choice.

b

a

d

c e

outranking kernel,

b

a

d

c e

minimal outranking choice.

Kernels and minimal choices however coincide in determined and transitive digraphs.

Proposition 3
Let G̃(X, S̃) be a transitive and determined digraph, i.e. the associated crisp graphG(X,S)

supports a transitive outranking relationS. A choiceY in G̃ is an outranking (resp. out-
ranked) kernel if and only ifY verifies one of the following equivalent conditions:

1. Y is minimal outranking (resp. outranked);

2. Y is outranking (resp. outranked) and independent;

3. Y is outranking (resp. outranked) and +(-)irredundant;

4. Y is maximal +(-)irredundant.

Proof: (1) ⇔ (3) ⇔ (4) are covered by proposition 1, and (2)⇒ (1) is covered by
proposition 2. We only need to prove that (1)⇒ (2).

Let us therefore suppose that a minimal outranking (respectively outranked) choiceY
is indeed not independent. As̃G is determined, this implies that there exists some proper
subsetY ′ ⊂ Y such that fory ∈ Y − Y ′ andy′ ∈ Y ′ we observe(y, y′) ∈ S (respectively
(y′, y) ∈ S. As Y is a minimal outranking (respectively outranked) choice, each action
in Y must have a private outranked (resp. outranking) neighbourhood and in particular
all actions inY ′. By transitivity of S, the private neighbourhoodsN+

Y (y′) andN−
Y (y′)

13
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of an actiony′ ∈ Y ′ are transferred toy ∈ Y − Y ′. And Y − Y ′ remains therefore an
outranking (resp. outranked) choice. This is however contradictory with the hypothesis
thatY is minimal with this quality.2

It is worthwhile noticing that proposition (3) only applies to determined digraphs. In case
we observe a partially determined graph, it may happen that a minimal outranking (resp.
absorbent) choice is only weakly independent, and vice-versa, it may indeed happen that
a maximal independent choice is neither outranking nor outranked. All depends upon the
particular presence of undetermined relations.

We have not the space in this paper to present all existence results for kernels in
a digraph (see for instance [19]). Relevant properties for our purpose are summarized
below, where we generally suppose that the bipolar-valued digraph is determined.

Proposition 4 (Existence of qualified choices)
1. Every digraph supports minimal outranking (resp. outranked), as well as maximal

independent and/or +irredundant (resp. -irredundant) choices.

2. A transitive digraph always supports an outranking (resp. outranked) kernel and all
its kernels are of same cardinality (König, 1950 [22]).

3. A symmetric digraph always supports a conjointly outranking and outranked kernel
(Berge, 1958 [1]).

4. An acyclic digraph always supports a unique outranking (resp. outranked) kernel
(Von Neumann, 1944 [29]).

5. If a digraph does not contain any cordless circuit of odd length, it supports an out-
ranking (resp. outranked) kernel (Richardson, 1953 [23]).

1.4 Bipolar-valued characterisation of choice classes

In the previous sections we have worked with different kinds of choices, namely out-
ranking, outranked, independent,±-irredundant ones. Similarly to the bipolar-valued
characterisation of the digraph, we may now define a bipolar-valued characterisation of
these kinds or classes on the power setP(X) of all possible choices we may define iñG.

As these classes are all defined with logical conditions applied on bipolar-valued bi-
nary outranking statements, we first need to extend the bipolar-valued credibility calculus
to well formed logical expressions.

Definition 8 (Well formed logical expressions)
LetG denote a set of ground atomic logical statements. We define inductively the setE of
well formed logical expressions in the following way:

14
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1. ∀p ∈ G we havep ∈ E ;

2. ∀x, y ∈ E we have(x ∨ y) ∈ E , (x ∧ y) ∈ E , and¬x ∈ E

3. all p ∈ E result of finite construction.

In order to avoid any problem with precedence of operators, we shall always use brackets
to delimit the scope of the logical operatorsmax, min and¬ in an expression. Here our
ground atomic logical expressions are the binary outranking assertionsx S y of the given
digraphG̃(X, S̃). Our well formed logical expressions concern formulas involving these
binary outranking assertions.

As the atomic outranking assertions are evaluated in the given digraphG̃(X, S̃), fol-
lowing the truth-denotation semantics of Definition 1, we are now able to evaluate any
well formed logical expression involving these evaluationsS̃(x, y). We start by defining
the degree of±-irredundancy of a choice iñG.

Definition 9 (Bipolar-valued ±-irredundance of choices)
Let G̃(X, S̃) be a bipolar-valued digraph. The credibility of (outranking) +irredundancy

of actionx with respect to choiceY in G̃ is given by:

∆+irr
Y (x) =

{
+1.0 when Y = {x},

max(z,y)∈X×Y −{x} min
(

S̃(x, z),−S̃(y, z)
)

otherwise.
(6)

Similarly, the credibility of (outranked)−irredundancyof actionx with respect to choice
Y in G̃ is given by:

∆-irr
Y (x) =

{
+1.0 when Y = {x},

max(z,y)∈X×Y −{x} min
(

S̃(z, x),−S̃(z, y)
)

otherwise.
(7)

The credibility of +irredundancyof choiceY in G̃ is given by:

∆+irr(Y ) = min
x∈Y

∆+irr
Y (x) (8)

The credibility of -irredundancyof choiceY in G̃ is given by:

∆-irr(Y ) = min
x∈Y

∆-irr
Y (x) (9)

Proposition 5
Y in G̃ is a +irredundant outranking (resp. -irredundant) choice if and only if∆+irr(Y ) > 0
(resp.∆-irr(Y ) > 0).

15
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Proof: (⇒) Suppose∆+irr(Y ) < 0. Then∃x ∈ Y such that∆+irr
Y (x) < 0. This implies

thatY ⊂ X and∀(z, y) ∈ X × Y − {x} we havemin
(

S̃(x, z),−S̃(y, z)
)

< 0. In other
terms:∀z ∈ N+[x] : ∃y ∈ Y − {x} such thatz ∈ N+[y]. Hencex is redundant andY
cannot be +irredundant.

(⇐) Let us suppose the other way round thatx in choiceY is redundant. This implies
thatNY + [x] = ∅. In other terms:N [x] − N+[Y − {x}] = ∅. This is exactly the case
when for allz ∈ X such that̃S(x, z) > 0, we find ay ∈ Y − {x} such that̃S(y, z) > 0.
In this casemax(z,y)∈X×Y −{x}(S̃(z, x),−S̃(z, y)) < 0 and∆+irr

Y (x) < 0.

A same development applies for the outranked case.2

Definition 10 (Bipolar-valued qualification of choices)
Let G̃(X, S̃) be a bipolar-valued digraph. The credibility ofoutrankingnessof a choiceY

in G̃ is given by:

∆dom(Y ) =

{
+1.0 when Y = X,

minx6∈Y maxy∈Y

(
S̃(y, x)

)
otherwise.

(10)

The credibility ofoutrankednessof a choiceY in G̃ is given by:

∆abs(Y ) =

{
+1.0 when Y = X,

minx6∈Y maxy∈Y

(
S̃(x, y)

)
otherwise.

(11)

The credibility of independenceof a choiceY in G̃ is given :

∆ind(Y ) =

{
+1.0 if Y = {x},

miny 6=x
y∈Y minx∈Y

(
− S̃(x, y)

)
otherwise.

(12)

Proposition 6
Let G̃(X, S̃) be an bipolar-valued outranking graph.

1. Y in G̃ is an independent (resp. weakly independent) choice if and only if∆ind(Y ) >
0 (resp.∆ind(Y ) > 0).

2. Y in G̃ is an outranking (resp. outranked) choice if and only if∆dom(Y ) > 0 (resp.
∆abs(Y ) > 0).

Proof: Property (1) follows immediately from definition (2) which states that a choice
Y is indeed independent (weakly independent) if and only ifS̃(x, y) > 0 (S̃(x, y) 6 0)
for all x, y ∈ Y .
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Property (2), similarly, follows immediately from definition (1), as a choiceY is out-
ranking (resp. outranked) if and only if∀x ∈ Y : ∃y ∈ Y such that̃S(y, x) > 0 (resp.
S̃(y, x) > 0). 2

Corollary 1
Let G̃(X, S̃) be an bipolar-valued outranking graph andG(X,S) its associated strict 0-cut

crisp digraph. The minimal outranking (resp. outranked) choices ofG̃ correspond to the
minimal outranking (resp. outranked) choices ofG.

Proof: Y in G̃ is a minimal outranking (resp. outranked) choice if and only if∆+irr(Y ) >
0 and∆dom(Y ) > 0 (resp.∆-irr(Y ) > 0 and∆abs(Y) > 0). 2

This important result from an operational point of view allows to determine the bipolar-
valued minimal outranking (resp. outranked) choices in a bipolar-valued digraphG̃ as
follows:

1. Compute the minimal outranking (resp. outranked) crisp choices in the associated
strict 0-cut digraphG, and

2. Compute the credibility of their qualification.

Corollary 2 (Kitainik 1993)
The set of outranking (resp. outranked) kernels ofG̃ is a subset of the set of outranking
(resp. outranked) kernels of the associated strict 0-cut crisp digraphG.

Proof: Let G̃(X, S̃) be a bipolar-valued outranking graph.Y in G̃ is an outranking (resp.
outranked) kernel if and only if∆ind(Y ) > 0 and∆dom(Y ) > 0 (resp.∆abs(Y) > 0). 2

It is worthwhile noting, that the actual set of kernels in the associated strict 0-cut digraph
G may be larger than than that of the original bipolar-valued digraphG̃. It may con-
tain, the case given, some outranking or outranked choices, that are indeed only weakly
independent. These weak kernels correspond to partly determined choices.

Kitainik’s result allows us to determine all possible outranking or outranked (weak)
kernels in a bipolar-valued digraph̃G as follows:

1. We extract all crisp kernels and weak kernels from the associated strict 0-cut crisp
graphG and,

2. for each such crisp kernel or weak kernel inG, we compute iñG its bipolar-valued
credibility.
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Enumerating in a bipolar-valued digraph all outranking and outranked crisp kernels
will actually be the purpose of the next section.

2 Enumerating crisp kernels

Enumerating kernels necessarily relies on general techniques for enumerating qualified
choices, like minimal outranking or maximal independent ones. We start this section
with the presentation of a general framework for enumerating such minimal or maximal
qualified choices. After the discussion of their complexity and performance, we present
and discuss specific algorithms for enumerating outranking as well as outranked crisp
kernels.

2.1 Enumerating minimal and maximal qualified choices

Definition 11 (Hereditary properties)
A propertyP of choices is said to behereditary0 if whenever a choiceY has property
P , so does every proper subchoiceY ′ ⊂ Y . A propertyP of choices is said to be
superhereditaryif whenever a choiceY has propertyP , so does every proper superchoice
Y ′ ⊃ Y .

Proposition 7
Being outranking or outranked are superhereditary properties of choices inG̃. Similarly,

independence as well as±-irredundancy are hereditary properties of choices inG̃.

Proof: Hereditary follows immediately from the definition of an independent, an +ir-
redundant, and an -irredundant choice. Superhereditary follows again readily from the
definition being outranking or outranked.2

Inheritance of being outranking makes it possible to implement the search for minimal
outranking choices as a path algorithm in the outranking choices graph associated with
G̃.

Definition 12 (P-choices graphs)
Let G̃(X, S̃) be an outranking graph. LetP(X) represent the powerset of choices inG̃
with propertyP . The coupleH(P(X), P ) is called theP choices-graphassociated with
G̃. Two choices are linked inH(P(X), P ) if they have some common action.

0The ideas and results concerning hereditary and superhereditary properties of choices are taken
from [20, see Chapter 3].
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Proposition 8
1. The outranking and outranked choices graphs associated withG̃ contain the greedy

choiceX and are each one strongly connected,

2. The±-irredundant and independent choices graphs associated withG̃ are composed
of a set of strongly connected components such that each singleton choice belongs
to exactly one component.

Proof: Ad 1. As outrankingness and outrankedness are superhereditary properties, there
necessarily exists a path from every possible minimal outranking (resp. outranked) choice
to X, the largest outranking (resp. outranked choice) and vice versa.

Ad 2. Both irredundancies as well as the independence property being hereditary,
there necessarily exists a path in the corresponding choices-graphs from a maximal±-
irredundant (resp. independent) choice to each of its single choice members and vice
versa.2

Following proposition 8, enumerating all minimal outranking or outranked choices
may be implemented as a graph traversal algorithm in the corresponding choices graphs,
where we try to explore all paths from the largest outranking (resp. outranked) choice –
the greedy choiceX – to the first subchoices which are±-irredundant.

Algorithm 1 (Enumerating minimal outranking choices)
global Hist
Hist ← ∅ # initialise the history
Y0 ← X # start with the greedy choice
K+

0 ← ∅ # initialise the result
K+ ← MinimalOutrankingChoices (Y0, K

+
0 )

def MinimalOutrankingChoices (In: Yi outranking,K+
i ; Out: K+

i+1)
K+ ← ∅
IRRED ← True
for [x ∈ Yi : N+

Yi
[x] = ∅]: # Retract in turn all redundant nodes

IRRED ← False
Yi+1 ← Yi − {x} # Yi+1 remains outranking !
if Yi+1 6∈ Hist:

K+ ← K+ ∪MinimalOutrankingChoices (Yi+1, K
+):

Hist ← Hist ∪ {Yi+1}
if IRRED:

K+
i+1+ ← K+

i ∪ Y # Y is +irredundant (and outranking)
else:

K+
i+1+ ← K+

i ∪ K+

return K+
i+1
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Proof: The algorithm starts with the greedy choiceY = X which is always outranking
and an empty set of minimal outranking choices.
The procedureMinimalOutrankingChoices collects all minimal outranking choices
that may be reached from the initial outranking choiceY .

The call invariants of procedureMinimalOutrankingChoices are that the choice
Yi is outranking andK+

i is a set of minimal outranking choices collected so far.

If Yi is outranking, thenYi+1 = Yi−{x} is constructed only ifN+
Yi

[x] = ∅, i.e. in case
x is a +redundant action andYi+1 remains outranking. If no more +redundant actions may
be found, the procedure stops the walk. AsY0 = X is outranking, the algorithm walks
therefore only on paths of the outranking choices-graph.

Let us suppose that at calli, K+
i contains only minimal outranking choices. Two sit-

uations may happen. Either the current choiceYi is irredundant or all redundant actions
have been removed in turn. In the first case, we are in the presence of a maximal irre-
dundant and dominating choice, i.e. a minimal outranking choice which is added to to
the current setK+

i . In the second case, all minimal outranking choices when reducing the
current choice are first added up in a local resultK+ to be at the end added up toK+

i .
This way,K+

i+1 can only contain minimal outranking choices. As we start with an empty
initial collection K+

0 , it is verified that in the endK+, if not empty, may only contain
minimal outranking choices.

Finally, that we algorithm collects all existing minimal outranking choices inG̃ fol-
lows from the fact that the outranking choices-graph is strongly connected and that there-
fore, starting from the greedy choiceX, the algorithm walks necessarily through all out-
ranking choices inG̃. The global history we use keeps track of the visited outranking
choices and avoids to explore several times the same outranking choice.2

The same algorithm delivers the minimal outranked choices when replacing in the
loop the private outranked neighbourhood with the corresponding private outranking neigh-
bourhood. This way, we only walk on outranked choices and collect all minimal out-
ranked choices instead.

Based again on proposition (8), we may design a similar graph traversal algorithm
in the irredundant choices graph. This time, we try to explore all paths from the small-
est +irredundant (resp. -irredundant) choices – the single choices – to all outranking or
outranked choices we may find on our way.

Algorithm 2 (Enumerating maximal irredundant choices)
global Hist
Hist ← ∅ # initialise the history
K+ ← ∅ # initialise the result
for x ∈ X:

Y0 ← {x} # each singleton is irredundant
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K+ ← K+ ∪ MaxIrredOutrankingChoices (Y0, K
+, Hist)

def MaxIrredOutrankingChoices (In: Yi +irredundant,K+
i ; Out: K+

i+1):
if (Yi − X) − N+(Yi) = ∅:

K+
i+1 ← K+

i ∪ Yi # Yi is outranking
else:

K+
i+1 ← K+

i # initialise the result
for [x ∈ X − Yi : N+

Yi
[x] 6= ∅]: # add all +irredundant actions

Yi+1 ← Yi ∪ {x}
if Yi+1 6∈ Hist:

K+
i+1 ← K+

i+1 ∪ MaxIrredOutrankingChoices (Yi+1, K
+
i+1):

Hist ← Hist ∪ {Yi+1}
return K+

i+1

Proof: The algorithm starts with an empty history and an empty set of minimal out-
ranking choices. The procedureMaxIrredOutrankingChoices then collects all
minimal outranking choices that may be reached in turn from each initial single choice
Y0 = {x},∀x ∈ X

The call invariants of iterationi are that the current choiceYi is +irredundant andK+
i

contains the minimal outranking choices collected so far.

If Yi is -irredundant, thenYi+1 = Yi ∪ {x} is constructed only ifN+
Yi

[x] 6= ∅, i.e. in
casex is a +irredundant action with respect to current choiceYi. Yi+1 remains therefore
+irredundant. As eachY0 is in turn +irredundant, the algorithm walks only on paths of
the +irredundant choices graph.

Let us suppose that at iterationi, K+
i is either empty or contains only minimal out-

ranking choices. Two situations may happen. First, the current choiceYi is outranking
and we have found a maximal irredundant, i.e. a minimal outranking choice, and we add
it to the current setK+

i . In the second case, we gather all minimal outranking choices
from the union of the current choiceYi with all possible +irredundant actions, i.e. such
that N+

Yi
[x] 6= ∅. This way,K+

i+1 can only contain minimal outranking choices or stay
empty. As we start with an empty initial collectionK+

0 , it is verified that in the endK+

may only contain minimal outranking choices.

Finally, that the algorithm collects all existing minimal outranking choices inG̃ fol-
lows from the fact that the +irredundant choices-graph is composed of strongly connected
components. Starting in turn from each single choice, the algorithm walks necessarily
through all +irredundant choices existing inH(P(X), +irredundant). In order to avoid
visiting the same +irredundant choices several times in turn from each member single
choice, we keep a history of visited +irredundant choices, and only proceed recursively
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with the next choiceYi+1 in case it has not been visited already before.2

The same algorithm delivers again the minimal outranked choices when replacing the
outranked with the outranking neighbourhoods. This way, we only walk on -irredundant
choices and collect all minimal outranked choices instead.

2.2 Complexity and performance

The problem of finding a minimal outranking or outranked choice of a certain cardinality
k, is known to be NP-complete [18], so that there is little hope to find efficient algorithms
for enumerating all minimal outranking or outranked choices in general digraphs of high
orders.

Indeed, the complexity is directly linked to the size of theP -choices graphs. In case
a bipolar-valued digraph is empty, only the greedy choice will actually be an outranking
choice. The outranking choices graph reduces here to a single node and algorithm 1 will
deliver immediately this unique possible solution. As every possible choice inP(X) will
be irredundant, the corresponding±-irredundant choices-graph will be of order2n − 1
(wheren is the order ofG̃) and of size(2n−1)2− (2n−1). Algorithm 2 therefore rapidly
gets totally inefficient.

Similarly, in caseG̃ is complete, i.e.G is a complete graphKn, the irredundant
choices-graph reduces ton isolated single choices. This time, algorithm 2 delivers imme-
diately then solutions, whereas the corresponding outranking choices-graph is again of
order2n − 1 and so of huge size(2n − 1)2 − (2n − 1). Similarly, algorithm 1 this time is
totally inefficient.

A stated before, we are mainly interested in dense digraphs where the second algo-
rithm is more efficient in general, except for very low arc densities (see Figure 2.2). We
have implemented both algorithms in the Python language (version 2.4) using the opti-
mized inbuiltset class, which delivers constant time access to members of sets (indepen-
dent of the cardinalities), and which offers optimized set operators like union, intersec-
tion, and difference with linear time in the cardinality of the operands [11]. In figure (2.2)
we have illustrated run time statistics for random digraphs of order 15 with arc densities
varying from 10 to 90%.

It is obvious that theMaxIrredOutrankingChoices algorithm is doing much
better except for arc densities below 15 %.

Let us now consider a special kind of outranking and outranked choices, namely those
where the chosen actions are incomparable with respect to theS relation.
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Figure 2: Run time statistics for randomly filled digraphs of order 15

2.3 Qualified choices graph traversal algorithms for kernel enumer-
ation

We have seen in the first section, that the independence property is computed from the
false part of̃S. In order to implement path algorithms in the corresponding independent-
choices graph, we cannot, as usual rely on the false by failure principle, i.e. the comple-
ment of the neighbourhoods, for representing independence. We need to introduce the
logically positive concept ofdisconnects.

Definition 13 (Disconnects)
Let G̃ be an irreflexive digraph. We calldisconnectof a nodex, denotedD(x) = {y ∈

X : (S̃(y, x) < 0) ∨ (S̃(x, y) < 0)}, the set of nodesdisconnectedfrom x. We call
disconnectof a choiceY , the intersection of disconnects of the members ofY :

D(Y ) =
⋂

x∈Y

D(x).

Proposition 9
A choiceY in G̃ is an outranking (respectively outranked) kernel if and only if:

Y ⊆ D(Y ) (independent)

∀x 6∈ Y : N−(x) ∩ Y 6= ∅ (outranking)

(resp.∀x 6∈ Y : N+(x) ∩ Y 6= ∅ (resp. outranked) )

Proof: It is readily seen that a choiceY is indeed independent if and only if the dis-
connects of the choice members contain the otherwise chosen actions. Similarly, a choice
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Y is outranking (resp. outranked) if and only if all not members of the choice are in the
respective choice neighbourhood.2

2.3.1 Reducing outranking choices

The previous result allows us to implement an outranking-choices graph traversal algo-
rithm for enumerating all outranking kernels in a bipolar-valued outranking digraph.

Algorithm 3 (Enumerating outranking kernels: variant 1)
Y0 ← X # start with the greedy choice
K+ ← OutrankingKernels-1 (Y0)

def OutrankingKernels-1 (In: Y outranking;Out: K+)
if Y ⊆ D(Y ):

K+ ← Y # Y is independent
else:

K+ ← ∅
for [x ∈ Y : N+

Y [x] = ∅]: # Retract in turn all +-redundant nodes
Y1 ← Y − {x} # Y 1 remains outranking !
K+ ← K+ ∪OutrankingKernels-1 (Y1)

return K+

Proof: Similar in its design to algorithm 1, this algorithm starts again with the greedy
choiceY = X which is always outranking by convention and an empty set of mini-
mal outranking kernels. The procedureOutrankingKernels collects all independent
outranking choices that may be reached from this initial outranking choiceY .

The call invariants of iterationi are that the choiceYi is outranking andK+
i is a set of

outranking kernels collected so far.

If Yi is outranking, thenYi+1 = Yi−{x} is constructed only ifN+
Yi

[x] = ∅, i.e. whenx
is a +irredundant action, so thatYi+1 remains outranking. If no more +irredundant actions
may be found, the procedure stops the walk. AsY0 = X is outranking, the algorithm only
walks on paths of the outranking choices-graph.

Let us suppose that at iterationi, K+
i contains only outranking kernels. Two situations

may happen. Either the current choiceYi is independent or all redundant actions have been
removed in turn. In the first case, we are in the presence of an outranking kernel which
is added to to the current setK+

i . In the second case, all outranking kernels potentially
reached when reducing the current choice are first added up in a local resultK+ to be at
the end added up toK+

i . This way,K+
i+1 can only contain outranking kernels. As we start
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with an empty initial collectionK+
0 , it is verified that in the endK+ may only contain

minimal outranking choices.

Finally, that we algorithm collects all existing independent outranking choices inG̃
follows from the fact that the outranking-choices graph is strongly connected and that
therefore, starting from the greedy choiceX, the algorithm walks necessarily through all
outranking choices iñG. 2

Replacing in this algorithm the +redundancy with the -redundancy test will enumer-
ates simmilarly all outranked kernels. Furthermore, using a weak version of the dis-
connect concept, allows one to extract, with the same algorithm, all outranking (resp.
outranked) kernels and weak kernels.

2.3.2 Extending independent choices

We have noticed from the discussion of the cmplexity of the minimal outranking choices
extraction that the outranking digraphs are rather dense digraphs in general such that the
outranking-choices graph is generally of very large order. Therefore is it more interesting
to implement the kernel enumeration as an independent-choices graph traversal.

Algorithm 4 (Enumerating outranking kernels variant 2)
K+ ← ∅ # initialise the result
for x ∈ X:

Y ← {x} # each singleton is independent
K+ ← K+ ∪ OutrankingKernels-2 (Y,K+)

def OutrankingKernels-2(In: Y independent,K+
0 ; Out: K+):

if N+(Y ) − (Y − X) = ∅:
K+ ← K+

0 ∪ Y # Y is outranking
else: # try adding all independent singletons

K+ ← K+
0 # initialise the result

for [x ∈ X − Y : Y − {x} ⊆ D(x)]:
Y1 ← Y ∪ {x} # Y1 remains independent !
K+ ← K+ ∪ OutrankingKernels-2 (Y1, K

+)
return K+

Before going to prove algorithm 4, we may notice that the independence property
in the recursive call invariant here, contrary to the±-irredundancy properties, is a non
oriented concept. This allows to enumerate in the same run, both the outranking and the
outranked kernels.
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2.3.3 Outranking and outranked kernels in the same run

Algorithm 5 (Enumerating outranking and outranked kernels)
global Hist
Hist ← ∅ # initialise the history
K+ ← ∅ # initialise the outranking result
K− ← ∅ # initialise the outranked result
for x ∈ X:

Y ← {x}
(K+, K−) ← (K+, K−) ∪ AllKernels (Y , (K+, K−))

def AllKernels (In: Y independent,(K+
0 , K−

0 ); Out: (K+, K−)):
if N+(Y ) − (Y − X) = ∅:

K+ ← K+
0 ∪ Y # Y is outranking

if N−(Y ) − (Y − X) = ∅:
K− ← K−

0 ∪ Y # Y is outranked
# try adding all independent singletons
(K+, K−) ← (K+

0 , K−
0 )

for [x ∈ D(Y )]:
Y1 ← Y ∪ {x}
if Y1 6∈ Hist:

(K+, K−) ← (K+, K−)∪ AllKernels (Y1, (K
+, K−))

Hist ← Hist ∪ Y1

return (K+, K−)

Proof: The algorithm starts with an empty history and empty sets of outranking and out-
ranked kernels. The procedureAllKernels then collects all outranking and outranked
kernels that may be reached in turn from each initial single choiceY0 = {x},∀x ∈ X.

The call invariants of procedureAllKernels are that the current choiceYi is strictly
independent, and that the current setK+

i (resp. K−
i ) of results contains the outranking

(respectively outranked) kernels collected so far.

If Yi is independent, thenYi+1 = Yi∪{x} is constructed only ifx ∈ D(Yi), i.e. in case
Yi+1 remains independent. As eachY0 is in turn independent by convention, the algorithm
walks only on paths of the independent choices-graph.

Let us suppose that at recursive calli, K+
i andK−

i are either empty or contain only
outranking or outranked kernels. Three situations may happen. First, the current choice
Yi is outranking and we have found a new outranking kernel that we add to the current set
K+

i . In the second case, the current choiceYi is outranked and we have found a new out-
ranked kernel that we add again to the current setK−

i . Thirdly, we gather all outranking
and outranked kernels from the union of the current choiceYi with all possible actions
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Figure 3: Run time statistics for theAllKernels procedure (Algorithm 5)

x contained in its disconnect. This way,K+
i+1 andK−

i+1 can only contain outranking, re-
spectively outranked kernels or stay empty. As we start with empty initial collectionsK+

0

andK−
0 , it is verified that in the endK+, respectivelyK−, if not empty, may only contain

outranking, respectively outranked, kernels.

Finally, that the algorithm collects all existing determined outranking and outranked
kernels inG̃ follows from the fact that the strictly-independent-choices graph is strongly
connected. Starting in turn from each single choice, the algorithm walks necessarily
through all strictly independent choices existing inG̃. In order to avoid visiting the same
strictly independent choices several times in turn from each member single choice, we
keep a history of visited choices and only proceed recursively with the next choiceYi+1

in case it has not yet been visited.2

Again, using a weak version of the disconnect concept, allows one to extend this algorithm
to both, the completely determined as well as the weak kernels.

2.4 Complexity and computational performance

In figure 2.4 we show run times statistics for kernel extractions from randomly filled
bipolar-valued digraphs of order 35. Similar to the previous statistics, we find that the
extraction of kernels is computationally easy (run times less than a second) when the arc
density is 20% and more. Again, the performance is directly related to the order of the
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Figure 4: General performance of Algorithm 5

independent-choices graph. Indeed, the higher the arc density, the lower is the order of
this choices graph. With an arc density of 50% for instance, we observe an average of
only 200 independent choices. We may collect on this choices graph the outranking and
outranked kernels in an average of 15 milliseconds on a standard desktop PC.

This run time performance is even better supported in general (see figure 2.4) when
considering that almost all digraphs of ordern contain only kernels such thatCn − 1.43
≤ |K| ≤ Cn +2.11 whereCn = ln(n)− ln(ln(n)) (Tomescu [28]). For a randomly filled
digraph of order 900 and 50% arc density, we may thus observe kernels of average cardi-
nalities of 7. Thus we are able to extract in less than a minute all kernels from digraphs
of orders up to 900 and an arc density of 50% and more, under the condition of disposing
of a sufficiently large CPU memory. This general performance is most satisfactory, as the
particular outranking graphs we are interested in generally represent more or less tran-
sitive weak orderings. As empiric studies of random outranking digraphs is confirming,
the corresponding digraphs show arc densities always superior to 50% [9]. Nevertheless
some digraphs, even of modest order (less than 30), may potentially represent difficult
instances. Indeed, as shown in figure 2.4, where we have artificially limited the run time
to 10 seconds, a brutal combinatorial explosion appears with digraphs of very low arc
density. Here we may easily observe independent choices-graphs of huge exponential
size coupled with kernels of cardinalities up ton/2. This definitely limits the practical
performance for extracting all kernels from these kinds of digraphs.

But the independent-choices graph traversal approach is not the only possible strategy
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for computing kernels in a digraph. Very recently, Alain Hertz1 has proposed a pivoting
algorithm which, starting from an arbitrary initial maximal independent choice, visits di-
rectly all other existing maximal independent sets in the digraph. This algorithm belongs
to the family of reverse searching algorithms such as the simplex algorithm in linear
algebra. The pivoting from one maximal independent choice to the other is done in a
polynomialO(n) step, such that performances in fact only depend on the actual number
of kernels observed in the digraph. Even if this last algorithm is not as efficient as the
AllKernels procedure for dense digraps of large orders, it however delivers all kernels
for difficult digraphs such as cordlessn-circuits, andn-paths.

All the preceding discussion only concerns the computation of crisp kernels. In the
next section we propose an algebraic approach to the same problem via bipolar-valued
membership characterisations of choices, which will deliver the necessary algorithms for
solving the general bipolar-valued case.

3 Algebraic approach

In this last section we use an early observation by Berge [1, see Chapter 5] concern-
ing the fact that kernels in a digraph may be characterised with a specific characteristic
functional equation. We extend this idea to the bipolar-valued case with the objective to
immediately determine bipolar-valued kernels from the admissible algebraic solutions of
these caracteristic equations.

3.1 The kernel characteristic equations

A choiceY in G̃(X, S̃) may be characterised with the help of bipolar-valued membership
assertions̃Y : X → L, denoting the credibility of the fact thatx ∈ Y or not, for all
x ∈ X. Ỹ is called a bipolar-valued characterisation ofY , or for short a bipolar-valued
choice inG̃(X, S̃).

Based on the truth-denotation semantics of the bipolar-valued characterisation domain
L (see Subsection 1.1), we obtain the following properties:

– Ỹ (x) = +1 signifies that assertion “x∈ Y ” is certainly true;

– Ỹ (x) > 0 signifies that assertion “x∈ Y ” is more true than false;

– Ỹ (x) = 0 signifies that assertion “x∈ Y ” is logically undetermined, i.e. could be
either true or false;

1Private communication, April 2006
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– Ỹ (x) < 0 signifies that assertion “x∈ Y ” is more false than true;

– Ỹ (x) = −1 signifies that assertion “x∈ Y ” is certainly false. Equivalently, one
can say that assertionx /∈ Y is certainly true.

In the following paragraphs, we recall useful results from [8]. They allow us to es-
tablish a formal relation with the previous classical subset-based definitions of qualified
choices.

Let Ỹ be a bipolar valued characteristaion of a choice inG̃(X, S̃). We noteỸ ◦

S̃ (resp. Ỹ ◦ S̃
−1

) the bipolar-valued matrix productmaxy 6=x[min(Ỹ (y), S̃(y, x))] (resp.
maxy 6=x[min(S̃(x, y), Ỹ (y))]) for all x, y in X.

Proposition 10
The outranking (resp. outranked) kernels ofG̃(X, S̃) are among the bipolar-valued choices

Ỹ satisfying the respective following bipolar-valued kernel caracteristic equation systems:

Ỹ ◦ S̃ = −Ỹ , (resp. Ỹ ◦ S̃
−1

= −Ỹ ). (13)

Proof: Early proofs of this proposition for the Boolean-valued outranked case may be
found in [2] and [26; 27]. The classic fuzzy-valued case is tackled in [21], while the
bipolar-valued outranking case is thoroughly discussed and proved in [8].2

It is worthwhile noting from the beginning, that certain bipolar-valued kernel charac-
terisations, despite being different in values, may characterise in fact a same crisp choice.
To cope with this phenomena, we introduce the following congruence relation onY, the
set of possible characterisations of choices inG̃.

We say that two bipolar-valued characterisationsỸ1 and Ỹ1 of choices inG̃ arenon
contradictory, denoted̃Y1

∼= Ỹ2 if and only if Ỹ1(x) > 0 ⇔ Ỹ2(x) > 0 and Ỹ1(x) < 0

⇔ Ỹ2(x) < 0. Every choiceY in G̃ determines a congruence class of non contradictory
bipolar-valued characterisations denotedY/∼=Y .

Furthermore, it is useful to compare bipolar-valued charaterisations with respect to
thesharpnessof their charateristic determination.

Definition 14 (Sharpness of bipolar-valued characterisations)
Let Ỹ1, Ỹ2 ∈ Y characterise choicesY in G̃. We say thatỸ1 is sharper thañY2, denoted
Ỹ1 < Ỹ2 if and only if for all x ∈ X, eitherỸ1(x) ≤ Ỹ2(x) ≤ 0, or 0 ≤ Ỹ2(x) ≤ Ỹ1(x).

The sharpness relation< determines a partial order onY, the set of possible bipolar-
valued characterisations of choices inG̃ (see [5]). The all 0-valued vector̃Y (x) = 0,∀x ∈
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X acts as bottom, the least sharpest characterisation and all2n crisp, i.e. {−1.0, 1.0}-
valued choice characterisations give the sharpest possible characterisations. In a given
congruence class of non-contradictory characteristaions of a given choiceY , the sharp-
ness relation actually gives a lattice with the all 0-valued vector as bottom element and
the{−1, 1}-valued characterisation ofY (see [5]).

Theorem 1 (Bisdorff, Pirlot, Roubens, 2005)
1. To each maximal sharp solution of the kernel characteristic equation systems (13)

is associated an outranking (resp. outranked) kernel or weak kernel inG̃.

2. A choiceY is an outranking (resp. outranked) kernel inG̃ if and only if there ex-
ists a corresponding bipolar-valued characteristic vectorỸ that is a maximal sharp
determined solution of the kernel characteristic system (13).

Proof:
Ad 1.) (⇐) If Ỹ is a maximal sharp (not trivially undetermined) solution of equation sys-
tem (13), then the so characterised choiceY will be independent or weakly independent
and outranking iñG as a direct consequence of Proposition (10). From [8, see Theroem
2] if follows that in caseỸ is only partially determined, the associated crisp choice will
be necessarily weakly independent only.

Ad 2.) (⇐) With the same argument as before, we see that in case the choiceỸ is actually
determined, the associated crisp choice will necessarily be independent and outranking,
i.e. an outranking kernel. (⇒) IfY is an outranking kernel iñG we show that there exists
a unique solutioñY ∈ Y/∼=Y of the fixpoint equation system:

T (Ỹ ) = −(Ỹ ◦ S̃) = Ỹ . (14)

that is a maximal sharp and determined solution of equation system (13).

Indeed, it is readily seen that the fixpoints of equation (14) verify in fact the outranking
kernel characteristic equation system (13).

TransformationT gives furthermore a non-contradictory transformation of kernel
characterisations, i.e.̃Y ∈ Y/∼=Y ⇒ T (Ỹ ) ∈ Y/∼=Y . Indeed,y ∈ Y ⇒ S̃(y, x) < 0

so that∀x ∈ Y , min(Ỹ (x), S̃(x, y)) = S̃(x, y) < 0, and,∀x 6∈ Y , min(Ỹ (x), S̃(x, y)) ≤
Ỹ (x) < 0. The combination of both cases shows thatT (Ỹ )(y) > 0. Similarly,x 6∈ Y ⇒

∃y ∈ Y : S̃(y, x) > 0. For such any, min(Ỹ (x), S̃(x, y)) > 0 and henceT (Ỹ ) < 0.

We may also show that the transformationT is isotone with respect to the sharpness
ordering<, i.e. if Ỹ1, Ỹ2 ∈ Y/∼=Y are such that̃Y1 < Ỹ2 thenT (Ỹ1) < T (Ỹ2). Indeed,
y ∈ Y ⇒ Ỹ1(y) > Ỹ2(y) ⇒ T (Ỹ1)(y) > T (Ỹ2)(y), andy 6∈ Y ⇒ Ỹ1(y) < Ỹ2(y) ⇒
T (Ỹ1)(y) < T (Ỹ2)(y) since the functionsmax andmin are non decreasing.
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If we start now the resolution of the fixpoint equation withỸ0(x) = 1.0 whenx ∈ Y ,
and Ỹ0(x) = −1.0 whenx 6∈ Y , i.e. the maximal possible sharp characterisation, we
necessarily get̃Yi < T (Ỹi−1) for i = 1, 2, . . .. As G̃ is of finite order, the bipolar-valued
credibility calculus, involving onlymin, max and signs inversions, is a finite algebra
generated by the finite set of additions and subtractions of the weightswj of the individual
criteria j as appearing in the bipolar-valued characterisation of the outranking relation..
Therefore there exists a finite numberk ≤ n(n − 1) such that̃Yk = T (Ỹk).

This fixpoint solutionỸn is unique, determined and maximal sharp (see [8, proof of
theorem 1]).

The outranked case is canonically obtained by taking the reversed outranking relation

S̃
−1

.2

3.2 Solving the kernel characteristic equation system

3.2.1 Smart enumeration with a finite domain solver

It is possible to directly enumerate all maximal sharp solutions from the bipolar-valued
kernel characteristic equation systems with the help of a finite domain solver as provided
by some Prolog programming environments such as GNU-Prolog [15; 16] or the com-
mercial Prolog software CHIP. Implementation details of such a solving approach may be
found in Bisdorff [4].

In Figure 3.2.1, we show average performance using the GNU-Prolog FD solver.
Contrary to ourAllKernels Python implementation, better performances are obtained
here with smaller arc densities. This is due to the order of the arc-constraints graph which
is indeed proportional to the actual size of the outranking digraph. The sparser the out-
ranking digraph, the smaller the order of the constraints graph, the quicker the constraints
propagation algorithm will help enumerating all kernels in the graph.

However, empiric computing studies reveal that these enumeration techniques get in-
efficient for dense bipolar-valued outranking digrahs of order 30 and more. It quickly
appears that specially adapted fixpoint approaches are much more efficient (see Bis-
dorff [5]).

3.2.2 Fixpoint based solving approaches

The proof of Theorem 1 reveals indeed a possibility to find a maximal sharp bipolar-
valued characterisation of an outranking (resp. outranked) kernel under the condition that
we already precisely know the associated strict 0-cut choice.
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Figure 5: Average performance using the GNU-Prolog FD solver

Algorithm 6 (Pirlot 2004)
Let G̃(X, S̃) be a bipolar-valued outranking digraph.

1. With the help of theAllKernels procedure, extract all crisp outranking and out-
ranked kernelsK1, K2, . . . , Kj from G̃;

2. For each outrankingKj:
With Ỹ0(x) = +1.0 for all x ∈ Kj andỸ0(x) = −1.0 for all x 6∈ Kj, the iteration
Ỹi = T (Ỹi−1) for i = 1, 2, . . . converges to a fixpoint which is̃Kj = T (K̃j);

3. We repeat the preceding step for the outranked kernels with a reversed fixpoint

operatorT −1(Ỹ ) = −(Ỹ ◦ S̃
−1

) = Ỹ ..

Proof: From Proposition 10 we know that the set of bipolar-valued kernels of a given
outranking digraphG̃(X, S̃) is a subset of the set of crisp kernels we may find in the
associated 0-cut crisp digraphG(X,S). For all determined bipolar-valued kernels, we
know from Theorem 1 that the fixpoint euqation delivers the unique, maximal sharp,
bipolar-valued kernel characterisation.2

But we may also find a similar way to compute the weak kernels ofG̃. Before tackling
this general bipolar-valued case, we may consider the following result.
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Theorem 2
Let G̃(X, S̃) be a bipolar-valued outranking digraph such that their exists a unique (may

be partial) kernelK in G̃ with an associated maximal sharp (not trivially undetermined)
K̃ characterisation. LetT 2 : Y → Y be the following dual transformation of a bipolar-
valued choice characterisation:

T 2(Ỹ ) = −
(
− (Ỹ ◦ S̃) ◦ S̃

)
. (15)

With Ỹ0(x) = −1.0 for all x ∈ X, the iterationỸi = T 2(Ỹi−1) for i = 1, 2, . . . converges
to the unique fixpoint̃K = T 2(K̃).

Proof: A classic Boolean-valued restriction of this theorem is attributed to von Neu-
mann (1944) [27, see A3, p. 284].

The proof of the bipolar-valued case will follow a scheme first set out in Berge [1] and
thoroughly enlarged in Schmidt and al. [27]. For any bipolar caracterised choiceỸ in Y,
let us denoteπ(Ỹ ) the crisp choice inX associated with̃Y .

We may first notice that the singleT transformation of bipolar-valued choices is anti-
tone with respect to the subchoice-inclusion relation defined onX through theπ function.
As a consequence, the dual transformationT 2 will be isotone wrt to the same subchoice-
inclusion relation inX. i.e. for Ỹ1, Ỹ2 ∈ Y:

π(Ỹ1) ⊆ π(Ỹ2) ⇒ π(T 2(Ỹ1)) ⊆ π(T 2(Ỹ2)).

As the subset-inclusion relation gives a finite poset onπ(Y), we know from general fix-
point theory that Equation 15 admits necessarily a smallest fixpointỸ∧ = inf{Ỹ |Ỹ =

T 2(Ỹ )} and a largest fixpoint̃Y∨ = sup{Ỹ |Ỹ = T 2(Ỹ )}. For each possible kernel char-
acterisationK̃ of a kernel inG̃, Ỹ∧ andỸ∨ deliver its bipolar-valued characteristic limits
(see [27]:

π(−(Ỹ∨ ◦ S̃)) = π(Ỹ∨) ⊆ K ⊆ π(Ỹ∧) = π(−(Ỹ∧ ◦ S̃)).

As G̃ admits by assumption a unique kernelK, it is necessarily a progressively finite
digraph such that the upper fixpoint must also verifyπ((S̃∧ ◦ S̃)) ⊆ π(−Ỹ∨). It fol-
lows immediately thatπ(Ỹ∧) = π(K̃) = π(Ỹ∨). As a consequence, the iterations of
Equation 15 will necessarily end up in the sharpness congruence classY/∼=K of the given
unique kernelK.

Now, from the proof of Theorem 1 we know that these iterations, starting from both,
the all 0-valued bottom element in the sharpness lattice, and from the all{−1, 1}-valued
characterisation ofK – in fact the top element in the same sharpness lattice –, will
converge to a lower fixpoint̃K∧ showing the sharpest possible negative credibilities of
those actions that are excluded from the kernelK, and an upper fixpoint̃K∨ showing the
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sharpest possible positive credibilities of those actions that are definitively included in the
kernelK. Combining both fixpoints with the corresponding sharpness lattice addition op-
erator⊕ (see [5]) –K̃∧⊕ K̃∨ – renders finally the required maximal sharp bipolar-valued
characterisation ofK.2

Based on this result, the following algorithm tackles the enumeration of all bipolar-
valued kernels in the general case:

Algorithm 7 (Bisdorff 1997)
Let G̃(X, S̃) be a bipolar-valued outranking digraph.

1. With the help of theAllKernels procedure, extract all outranking and out-
ranked (weak) kernelsK1, K2, . . . , Kj (if they exist) from the associated 0-cut
graphG(X,S).

2. Associate with each outrankingKj a partially defined graph̃GKj
(X, S̃/Kj

) support-
ing exactly this unique kernelKj.

3. Use the v. Neummann dual fixpoint iterationT 2 for computing in turnK̃j in each
partial graphG̃Kj

.

4. Repeat steps 2 and 3 above for the outrankedKj with the reversed dual transforma-
tion (T −1)2.

A detailed description of this algorithm may be found in Bisdorff [5].

3.3 Complexity

Both Pirlot’s and Bisdorff’s algorithm involve a first step which enumerates the crisp
kernels and/or weak kernels observed inG̃.

For each such crisp choice, the fixpoint based algorithms compute the corresponding
maximal sharp bipolar-valued characterisation in at mostn3 − n2 steps, where each case
mainly involves two Boolean products of dimensionn × 1 and equality tests. Thus they
operate in polynomialO(n) time, once the crisp kernels and weak kernels are available.

Main complexity remains thus definitely in the first step, i.e. enumerating all (weak)
kernels in a general crisp digraph.

Concluding remarks

This paper compiles our work on studying and computing kernels in valued digraphs
from roughly the last ten years. Summer 1995, we indeed obtained the very first valued
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outranking kernel from a classic example digraph of order 8 (!) well known in the multi-
criteria decision aid context . The computation was done with the help of a commercial
finite domain solver. It took several seconds on a CRAY 6412 superserver with 12 pro-
cessors operating in a nowadays ridiculous CPU speed of 90 Mhz. In our present Python
implementation, such an example is solved with any of the beforehand discussed algo-
rithms in less than a thousandth of a second on a common low budget desktop computer.
And this remains practically the same for any relevant example of outranking digraph
observed in a real decision aid problem.

Several times we have written in our personal journal that there is certainly now no
more potential for any substantial improvement of this computational efficiency; Only
to discover, shortly later, that following a new theoretical idea or choosing a more effi-
cient implementation – using for instance the amazing instrument of itorator generators
in Python –, execution times could well be divided by 20.

This nowadays available computational efficiency confers the kernel concept a method-
ological premium for solving specific choice decision problems on the basis of a bipolar-
valued outranking digraph.

But it also opens new opportunities for verifying and implementing kernel extraction
algorithms for more graph theoretical purposes. New results concerning for instance un-
labelled kernels in symmetric graphs have been recently obtained. And, exploring the
kernels of known difficult graph instances like then-cycle becomes possible.

But this is the beginning of a new paper.
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