
HAL Id: hal-00118921
https://hal.science/hal-00118921v1

Preprint submitted on 7 Dec 2006 (v1), last revised 13 Feb 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping pipeline skeletons onto heterogeneous
platforms

Anne Benoit, Yves Robert

To cite this version:
Anne Benoit, Yves Robert. Mapping pipeline skeletons onto heterogeneous platforms. 2006. �hal-
00118921v1�

https://hal.science/hal-00118921v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON no 5668

Mapping pipeline skeletons onto

heterogeneous platforms

Anne Benoit ,

Yves Robert
November 2006

Research Report No RR2006-40

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Mapping pipeline skeletons onto heterogeneous platforms

Anne Benoit , Yves Robert

November 2006

Abstract

Mapping applications onto parallel platforms is a challenging problem, that becomes
even more difficult when platforms are heterogeneous –nowadays a standard assump-
tion. A high-level approach to parallel programming not only eases the application
developer’s task, but it also provides additional information which can help realize an
efficient mapping of the application.
In this paper, we discuss the mapping of pipeline skeletons onto different types of
platforms: Fully Homogeneous platforms with identical processors and interconnec-
tion links; Communication Homogeneous platforms, with identical links but differ-
ent speed processors; and finally, Fully Heterogeneous platforms. We assume that
a pipeline stage must be mapped on a single processor, and we establish new theo-
retical complexity results for different mapping policies: a mapping can be required
to be one-to-one (a processor is assigned at most one stage), or interval-based (a
processor is assigned an interval of consecutive stages), or fully general. We provide
several efficient polynomial heuristics for the most important policy/platform combi-
nation, namely interval-based mappings on Communication Homogeneous platforms.
These heuristics are compared to the optimal result provided by the formulation of
the problem in terms of the solution of an integer linear program, for small problem
instances.

Keywords: Algorithmic skeletons, pipeline, scheduling, complexity results, heuristics,
heterogeneous clusters.

Résumé

L’ordonnancement d’applications sur des plates-formes parallèles est un problème
difficile, et ce d’autant plus si ces plates-formes sont hétérogènes. Une approche de
haut niveau à la programmation parallèle, à base de squelettes algorithmiques, permet
tout à la fois de faciliter la tâche du développeur, et d’acquérir des informations
structurelles supplémentaires sur l’application, qui permettront d’obtenir un meilleur
résultat.
Dans ce rapport, on discute l’ordonnancement d’applications sous forme du squelette
pipeline sur différent types de plates-formes: les plates-formes totalement homogènes
(processeurs et liens de communication identiques), les plates-formes à communica-
tions homogènes mais avec des vitesses de processeurs différentes, et les plates-formes
totalement hétérogènes. On suppose qu’une étape de pipeline doit être placée sur un
unique processeur, et on établit de nouveaux résultats de complexité pour différentes
stratégies d’allocation: on peut imposer qu’au plus une étape de pipeline soit allouée à
chaque processeur, ou bien allouer un intervalle d’étapes consécutives aux processeurs.
Une troisième politique ne fixe aucune contrainte d’allocation.
Nous donnons de nombreuses heuristiques polynomiales efficaces pour la combinai-
son stratégie/plate-forme la plus importante, à savoir le placement par intervalle sur
plates-formes à communications homogènes. Ces heuristiques sont comparées au ré-
sultat optimal obtenu par une formulation du problème sous forme de programme
linéaire, pour de petites instances du problème.

Mots-clés: Squelettes algorithmiques, pipeline, ordonnancement, complexité, heuristiques,
grappes de calcul hétérogènes.

Mapping pipeline skeletons onto heterogeneous platforms 1

Contents

1 Introduction 2

2 Framework 3
2.1 Applicative framework . 3
2.2 Target platform . 3
2.3 Mapping problem . 4

2.3.1 One-to-one Mapping . 4
2.3.2 Interval Mapping . 5
2.3.3 General Mapping . 5

3 Complexity results 8
3.1 One-to-one Mapping . 8
3.2 Interval Mapping . 9
3.3 Fully Heterogeneous platforms . 11

4 Heuristics 12
4.1 Greedy heuristics . 12
4.2 Sophisticated heuristics . 13

5 Experiments 14
5.1 Experiment 1: balanced communication/computation, and homogeneous commu-

nications . 14
5.2 Experiment 2: balanced communication/computation, and heterogeneous commu-

nications . 15
5.3 Experiment 3: large computations . 15
5.4 Experiment 4: small computations . 16
5.5 Summary . 17

6 Assessing the absolute performance of the heuristics 17
6.1 Linear program formulation . 17
6.2 LP Experiments . 18

6.2.1 LP limitation . 19
6.2.2 LP on small platforms . 19

7 Related work 20

8 Conclusion 21

2 A. Benoit, Y. Robert

1 Introduction

Mapping applications onto parallel platforms is a difficult challenge. Several scheduling and load-
balancing techniques have been developed for homogeneous architectures (see [22] for a survey)
but the advent of heterogeneous clusters has rendered the mapping problem even more difficult.
Typically, such clusters are composed of different-speed processors interconnected either by plain
Ethernet (the low-end version) or by a high-speed switch (the high-end counterpart), and they
constitute the experimental platform of choice in most academic or industry research departments.

In this context of heterogeneous platforms, a structured programming approach rules out many
of the problems which the low-level parallel application developer is usually confronted to, such as
deadlocks or process starvation. Moreover, many real applications draw from a range of well-known
solution paradigms, such as pipelined or farmed computations. High-level approaches based on
algorithmic skeletons [11, 20] identify such patterns and seeks to make it easy for an application
developer to tailor such a paradigm to a specific problem. A library of skeletons is provided to the
programmer, who can rely on these already coded patterns to express the communication scheme
within its own application. Moreover, the use of a particular skeleton carries with it considerable
information about implied scheduling dependencies, which we believe can help to address the
complex problem of mapping a distributed application onto a heterogeneous platform.

In this paper, we therefore consider applications that can be expressed as algorithmic skeletons,
and we focus on the pipeline skeleton, which is one of the most widely used. In such applications,
a series of tasks enter the input stage and progress from stage to stage until the final result is
computed. Each stage has its own communication and computation requirements: it reads an
input file from the previous stage, processes the data and outputs a result to the next stage. For
each task, initial data is input to the first stage, and final results are output from the last stage.
The pipeline operates in synchronous mode: after some latency due to the initialization delay, a
new task is completed every period. The period is defined as the longest cycle-time to operate a
stage, and is the inverse of the throughput that can be achieved.

The problem of mapping pipeline skeletons onto parallel platforms has received some attention,
and we survey related work in Section 7. In this paper, we target heterogeneous clusters, and aim
at deriving optimal mappings, i.e. mappings which minimize the period, or equivalently maximize
the throughput, of the system. Each pipeline stage can be seen as a sequential procedure which
may perform disc accesses or write data in the memory for each task. This data may be reused from
one task to another, and thus the rule of the game is always to process the tasks in a sequential
order within a stage. Moreover, due to the possible local memory accesses, a given stage must
be mapped onto a single processor: we cannot process half of the tasks on a processor and the
remaining tasks on another without exchanging intra-stage information, which might be costly
and difficult to implement.

In this paper, we focus on pipeline skeletons and thus we enforce the rule that a given stage is
mapped onto a single processor. In other words, a processor that is assigned a stage will execute
the operations required by this stage (input, computation and output) for all the tasks fed into the
pipeline. The optimization problem can be stated informally as follows: which stage to assign to
which processor? We consider several variants, in which we require the mapping to be one-to-one
(a processor is assigned at most one stage), or interval-based (a processor is assigned an interval
of consecutive stages), or fully general.

In addition to these three mapping categories, we target three different platform types. First,
Fully Homogeneous platforms have identical processors and interconnection links. Next, Commu-
nication Homogeneous platforms, with identical links but different speed processors, introduce a
first degree of heterogeneity. Finally, Fully Heterogeneous platforms constitute the most difficult
instance, with different speed processors and different capacity links. The main objective of the
paper is to assess the complexity of each mapping variant onto each platform type. We establish
several new complexity results for this important optimization problem, and we derive efficient
polynomial heuristics for interval-based mappings onto Communication Homogeneous platforms.
These heuristics are compared through simulation; moreover, their absolute performance is as-
sessed owing to the formulation of the problem in terms of an integer linear program, whose

Mapping pipeline skeletons onto heterogeneous platforms 3

solution returns the optimal result for small problem instances.
The rest of the paper is organized as follows. Section 2 is devoted to a detailed presentation of

the target optimization problems. Next in Section 3 we proceed to the complexity results. In Sec-
tion 4 we introduce several polynomial heuristics to solve the mapping problem. These heuristics
are compared through simulations, whose results are analyzed in Section 5. Section 6 introduces
the linear formulation of the problem and assesses the absolute performance of the heuristics when
the optimal solution can be found. Section 7 is devoted to an overview of related work. Finally,
we state some concluding remarks in Section 8.

2 Framework

We outline in this section the characteristics of the applicative framework, as well as the model
for the target platform. Next we detail the objective function, chosen as the maximum period of
a processor to execute all the pipeline stages assigned to it.

... ...S2 Sk SnS1

w1 w2 wk wn

δ0 δ1 δk−1 δk δn

Figure 1: The application pipeline.

Pv

PoutPin

sv

Pu

su

bv,out

bu,v

sin sout

bin,u

Figure 2: The target platform.

2.1 Applicative framework

We consider a pipeline of n stages Sk, 1 ≤ k ≤ n, as illustrated on Figure 1. Tasks are fed into the
pipeline and processed from stage to stage, until they exit the pipeline after the last stage.

The k-th stage Sk receives an input from the previous stage, of size δk−1, performs a number
of wk computations, and outputs data of size δk to the next stage. The first stage S1 receives an
input of size δ0 from the outside world, while the last stage Sn returns the result, of size δn, to the
outside world.

2.2 Target platform

We target a heterogeneous platform (see Figure 2), with p processors Pu, 1 ≤ u ≤ p, fully
interconnected as a (virtual) clique. There is a bidirectional link linku,v : Pu → Pv between any

4 A. Benoit, Y. Robert

processor pair Pu and Pv, of bandwidth bu,v. Note that we do not need to have a physical link
between any processor pair. Instead, we may have a switch, or even a path composed of several
physical links, to interconnect Pu and Pv; in the latter case we would retain the bandwidth of the
slowest link in the path for the value of bu,v.

Communications contention is taken care of by enforcing the one-port model [9, 10]. In this
model, a given processor can be involved in a single communication at any time-step, either a
send or a receive. However, independent communications between distinct processor pairs can
take place simultaneously. The one-port model seems to fit the performance of some current MPI
implementations, which serialize asynchronous MPI sends as soon as message sizes exceed a few
megabytes [21].

In the most general case, we have fully heterogeneous platforms, with different processors
speeds and link capacities. The speed of processor Pu is denoted as su, and it takes X/su time-
units for Pu to execute X floating point operations. We also enforce a linear cost model for
communications, hence it takes X/bu,v time-units to send (resp. receive) a message of size X to
(resp. from) Pv. We classify below particular cases which are important, both from a theoretical
and practical perspective:

Fully Homogeneous– These platforms have identical processors (su = s) and links (bu,v = b).
They represent typical parallel machines.

Communication Homogeneous– These platforms have different-speed processors (su 6= sv)
interconnected by links of same capacities (bu,v = b). They correspond to networks of
workstations with plain TCP/IP interconnects or other LANs.

Fully Heterogeneous– These are the most general, fully heterogeneous architectures, with su 6=
sv and bu,v 6= bu′,v′ . Hierarchical platforms made up with several clusters interconnected by
slower backbone links can be modeled this way.

Finally, we assume that two special additional processors Pin and Pout are devoted to in-
put/output data. Initially, the input data for each task resides on Pin, while all results must be
returned to and stored in Pout. Of course we may have a single processor acting as the interface
for the computations, i.e. Pin = Pout.

2.3 Mapping problem

The general mapping problem consists in assigning application stages to platform processors.
However, some constraints can be added to the mapping to ease the implementation of the appli-
cation, for instance by imposing to map a single stage onto each processor. Different instances of
the mapping problem are discussed below.

2.3.1 One-to-one Mapping

Assume temporarily, for the sake of simplicity, that each stage Sk of the application pipeline is
mapped onto a distinct processor Palloc(k) (which is possible only if n ≤ p). For convenience, we
create two fictitious stages S0 and Sn+1, and we assign S0 to Pin and Sn+1 to Pout

What is the period of Palloc(k), i.e. the minimum delay between the processing of two consecutive
tasks? To answer this question, we need to know which processors the previous and next stages
are assigned to. Let t = alloc(k − 1), u = alloc(k) and v = alloc(k + 1). Pu needs δk−1/bt,u to
receive the input data from Pt, wk/su to process it, and δk/bu,v to send the result to Pv, hence
a cycle-time of δk−1/bt,u + wk/su + δk/bu,v for Pu. The period achieved with the mapping is the
maximum of the cycle-times of the processors, this corresponds to the rate at which the pipeline
can be activated.

In this simple instance, the optimization problem can be stated as follows: determine a one-to-
one allocation function alloc : [1, n] → [1, p] (augmented with alloc(0) = in and alloc(n + 1) = out)

Mapping pipeline skeletons onto heterogeneous platforms 5

such that

Tperiod = max
1≤k≤n

{

δk−1

balloc(k−1),alloc(k)
+

wk

salloc(k)
+

δk

balloc(k),alloc(k+1)

}

(1)

is minimized. We denote by One-to-one Mapping the previous optimization problem.

2.3.2 Interval Mapping

However, one-to-one mappings may be unduly restrictive. A natural extension is to search for
interval mappings, i.e. allocation functions where each participating processor is assigned an in-
terval of consecutive stages. Intuitively, assigning several consecutive tasks to the same processors
will increase their computational load, but may well dramatically decrease communication require-
ments. In fact, the best interval mapping may turn out to be a one-to-one mapping, or instead
may enroll only a very small number of fast computing processors interconnected by high-speed
links.

Interval mappings constitute a natural and useful generalization of one-to-one mappings (not
to speak of situations where p < n, where interval mappings are mandatory). A major objective of
this paper is to assess the performance of general interval mappings as opposed to pure one-to-one
allocations.

For the sake of completeness, we formally write the optimization problem associated to interval
mappings. We need to express that the intervals achieve a partition of the original set of stages
S1 to Sn. We search for a partition of [1..n] into m intervals Ij = [dj , ej] such that dj ≤ ej for
1 ≤ j ≤ m, d1 = 1, dj+1 = ej + 1 for 1 ≤ j ≤ m − 1 and em = n. Interval Ij is mapped onto
processor Palloc(j), and the period is expressed as

Tperiod = max
1≤j≤m

{

δdj−1

balloc(j−1),alloc(j)
+

∑ej

i=dj
wi

salloc(j)
+

δej

balloc(j),alloc(j+1)

}

(2)

Here, we assume that alloc(0) = in and alloc(m + 1) = out. The optimization problem Interval

Mapping is to determine the best mapping, over all possible partitions into intervals, and over all
processor assignments.

2.3.3 General Mapping

The most general mappings may be more complicated than interval-based mappings: a processor
Pu can be assigned any subset of stages.

Let us consider the following example with n = 3 stages and p = 2 processors. We also use a
third processor P0 = Pin = Pout for input/output, with no processing capacity (s0 = 0).

If the platform is Fully Homogeneous, let us consider a case in which the second stage requires
two times more computation than the other stages: w1 = w3 = 1 and w2 = 2, and where the
communications are negligible (δi = 0). The platform parameters (s, b) are set to 1. An interval-
based mapping needs to map either the two first stages or the two last ones on a same processor,
which will have a cycle time of 1 + 2 = 3 (computations of the two stages). An intuitive solution
would however be to map the first and third stages on one processor, and the second stage alone,
relaxing the interval constraint, hoping to reach a cycle time of 2 for both processors (with a good
load-balancing), which will work in parallel. Figure 3 illustrates such a mapping, and the desired
behavior of the application.

P2

S3 S1

S2

S3 S1

S2

P1

Figure 3: Example of general mapping.

6 A. Benoit, Y. Robert

During a cycle, P1 processes a task for S3 and then a task for S1 (communications from/to P0

can be neglected), while P2 processes a task for S2. Communications occur between each cycle,
when P1 sends output from S1 and P2 sends output from S2.

However, we always assumed in this paper that a stage is implemented in a static and syn-
chronous way, using the one-port model, which is a realistic hypothesis on the implementation of
the application. With such a model, if P1 starts to send the output from S1, it will be blocked
until P2 completes the receive, while P2 is sending its own output before receiving the next task
for S2. This leads to a deadlock with a straightforward implementation.

The solution would be to create a process for each stage, and map the independent processes
on processors, possibly several processes on a single processor. In order to obtain asynchronous
communications, each process should run three threads, one for input, one for computation and
one for output. Each thread knows where to expect its input from, and where to redirect its output
to, so it can post asynchronous messages and poll for completion. When an input is completed,
it hands over the data to the computation thread, and so on. Overall, the computation advances
asynchronously, in a greedy fashion: each action is executed as soon as it is ready. Computations
and communications are preemptive. On each processor and at any time step, several processes
share the CPU for computations related to different stages, and several communications take
place simultaneously and share the bandwidth (of the link and/or the network card). This scheme
requires as many communication buffers as there are stages/processes assigned to the processor.

With such an implementation, we would like to define the cycle-time of a processor by the
time needed to execute one instance of each of its stages, and the period as the maximum of the
processor cycle-times. If Pu handles the set of stages stages(u), and stage i is mapped on processor
alloc(i), the period is defined by:

Tperiod = max
1≤u≤p

∑

i∈stages(u)

(

∆u
alloc(i−1)

δi−1

balloc(i−1),u
+

wi

su

+ ∆alloc(i+1)
u

δi

bu,alloc(i+1)

)

(3)

where ∆v
u = 1 if u 6= v and 0 otherwise. In equation (3), we pay the input communication for

a stage Si only if stage Si−1 is not mapped on the same processor (and similarly for the output
communication).

However, it is very difficult to assess whether the above period will actually be achieved in a
real-life implementation. Delays may occur due to the dependency paths (Pu sending data to Pv

that returns it to Pu, and the like), leading to idle times (waiting on polling). Races may occur and
slow down, say, two simultaneous communications involving non-disjoint processor pairs. Finally,
control overhead and cost of switching processes may prove very high. At least an optimistic view
is that the achieved period will be only slightly larger than the above theoretical bound, but this
would require to be validated experimentally.

If we restrict ourselves to the one-port model, and consider the 3-stages example again with
the first and third stages mapped on the first processor, the straightforward implementation leads
to a period of 4 because P1 always wait for a task to go through S2 on P2 before it goes through
P3. This leads to the execution scheme of Figure 4.

...
S3 S1

P1

P2

S1

S2

Figure 4: Example of general mapping with the one-port model.

In this execution scheme, we enforced a natural rule that is implied by a non-preemptive
implementation. Let Si(k) denote the processing in stage Si for the incoming task number k.
Then, if Si and Sj are two stages assigned to Pu with i < j, then Pu executes Sj(k) before
Si(k + 1). With this rule, the cycle-time of a processor is the duration of the path that goes from

Mapping pipeline skeletons onto heterogeneous platforms 7

the input of its first stage all the way to the output of its last stage. Let us define first(u) and
last(u) as the first and last index, respectively, which are assigned to Pu.

cycle-time(Pu) =
δfirst(u)−1

balloc(first(u)−1),u
+

last(u)
∑

i=first(u)

(

wi

salloc(i)
+ ∆

alloc(i+1)
alloc(i)

δi

balloc(i),alloc(i+1)

)

(4)

Tperiod = max
1≤u≤p

cycle-time(Pu) (5)

In equation (4), we always pay the first communication and the last one, by definition of first(u)
and last(u), but we need to take care that some consecutive stages might be mapped onto the same
processor.

Obviously, this period is longer than the one obtained with equation (3), but with these as-
sumptions, we know how to implement the application in a natural way, and we can ensure that
this (longer) period will be achieved. All actions can be organized (scheduled statically) and the
period can be characterized analytically. This allows us to avoid the complex dynamic scheme.

In this case, it does not seem very interesting to map non consecutive stages on a same pro-
cessor, because it has to wait for the processing of the intermediate stages, which leads to idle
time. Actually, we will see in Section 3 that interval-based mappings are always as good as general
mappings on Communication Homogeneous platforms. We still consider the general optimization
problem, since general mappings may outperform interval-based ones in some particular cases,
even with the definition of the period of equation (5).

Consider the following example with n = 3 stages and p = 2 processors. The target architecture
is characterized by s1 = b0,2 = b1,2 = 1 and s2 = b0,1 = 10. As for the application, we have
δ0 = δ3 = w2 = 10 and δ1 = δ2 = w1 = w3 = 1. If we map S2 on P1, then Tperiod ≥ w2

s1
= 10. If we

map S1 on P2, then Tperiod ≥ δ0

b0,2
= 10. Similarly, if we map S3 on P2, then Tperiod ≥ δ3

b0,2
= 10.

There exists a single mapping whose period is smaller than 10: indeed, we can map S1 and S3 on
P1 and S2 on P2, and the period becomes

Tperiod =
δ0

b0,1
+

w1

s1
+

δ1

b1,2
+

w2

s2
+

δ2

b1,2
+

w3

s1
+

δ3

b0,1
= 7 (6)

In equation (6), we have computed the length of the cycle that P1 repeats for every incoming task:
• read data for task number k from Pin

• compute S1(k), i.e. stage 1 for that task
• send data to P2, wait for P2 to process it (stage S2(k)) and to return the results
• compute stage S3(k), send output data to Pout

• proceed to task number k + 1 and repeat entire cycle, starting with input data for S1(k + 1)
Because the operation of P2 is entirely included into that of P1, P1 has the longest cycle-time,
thereby defining the period. This is how we derived that Tperiod = 7 in the example, in full
accordance to equations (4) and (5).

This little example shows that general mappings may be superior to interval-based mappings,
and provides a motivation to study the corresponding optimization problem, denoted as General

Mapping.

In this paper, we mostly concentrate on interval-based mappings, because they realize the
best trade-off between efficiency and simplicity. One-to-one mappings are not general enough,
in particular when resources are in limited number, or when communications have a higher cost.
General mappings require important changes in the model and its implementation, and may be
too complex to deal with efficiently for the application programmer. We still address the com-
plexity of all mapping problems, including general mappings, but for practical developments we
limit ourselves to one-to-one and interval-based mappings. Also, we privilege Communication
Homogeneous platforms, which are the most representative of current experimental architectures.

8 A. Benoit, Y. Robert

Fully Homogeneous Comm. Homogeneous Fully Heterogeneous

One-to-one Mapping polynomial (bin. search) polynomial (bin. search) NP-complete

Interval Mapping polynomial (dyn. prog.) open NP-complete

General Mapping same complexity as Interval Mapping NP-complete

Table 1: Complexity results for the different instances of the mapping problem.

3 Complexity results

To the best of our knowledge, this work is the first to study the complexity of the various mapping
strategies (One-to-one Mapping, Interval Mapping and General Mapping), for each of
the different platform categories (Fully Homogeneous, Communication Homogeneous and Fully
Heterogeneous). Table 1 summarizes all our new results. All the entries are filled, except for the
complexity of the Communication Homogeneous/Interval Mapping combination, which remains
open.

For Fully Homogeneous or Communication Homogeneous platforms, determining the optimal
One-to-one Mapping can be achieved through a binary search over possible periods, invoking
a greedy algorithm at each step. The problem surprisingly turns out to be NP-hard for Fully
Heterogeneous platforms. The binary search algorithm for One-to-one Mapping is outlined in
Section 3.1.

The Interval Mapping problem is more complex to deal with. We have designed a dynamic
programming algorithm for Fully Homogeneous platforms (see Section 3.2), but the complexity of
the problem remains open for Communication Homogeneous platforms. However, in Section 3.2,
we also prove the nice theoretical result that interval-based mappings are dominant for Communi-
cation Homogeneous platforms: no need to consider general mappings for such platforms, we can
restrict the search to interval-based mappings.

Finally, all three optimization problems are NP-hard for Fully Heterogeneous platforms. The
proof of these results is provided in Section 3.3.

3.1 One-to-one Mapping

Theorem 1. For Fully Homogeneous and Communication Homogeneous platforms, the optimal
One-to-one Mapping can be determined in polynomial time.

Proof. We provide a constructive proof: we outline a binary-search algorithm that iterates until
the optimal period is found. At each step, a greedy algorithm is used to assign stages to processors
in a one-to-one fashion. The greedy algorithm succeeds if and only if the period is feasible. If the
algorithm does succeed, we decrease the target period, otherwise we increase it, and then proceed
to the next step. For theory-oriented readers, we easily check that the number of steps is indeed
polynomial in the problem size: in a word, we use a binary search over an interval whose length
can be bounded by the maximum values of the application/platform parameters, hence a number
of steps proportional to the logarithm of this value, which in turn is the encoding size of the
problem. For more practice-oriented readers, only a few seconds are needed to obtain the period
with a precision of 10−4 for a reasonable problem size. See for instance the practical experiments
reported in Section 5.

Let us now describe the most interesting part of the procedure, namely the greedy assignment
algorithm for a prescribed value Tperiod of the achievable period. Recall that there are n stages to
map onto p ≥ n processors in a one-to-one fashion. Also, we target Communication Homogeneous
platforms with different-speed processors (su 6= sv) but with links of same capacities (bu,v = b).

First we retain only the fastest n processors, which we rename P1, P2, . . . , Pn such that
s1 ≤ s2 ≤ . . . ≤ sn. Then we consider the processors in the order P1 to Pn, i.e. from the slowest to
the fastest, and greedily assign them any free (non already assigned) task that they can process
within the period. Algorithm 1 details the procedure.

Mapping pipeline skeletons onto heterogeneous platforms 9

procedure Greedy Assignment
begin

Work with fastest n processors, numbered P1 to Pn, where s1 ≤ s2 ≤ . . . ≤ sn
Mark all stages S1 to Sn as free
for u = 1 to n do

Pick up any free stage Sk s.t. δk−1/b + wk/su + δk/b ≤ Tperiod

Assign Sk to Pu. Mark Sk as already assigned
If no stage found return ”failure”

end
end

Algorithm 1: Greedy assignment algorithm for a given period Tperiod.

The proof that the greedy algorithm returns a solution if and only if there exists a solution
of period Tperiod is done by a simple exchange argument. Indeed, consider a valid one-to-one
assignment of period Tperiod, denoted A, and assume that it has assigned stage Sk1

to P1. Note
first that the greedy algorithm will indeed find a stage to assign to P1 and cannot fail, since Sk1

can be chosen. If the choice of the greedy algorithm is actually Sk1 , we proceed by induction with
P2. If the greedy algorithm has selected another stage Sk2

for P1, we find which processor, say Pu,
has been assigned this stage in the valid assignment A. Then we exchange the assignments of P1

and Pu in A. Because Pu is faster than P1, which could process Sk1 in time in the assignment A,
Pu can process Sk1

in time too. Because Sk2
has been mapped on P1 by the greedy algorithm, P1

can process Sk1 in time. So the exchange is valid, we can consider the new assignment A which is
valid and which did the same assignment on P1 than the greedy algorithm. The proof proceeds by
induction with P2 as before. We point out that the complexity of the greedy algorithm is bounded
by O(n2), because of the two loops over processors and stages.

3.2 Interval Mapping

Theorem 2. For Fully Homogeneous platforms, the optimal Interval Mapping can be deter-
mined in polynomial time.

Proof. We provide a constructive proof: we outline a dynamic programming algorithm that returns
the optimal period. Consider an application with n stages S1 to Sn to be mapped onto a fully-
homogeneous platform composed of p (identical) processors. Let s and b respectively denote the
processor speed and the link bandwidth.

We compute recursively the value of c(i, j, k), which is the optimal period that can be achieved
by any interval-based mapping of stages Si to Sj using exactly k processors. The goal is to
determine

min
1≤k≤p

c(1, n, k)

The recurrence relation can be expressed as

c(i, j, k) = min
q + r = k

1 ≤ q ≤ k − 1
1 ≤ r ≤ k − 1

{

min
i≤ℓ≤j−1

{max (c(i, ℓ, q), c(ℓ + 1, j, r))}

}

with the initialization

c(i, j, 1) =
δi−1

b
+

∑j
k=i wk

s
+

δj

b

c(i, j, k) = +∞ if k > j − i + 1

The recurrence is easy to justify: to compute c(i, j, k), we search over all possible partitionings
into two subintervals, using every possible number of processors for each interval. The complexity
of this dynamic programming algorithm is bounded by O(n3p2).

10 A. Benoit, Y. Robert

We have not been able to extend the previous dynamic programming algorithm to deal with
Communication Homogeneous platforms. This is because the algorithm intrinsically relies on
identical processors in the recurrence computation. Different-speed processors would execute sub-
intervals with different cycle-times. Because of this additional difficulty, the Interval Mapping

problem for Communication Homogeneous platforms seems to be very combinatorial, and we
conjecture that it is NP-hard. At least we can prove that interval-based mappings are dominant
for such platforms, which means that there exist interval-based mappings which are optimal among
all possible general mappings (hence the entry titled same complexity in Table 1):

Theorem 3. For Communication Homogeneous platforms, interval-based mappings are dominant.

Proof. Consider an application with n stages S1 to Sn to be mapped onto a communication-
homogeneous platform composed of p processors P1 to Pp. The speed of Pi is si, and all links
have same bandwidth b. Consider an optimal mapping for this application. If this mapping is
interval-based, we are done. Otherwise, there exist processors which are not assigned a single
interval of stages. Let i1 be the index of the first stage Si1 that is mapped onto such a processor,
say Pu, and let i2 be the last index such that the interval [i1, i2] is mapped on Pu. Stages S1 to
Si1−1 are mapped by intervals onto other processors.

Rather than going on formally, let us illustrate the algorithm through the following example,
where we have i1 = 6, i2 = 7 and u = 4:

P1 S1S2

P2 S3

P3 S4S5

P4 S6S7 S13S14S15 · · ·
P5 S8

P6 S9S10 · · ·
P7 S11S12

The idea is to transform the mapping so that P4 will be assigned a single interval, without
increasing the cycle-time of any processor. Recall that we use equations (4) and (5) to compute
the period of a general mapping. There are two cases to consider:

• If the speed of P4 is larger than (or at least equal to) the speed of P5, P6 and P7, then
we assign stages S8 to S12 to P4. This will indeed decrease its cycle-time, because these
stages are processed in shorter time and no more communication is paid in between. Then
we iterate the transformation with i2 = 15.

• Otherwise, choose the fastest processor among P4, P5, P6 and P7. Assume that it is P6.
Then P6 is assigned the extra stages S11 to S15, and all the other subsequent stages that
were assigned to P4. Because the communications are homogeneous, nothing is changed in
the price paid by the following communications between P4 and other processors that now go
between P6 and these processors. The cycle-time of P4 has been reduced since we removed
stages from it. The cycle-time of P6 has not increased the period of the new mapping
compared to the initial mapping. To see this, note that its first assigned stage first(6) is the
same. If its last assigned stage was already assigned to it before the transformation (last(6)),
then its cycle-time has decreased (because some stages are processed faster in between) or
is unchanged. If its last assigned stage was originally assigned to P4 (last(4)), then its new
cycle-time is smaller than the old cycle-time of P4 since first(6) > first(4) and some stages
are eventually processed faster between first(6) and last(4). In both cases, we safely increase
the value of i1 and proceed to the next transformation, without increasing the period of the
mapping.

After a finite number of such transformations, we obtain an interval-based mapping, whose period
does not exceed the period of the original mapping, which concludes the proof.

Mapping pipeline skeletons onto heterogeneous platforms 11

3.3 Fully Heterogeneous platforms

Theorem 4. For Fully Heterogeneous platforms, the (decision problems associated to the) three
mapping strategies (One-to-one Mapping, Interval Mapping and General Mapping) are
all NP-complete.

Proof. For all strategies, the problem clearly belongs to the class NP: given a solution, it is
easy to verify in polynomial time that all stages are processed, and that the maximum cycle-
time of any processor does not exceed the bound on the period. To establish the completeness,
we use a reduction from MINIMUM METRIC BOTTLENECK WANDERING SALESPERSON
PROBLEM (MMBWSP) [1, 12]. We consider an instance I1 of MMBWSP: given a set C =
{c1, c2, . . . , cm} of m cities, an initial city s ∈ C, a final city f ∈ C, distances d(ci, cj) ∈ N

satisfying the triangle inequality, and a bound K ≥ 2 on the largest distance, does there exist
a simple path from the initial city s to the final city f passing through all cities in C, i.e. a
permutation π : [1..m] → [1..m] such that cπ(1) = s, cπ(m) = f , and d(cπ(i), cπ(i+1)) ≤ K for
1 ≤ i ≤ m − 1? To simplify notations, and without loss of generality, we renumber cities so that
s = c1 and f = cm (i.e. π(1) = 1 and π(m) = m).

We build the following instance I2 of our mapping problem (note that the same instance
will work out for the three variants One-to-one Mapping, Interval Mapping and General

Mapping):

• For the application: n = 2m − 1 stages which for convenience we denote as

→ S1 → S ′
1 → S2 → S ′

2 → . . . → Sm−1 → S ′
m−1 → Sm →

For each stage Si or S ′
i we set δi = wi = 1 (as well as δ0 = δn = 1), so that the application

is perfectly homogeneous.

• For the platform (see Figure 5):
- we use p = m +

(

m
2

)

processors which for convenience we denote as Pi, 1 ≤ i ≤ m and
Pi,j , 1 ≤ i < j ≤ m. We also use an input processor Pin and an output processor Pout.
The speed of each processor Pi or Pij has the same value s = 1

2K
(note that we have a

computation-homogeneous platform), except for Pin and Pout whose speed is 0.
- the communication links shown on Figure 5 have a larger bandwidth than the others, and are
referred to as fast links. More precisely, bPin,P1 = bPm,Pout

= 1, and bPi,Pij
= bPij ,Pj

= 2
d(ci,cj)

for 1 ≤ i < j ≤ m. All the other links have a very small bandwidth b = 1
5K

and are referred
to as slow links. The intuitive idea is that slow links are too slow to be used for the mapping.

Finally, we ask whether there exists a solution with period 3K. Clearly, the size of I2 is polynomial
(and even linear) in the size of I1. We now show that instance I1 has a solution if and only if
instance I2 does.

Suppose first that I1 has a solution. We map stage Si onto Pπ(i) for 1 ≤ i ≤ m, and stage

S ′
i onto processor Pπ(i),π(i+1) for 1 ≤ i ≤ m − 1. The cycle-time of P1 is 1 + 2K +

d(cπ(1),cπ(2))

2 ≤

1 + 2K + K
2 ≤ 3K. Quite similarly, the cycle-time of Pm is smaller than 3K. For 2 ≤ i ≤ m − 1,

the cycle-time of Pπ(i) is
d(cπ(i−1),cπ(i))

2 + 2K +
d(cπ(i),cπ(i+1))

2 ≤ 3K. Finally, for 1 ≤ i ≤ m− 1, the

cycle-time of Pπ(i),π(i+1) is
d(cπ(i),cπ(i+1))

2 + 2K +
d(cπ(i),cπ(i+1))

2 ≤ 3K. The mapping does achieve
a period not greater than 3K, hence a solution to I2.

Suppose now that I2 has a solution, i.e. a mapping of period not greater than 3K. We first
observe that each processor is assigned at most one stage by the mapping, because executing two
stages would require at least 2K + 2K units of time, which would be too large to match the
period. This simple observation explains why the same reduction works for the three strategies,
One-to-one Mapping, Interval Mapping and General Mapping. Next, we observe that
any slow link of bandwidth 1

5K
cannot be used in the solution: otherwise the period would exceed

5K.

12 A. Benoit, Y. Robert

2
d(c1,c3)

Pin P1

P2

P3

P4

Pout

P1,2

P1,3

P1,4

P2,3

P3,4

P2,4

1

1

2
d(c2,c4)

2
d(c1,c4)

2
d(c1,c4)

2
d(c1,c2)

2
d(c1,c2)

2
d(c2,c4)

2
d(c1,c3)

Figure 5: The platform used in the reduction for Theorem 4.

The input processor Pin has a single fast link to P1, so necessarily P1 is assigned stage S1 (i.e.
π(1) = 1). As observed above, P1 cannot execute any other stage. Because of fast links, stage S ′

1

must be assigned to some P1,j ; we let j = π(2). Again, because of fast links and of the one-to-one
constraint, the only choice for stage S2 is Pπ(2). Necessarily j = π(2) 6= π(1) = 1, otherwise P1

would execute two stages.
We proceed similarly for stage S′

2, assigned to some P2k (let k = π(3)) and stage S3 assigned to
Pπ(3). Owing to the one-to-one constraint, k 6= 1 and k 6= j, i.e. π : [1..3] → [1..m] is a one-to-one
mapping. By induction, we build the full permutation π : [1..m] → [1..m]. Because the output
processor Pout has a single fast link to Pm, necessarily Pm is assigned stage Sm, hence π(m) = m.

We have built the desired permutation, there remains to show that d(cπ(i), cπ(i+1)) ≤ K for

1 ≤ i ≤ m−1. The cycle time of processor Pπ(i) is
d(cπ(i),cπ(i+1))

2 +2K +
d(cπ(i),cπ(i+1))

2 ≤ 3K, hence
d(cπ(i), cπ(i+1)) ≤ K. Altogether, we have found a solution for I1, which concludes the proof.

4 Heuristics

In this section several heuristics for Communication Homogeneous platforms are presented. We
restrict to such platforms because, as already pointed out in Section 1, clusters made of different-
speed processors interconnected by either plain Ethernet or a high-speed switch constitute the
typical experimental platforms in most academic or industry research departments.

Because of Theorem 3, we can restrict to interval-based mappings without any loss of generality.
However, the complexity of determining the optimal interval-based mapping for Communication
Homogeneous platforms is still open, this is why we propose several polynomial heuristics to
tackle the problem. In the following, we denote by n the number of stages, and by p the number
of processors.

4.1 Greedy heuristics

The first heuristics are greedy, i.e. they assign a stage, or an interval of stages, to a given processor,
and this choice is independent of further choices. In these heuristics, we systematically assign
L = ⌈n/p⌉ consecutive stages per processor (except for the last processor if n is not divisible by
p). In other words, the heuristics always assign the same set of intervals, the difference between
them lies in the allocations that they enforce. In fact, there is a single exception to this rule: for
one of the random heuristics, the size of the interval is randomly determined.

The number of processors which will be used in the final solution is thus ⌈n/L⌉. Note that if
n ≤ p, then L = 1 and these heuristics perform a One-to-one Mapping algorithm.

Mapping pipeline skeletons onto heterogeneous platforms 13

H1a-GR: random – For each interval that needs to be assigned, we randomly choose a free
processor which will handle it. As soon as a processor is handling an interval, it is not free
any more and cannot be used to process another interval.

H1b-GRIL: random interval length – This variant of the greedy random H1a-GR is work-
ing similarly, but it further chooses the size of the interval to be assigned randomly. The
distribution used is homogeneous, with an average length of L and a length between 1 and
2L − 1. Notice that this heuristic is identical to H1a when L = 1.

H2-GSW: biggest
∑

w – In this heuristic, the choice is more meaningful since we select the
interval with the most demanding computing requirement, and place it on the fastest pro-
cessor. Intervals are sorted by decreasing values of

∑

i∈Interval wi, processors are sorted by
decreasing speed su, and the matching is achieved.

H3-GSD: biggest δin + δout – This heuristic is quite similar to H2-GSW except that the in-
tervals are sorted according to their communication requirements, δin + δout, where in is the
first stage of the interval, and out − 1 the last one.

H4-GP: biggest period on fastest processor – This heuristic is balancing the computation
and communication requirements of each interval: the processors are sorted by decreasing
speed su and, for the current processor u, we choose the interval with the biggest period
(δin + δout)/b +

∑

i∈Interval wi/su. Then we keep going with the remaining processors and
intervals.

4.2 Sophisticated heuristics

This second set of heuristics presents more elaborated heuristics, trying to make clever choices.

H5-BS121: binary search for One-to-one Mapping – This heuristic implements the opti-
mal algorithm for the One-to-one Mapping case, described in Section 3.1. When p < n,
we cut the application in intervals similarly as in the greedy heuristics. All these heuristics
perform a One-to-one Mapping on this new application, so H5-BS121 should always be
better than all the greedy heuristics.

H6-SPL: splitting intervals – This heuristic sorts the processors by decreasing speed, and
starts by assigning all the stages to the first processor in the list. This processor becomes
used. Then, at each step, we select the used processor j with the largest period and we try
to split its interval of stages, giving some stages to the next fastest processor j′ in the list
(not yet used). This can be done by splitting the interval at any place, and either placing
the first part of the interval on j and the remainder on j′, or the other way round. The
solution which minimizes max(period(j), period(j′)) is chosen if it is better than the original
solution. Splitting is performed as long as we improve the period of the solution.

H7a-BSL and H7b-BSC: binary search (longest/closest) – The last two heuristics perform
a binary search on the period of the solution. For a given period P , we study if there is a
feasible solution, starting with the first stage (s = 1) and constructing intervals (s, s′) to fit
on processors. For each processor u, and each s′ ≥ s we compute the period (s, s′, u) of stages
s..s′ running on processor u and check whether it is smaller than P (then it is a possible
assignment). The first variant H7a-BSL choose the longest possible interval (maximizing
s′) fitting on a processor for a given period, and in case of equality, the interval and processor
with the closest period to the solution period. The second variant H7b-BSC does not take
into account the length of the interval, but only finds out the closest period.

The code for all these heuristics can be found on the Web at:
http://graal.ens-lyon.fr/~abenoit/code/skeleton-heuristics.c

http://graal.ens-lyon.fr/~abenoit/code/skeleton-heuristics.c

14 A. Benoit, Y. Robert

5 Experiments

Several experiments have been conducted in order to assess the performance of the heuristics
described in Section 4. We have generated a set of random platforms with n = 1 to 50 stages,
and two sets of random platforms, one set with p = 10 processors and the other with p = 100
processors. The first case corresponds to a situation in which several stages are likely to be mapped
on the same processor because there are much fewer processors than stages. However, in the second
case, we expect the mapping to be a One-to-one Mapping, except when communications are
really costly.

The heuristics have been designed for Communication Homogeneous platforms, so we restrict to
such platforms in these experiments. In all the experiments, we fix b = 10 for the link bandwidths.
Moreover, the speed of each processor is randomly chosen as an integer between 1 and 20. We
keep the latter range of variation throughout the experiments, while we vary the range of the
application parameters from one set of experiments to the other. Indeed, although there are four
categories of parameters to play with, i.e. the values of δ, w, s and b, we can see from equation (2)
that only the relative ratios δ

b
and w

s
have an impact on the performance.

Each experimental value reported in the following has been calculated as an average over 100
randomly chosen application/platforms pairs. For each of these pairs, we report the performance
of the 9 heuristics described in Section 4.

We report four main sets of experiments. For each of them, we vary some key applica-
tion/platform parameter to assess the impact of this parameter on the performance of the heuris-
tics. The first two experiments deal with applications where communications and computations
have the same order of magnitude, and we study the impact of the degree of heterogeneity of
the communications, i.e. of the variation range of the δ parameter: in the first experiment the
communication are homogeneous, while in the second one δ varies between 1 to 100. The last two
experiments deal with imbalanced applications: the third experiment assumes large computations
(large value of the w to δ ratio), and the fourth one reports results for small computations (small
value of the w to δ ratio).

5.1 Experiment 1: balanced communication/computation, and homo-
geneous communications

In the first set of experiments, the application communications are homogeneous, we fix δi = 10
for i = 0..n. The computation time required by each stage is randomly chosen between 1 and 20.
Thus, the communications and computations are balanced within the application.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=10)

H1a-GreedyRandom
H1b-GreedyRandomIntervalLength
H2-GreedySumW
H3-GreedySumDinDout
H4-GreedyPeriod
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

 2.6

 2.8

 3

 3.2

 3.4

 0 10 20 30 40 50

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=100)

H1a-GreedyRandom
H1b-GreedyRandomIntervalLength
H2-GreedySumW
H3-GreedySumDinDout
H4-GreedyPeriod
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

Figure 6: Experiment 1: homogeneous communications.

We notice that the sophisticated heuristics perform much better than the greedy ones when

Mapping pipeline skeletons onto heterogeneous platforms 15

p = 10: they correspond to the lowest three curves. Heuristic H7b is the best for this configuration,
before H7a and H6. H2 and H4 give the same result as H5 (binary search returning the optimal
algorithm for a One-to-one Mapping), since the communications are homogeneous, and H3 is
less good because it tries to make a choice among communications which are all identical. Finally,
we see that all our heuristics are largely outperforming the random ones.

When p = 100, the optimal One-to-one Mapping algorithm returns the best solution (H5),
obtained similarly by H2 and H4. The sophisticated heuristics are less accurate (but H7 gives a
result very close to H5), and the random ones are not even represented on the plot: they always
return a maximum period greater than 3.5, while we decided to zoom on the interesting part of
the plots.

5.2 Experiment 2: balanced communication/computation, and hetero-
geneous communications

In this second set of experiments, the application communications are heterogeneous, chosen ran-
domly between 1 and 100. Similarly to Experiment 1, the computation time required by each
stage is randomly chosen between 1 and 20. Thus, the communications and computations are still
relatively balanced within the application.

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=10)

H1a-GreedyRandom
H1b-GreedyRandomIntervalLength
H2-GreedySumW
H3-GreedySumDinDout
H4-GreedyPeriod
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

 10

 15

 20

 25

 30

 0 10 20 30 40 50

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=100)

H1a-GreedyRandom
H1b-GreedyRandomIntervalLength
H2-GreedySumW
H3-GreedySumDinDout
H4-GreedyPeriod
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

Figure 7: Experiment 2: heterogeneous communications.

In the case with p = 10, the sophisticated heuristics are the best ones, and H6 outperforms
the binary search heuristics H7a and H7b. Also, the first binary search H7a is better than H7b,
while it was the other way round with homogeneous computations. The splitting heuristic H6 is
definitively better in this heterogeneous case. We also notice that H5 is better than all the greedy
heuristics, which is due to the fact that it implements the optimal algorithm for a One-to-one

Mapping (or fixed-length Interval Mapping).
For p = 100, the sophisticated heuristics behave in the same way, but we notice that all the

greedy heuristics find the optimal One-to-one Mapping solution, similarly to H5. In both cases,
all our heuristics are much more efficient than the random ones.

5.3 Experiment 3: large computations

In this experiment, the applications are much more demanding on computations than on com-
munications, making communications negligible compared to the computation requirements. We
choose the communication time between 1 and 20, while the computation time of each application
is chosen between 10 and 1000.

In this case, both plots are showing the same behavior as in Experiment 1. In fact, even though
communications are not the same for each application, their relative importance is negligible in

16 A. Benoit, Y. Robert

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=10)

H1a-GreedyRandom
H1b-GreedyRandomIntervalLength
H2-GreedySumW
H3-GreedySumDinDout
H4-GreedyPeriod
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 10 20 30 40 50

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=100)

H1a-GreedyRandom
H1b-GreedyRandomIntervalLength
H2-GreedySumW
H3-GreedySumDinDout
H4-GreedyPeriod
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

Figure 8: Experiment 3: large computations.

front of the computations, and thus the system behaves as if communications were homogeneous.
Thus, the One-to-one Mapping heuristics are clearly the best with p = 100, while H7b returns
the smallest maximum period for p = 10.

5.4 Experiment 4: small computations

The last experiment is the opposite to Experiment 3 since the computations are now negligible
compared to the communications. The communication time is still chosen between 1 and 20, but
the computation time is now chosen between 0.01 and 10.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=10)

H1a-GreedyRandom
H1b-GreedyRandomIntervalLength
H2-GreedySumW
H3-GreedySumDinDout
H4-GreedyPeriod
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=100)

H1a-GreedyRandom
H1b-GreedyRandomIntervalLength
H2-GreedySumW
H3-GreedySumDinDout
H4-GreedyPeriod
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

Figure 9: Experiment 4: small computations.

In this case, since communications are important, the sophisticated heuristics perform better.
This is because these heuristics often choose different length intervals in order to reduce the
communication cost, while all the greedy and random heuristics are always making the same
choice of intervals.

Similarly to the heterogeneous case (Experiment 2), H6 is the best heuristic, H7a and H7b are
just a little bit ahead. Also, for One-to-one Mapping situations, the greedy heuristics returns
the same result as H5.

However, in this situation, H3 is better than H2. This never happened before because com-
putations were always the most relevant parameter to optimize. Also, we notice that the random

Mapping pipeline skeletons onto heterogeneous platforms 17

heuristics are quite close to the greedy ones, because they choose the same intervals and so they
pay the same communication cost. The clever choices performed by the greedy heuristics allow to
save a little on the computation side.

5.5 Summary

To summarize our experimental results, we first point out that our heuristics are always much
more efficient than random mappings. Moreover, we identify three heuristics which may each turn
out to be the most efficient, depending upon the application and platform characteristics.

When there are more processors than pipeline stages, we can expect that a One-to-one Map-

ping might be a good choice. Actually, if the computations are the costly part of the application
on a given platform, and communications are of lesser importance, then the greedy One-to-one

Mapping heuristics return the best result, which we expect to be close to the optimal. This is
also the case when communications are fully homogeneous between stages, because splitting be-
tween more stages does not add a large overhead. The optimal binary search H5 for One-to-one

Mapping should be used in such cases.
The same balance between communications and computations leads to a different result when

there are fewer processors, because it is then necessary to share the computation load between
processors, and the decision where to split intervals can be really relevant. All the greedy heuristics
are using intervals of fixed length and cannot make any clever choices. In such cases, H7b (Binary
Search Closest) is the most efficient heuristic.

Moreover, as soon as communications are costly or with a high degree of heterogeneity, the
greedy heuristics do not return satisfying results, because they may cut intervals on costly links
between stages. Thus the more sophisticated Interval Mapping heuristics performs better. In
such cases, the splitting heuristic H6 is the best choice.

6 Assessing the absolute performance of the heuristics

We introduce an integer linear program which allows to compute the optimal mapping for a given
platform and application. We compare the results of the heuristics to the solution of this linear
program solution, when available. The large number of integer variables in the linear program
makes it impossible to solve large problem instances.

6.1 Linear program formulation

We present here an integer linear program to compute the optimal interval-based mapping on
Fully Heterogeneous platforms. We assume n stages and p processors, plus two fictitious extra
stages S0 and Sn+1 respectively assigned to Pin and Pout. First we need to define a few variables:

• For k ∈ [0..n + 1] and u ∈ [1..p] ∪ {in, out}, xk,u is a boolean variable equal to 1 if stage Sk

is assigned to processor Pu; we let x0,in = xn+1,out = 1, and xk,in = xk,out = 0 for 1 ≤ k ≤ n.

• For k ∈ [0..n], u, v ∈ [1..p] ∪ {in, out} with u 6= v, zk,u,v is a boolean variable equal to 1 if
stage Sk is assigned to Pu and stage Sk+1 is assigned to Pv: hence linku,v : Pu → Pv is used
for the communication between these two stages. If k 6= 0 then zk,in,v = 0 for all v 6= in and
if k 6= n then zk,u,out = 0 for all u 6= out.

• For k ∈ [0..n] and u ∈ [1..p] ∪ {in, out}, yk,u is a boolean variable equal to 1 if stages Sk and
Sk+1 are both assigned to Pu; we let yk,in = yk,out = 0 for all k, and y0,u = yn,u = 0 for all u.

• For u ∈ [1..p], first(u) is an integer variable which denotes the first stage assigned to Pu;
similarly, last(u) denotes the last stage assigned to Pu. Thus Pu is assigned the interval
[first(u), last(u)]. Of course 1 ≤ first(u) ≤ last(u) ≤ n.

• Tperiod is the period of the pipeline.

18 A. Benoit, Y. Robert

We list below the constraints that need to be enforced. For simplicity, we write
∑

u instead of
∑

u∈[1..p]∪{in,out} when summing over all processors. First there are constraints for processor and
link usage:

• Every stage is assigned a processor: ∀k ∈ [0..n + 1],
∑

u xk,u = 1.

• Every communication either is assigned a link or collapses because both stages are assigned
to the same processor:

∀k ∈ [0..n],
∑

u 6=v

zk,u,v +
∑

u

yk,u = 1

• If stage Sk is assigned to Pu and stage Sk+1 to Pv, then linku,v : Pu → Pv is used for this
communication:

∀k ∈ [0..n],∀u, v ∈ [1..p] ∪ {in, out}, u 6= v, xk,u + xk+1,v ≤ 1 + zk,u,v

• If both stages Sk and Sk+1 are assigned to Pu, then yk,u = 1:

∀k ∈ [0..n],∀u ∈ [1..p] ∪ {in, out}, xk,u + xk+1,u ≤ 1 + yk,u

• If stage Sk is assigned to Pu, then necessarily firstu ≤ k ≤ lastu. We write this constraint as:

∀k ∈ [1..n],∀u ∈ [1..p], firstu ≤ k.xk,u + n.(1 − xk,u)

∀k ∈ [1..n],∀u ∈ [1..p], lastu ≥ k.xk,u

• If stage Sk is assigned to Pu and stage Sk+1 is assigned to Pv 6= Pu (i.e. zk,u,v = 1) then
necessarily lastu ≤ k and firstv ≥ k + 1 since we consider intervals. We write this constraint
as:

∀k ∈ [1..n − 1],∀u, v ∈ [1..p], u 6= v, lastu ≤ k.zk,u,v + n.(1 − zk,u,v)

∀k ∈ [1..n − 1],∀u, v ∈ [1..p], u 6= v, firstv ≥ (k + 1).zk,u,v

• There remains to express the period of each processor and to constrain it by Tperiod:

∀u ∈ [1..p],

n
∑

k=1

∑

t6=u

δk−1

bt,u

zk−1,t,u

 +
wk

su

xk,u +

∑

v 6=u

δk

bu,v

zk,u,v

≤ Tperiod

Finally, the objective function is to minimize the period Tperiod.

We have O(np2) variables, and as many constraints. All variables are boolean or integer,
except the period, which is rational. We present some experiments comparing the heuristics to the
linear program solution, when the number of variables is small enough to allow for a resolution in
reasonable time.

6.2 LP Experiments

We compared the performance of the heuristics with the optimal solution returned by the linear
program. Because of the large number of integer variables, experiments have been constrained
to small platforms and applications. Also, in the following, we use only 10 instances of each
application; we used 100 instances in the previous experiments but the LP programs can be quite
long to solve. The results now represent an average over these 10 instances of the problem.

Mapping pipeline skeletons onto heterogeneous platforms 19

6.2.1 LP limitation

The largest experiment has been conducted with p = 8 processors. We tried to solve the linear
program with up to n = 8 stages. The parameters are chosen randomly as in Experiment 1, with
homogeneous communications and balanced communication/computation ratios (Section 5.1).

However, from n = 4 stages, the LP program requires quite a long time to be solved: it took up
to 14 hours of computation time to solve a single instance of the problem. Because it was already
very long for n = 4, we did not experiment with higher values of n. In practice, the use of the
linear program in such cases is very limited because of the extremely long time required for the
resolution.

We plotted (Figure 10) the result obtained with the LP program and some of the relevant
heuristics. We see that the best heuristics, in this case the optimal One-to-one Mapping

obtained with H5 and the binary search H7b, are very close to the result of the LP. The table
displays the exact results, and we can see that there is only a tiny difference between the optimal
result of the LP and the result returned by our heuristics. This can be explained by the precision
of the binary search which was set to 0.0001. A more accurate result could have been obtained
with the heuristics by increasing the precision.

 2.6

 2.8

 3

 3.2

 3.4

 0 1 2 3 4 5 6 7 8 9

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=8)

Linear Program
H3-GreedySumDinDout
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

n LP H5-BS121 H7b-BSC
1 2.576857 2.576882 2.576882
2 2.749913 2.749934 2.749934
3 2.879871 2.879900 2.883072
4 2.760960 2.760981 2.770690

Figure 10: LP limitation.

6.2.2 LP on small platforms

Since we could not perform large experiments with the LP on platforms with many processors,
we restricted ourselves to smaller platforms in order to study the absolute performance of the
heuristics. The results seemed quite encouraging on the previous experiment with up to 4 stages
and 8 processors, since we almost always found the optimal mapping.

This experiment has been conducted on a platform with p = 4 processors, and applications
with up to n = 10 stages. We plot the results for the homogeneous case (similar to Experiment 1,
Section 5.1) and for the heterogeneous case (similar to Experiment 2, Section 5.2), which are the
two most relevant cases. We restrict the plots (Figure 11) to some of the best heuristics identified
in the previous experiments.

In the homogeneous case, we point out that the best heuristic H7b is very close to the optimal
result returned by the LP program. The maximum difference is for n = 10, with a difference of
0.11, which represents an error of less than 3%. This result is quite promising, even though we
cannot conduct experiments for larger platforms because of the LP limitation.

The results are even better in the heterogeneous case, where the splitting heuristic H6 is almost
always returning the optimal mapping, with a largest error less than 0.05%.

Altogether, despite its intrinsic limitation to small platforms, the LP formulation enables us

20 A. Benoit, Y. Robert

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=4) - Homogeneous case

Linear Program
H3-GreedySumDinDout
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 0 2 4 6 8 10

M
a
x
im

u
m

 p
e
ri
o
d

Number of stages (p=4) - Heterogeneous case

Linear Program
H3-GreedySumDinDout
H5-BinarySearch1to1
H6-SPLitting
H7a-BinarySearchLongest
H7b-BinarySearchClosest

Figure 11: LP on small platforms.

to assess the absolute performance of our heuristics. The results are very satisfying since the
heuristics are always very close to the optimal result. In addition, their execution time remains
small for large application/platform pairs, while the LP is not usable for platforms with more than
8 processors, due to the large number of integer variables.

7 Related work

We classify several related papers along the following four main lines:

Scheduling task graphs on heterogeneous platforms– Several heuristics have been intro-
duced to schedule (acyclic) task graphs on different-speed processors, see [19, 26] among
others. Unfortunately, all these heuristics assume no restriction on the communication re-
sources, which renders them somewhat unrealistic to model real-life applications. Recent
papers [15, 16, 23] suggest to take communication contention into account. Among these
extensions, scheduling heuristics under the one-port model [17, 18] are considered in [3]: just
as in this paper, each processor can communicate with at most one other processor at a
given time-step.

Mapping pipelined computations onto special-purpose architectures– There are two lines
of work related to mapping pipeline computations onto special architectures: the first deal
with special-purpose architectures and FPGA arrays. A representative example is the work
by Fabiani and Lavenier [14]. They study the placement of linear computations onto reconfig-
urable arrays. The other line of work is related to the design of fault-tolerant or power-aware
mapppings for embedded systems. Representative examples are [27, 2].

Mapping pipelined computations onto clusters and grids– The papers quoted in this para-
graph are the most closely related to our work. They consider the problem of mapping com-
municating tasks onto heterogeneous platforms, but the applicative framework is different.
In [25], Taura and Chien consider applications composed of several copies of the same task
graph, expressed as a DAG (directed acyclic graph). These copies are to be executed in
pipeline fashion. Taura and Chien also restrict to mapping all instances of a given task type
(which corresponds to a stage in our framework) onto the same processor. In other words,
they consider the same problem as ours, except that the linear pipeline is replaced by a
general DAG. Their problem is shown NP-complete, and they provide an iterative heuristic
to determine a good mapping. At each step, the heuristic refines the current clustering of
the DAG. Beaumont et al [4] consider the same problem as Taura and Chien, i.e. with a

Mapping pipeline skeletons onto heterogeneous platforms 21

general DAG, but they allow a given task type to be mapped onto several processors, each
executing a fraction of the total number of tasks. The problem remains NP-complete, but
becomes polynomial for special classes of DAGs, such as series-parallel graphs. For such
graphs, it is possible to determine the optimal mapping owing to an approach based upon
a linear programming formulation. The drawback with the approach of [4] is that the opti-
mal throughput can only be achieved through very long periods, so that the simplicity and
regularity of the schedule are lost, while the latency is severely increased.

Another important series of papers comes from the DataCutter project [13]. One goal of
this project is to schedule multiple data analysis operations onto clusters and grids, decide
where to place and/or replicate various components [7, 8, 24]. A typical application is a
chain of consecutive filtering operations, to be executed on a very large data set. So the task
graphs targeted by DataCutter are more general than our linear pipeline framework, but
still much more regular than arbitrary DAGs, which allows them to design several heuristics
to efficiently solve the previous placement and replication optimization problems.

Mapping skeletons onto clusters and grids– Benoit et al [5, 6] have explored the use of
stochastic process algebra to decide for the best mapping of pipeline and deal skeletal ap-
plications. However, in this work, no formal method has been developed in order to find
a mapping; instead, the authors performed a relative comparison between several (given)
mappings. They provided a performance model for each mapping, based on process algebra,
and they determined which one was the best according to the period, estimated through
performance results of the model.

8 Conclusion

In this paper, we have thoroughly studied a difficult mapping problem onto heterogeneous plat-
forms. We restricted ourselves to the class of applications which have a pipeline structure, and
studied the complexity of the problem for different variants of mapping strategies and different
types of platforms. To the best of our knowledge, it is the first time that pipeline mapping is
studied from a theoretical perspective, while it is quite a standard and widely used pattern in
many real-life applications.

For a One-to-one Mapping, we provided a polynomial algorithm which finds the optimal
solution. However, restricting each processor to execute a single stage may not be the best choice,
mainly when communications are very costly, hence take very long time between two consecutive
stages. In this case, we would rather place the two consecutive stages onto the same processor,
which is allowed in the Interval Mapping variant of the problem. For this latter case, we pro-
vided several efficient polynomial heuristics for Communication Homogeneous platforms. Finally,
we point out that the absolute performance of the heuristics is quite good, since their result is
close to the optimal solution returned by an integer linear program.

There remains much work to extend the results of this paper, in several directions. On the
theoretical side, the complexity for the Interval Mapping variant on Communication Homo-
geneous platforms is still an open problem, even though we guess it might be NP-complete. On
the practical side, it would be interesting to find an absolute lower bound on the period for a
given application and platform pair, in order to assess the absolute performance of the heuristics,
and not only their relative performance. Moreover, we still need to design heuristics for Fully
Heterogeneous platforms and assess their performance, which is a challenging problem. Finally,
in the longer term, we plan to perform real experiments on heterogeneous platforms, using an
already-implemented skeleton library, in order to compare the effective performance of the appli-
cation for a given mapping (obtained with our heuristics) against the theoretical performance of
this mapping.

A natural extension of this work would be to consider other widely used skeletons. For example,
when there is a bottleneck in the pipeline operation due to a stage which is both computationally-
demanding and not constrained by internal dependencies, we can nest another skeleton in place

22 A. Benoit, Y. Robert

of the stage. For instance a farm or deal skeleton would allow to split the workload of the initial
stage among several processors. Using such deal skeletons may be either the programmer’s decision
(explicit nesting in the application code) or the result of the mapping procedure. Extending our
mapping strategies to automatically identify opportunities for deal skeletons, and implement these,
is a difficult but very interesting perspective.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation. Springer Verlag, 1999.

[2] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Power-aware scheduling for periodic
real-time systems. IEEE Trans. Computers, 53(5):584–600, 2004.

[3] O. Beaumont, V. Boudet, and Y. Robert. A realistic model and an efficient heuristic for
scheduling with heterogeneous processors. In HCW’2002, the 11th Heterogeneous Computing
Workshop. IEEE Computer Society Press, 2002.

[4] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Assessing the impact and limits
of steady-state scheduling for mixed task and data parallelism on heterogeneous platforms.
In HeteroPar’2004: International Conference on Heterogeneous Computing, jointly published
with ISPDC’2004: International Symposium on Parallel and Distributed Computing, pages
296–302. IEEE Computer Society Press, 2004.

[5] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Evaluating the performance of pipeline-
structured parallel programs with skeletons and process algebra. Scalable Computing: Practice
and Experience, 6(4):1–16, December 2005.

[6] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Scheduling skeleton-based grid applica-
tions using PEPA and NWS. The Computer Journal, Special issue on Grid Performability
Modelling and Measurement, 48(3):369–378, 2005.

[7] M. Beynon, A. Sussman, U. Catalyurek, T. Kurc, and J. Saltz. Performance optimization for
data intensive grid applications. In PProceedings of the Third Annual International Workshop
on Active Middleware Services (AMS’01). IEEE Computer Society Press, 2001.

[8] M. D. Beynon, T. Kurc, A. Sussman, and J. Saltz. Optimizing execution of component-based
applications using group instances. Future Generation Computer Systems, 18(4):435–448,
2002.

[9] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient collective communication in distributed
heterogeneous systems. In ICDCS’99 19th International Conference on Distributed Computing
Systems, pages 15–24. IEEE Computer Society Press, 1999.

[10] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient collective communication in distributed
heterogeneous systems. Journal of Parallel and Distributed Computing, 63:251–263, 2003.

[11] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel
Programming. Parallel Computing, 30(3):389–406, 2004.

[12] P. Crescenzi and V. Kann. A compendium of NP optimization problems. World Wide Web
document, URL: http://www.nada.kth.se/~viggo/wwwcompendium/wwwcompendium.html.

[13] DataCutter Project: Middleware for Filtering Large Archival Scientific Datasets in a Grid
Environment. http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.htm.

http://www.nada.kth.se/~viggo/wwwcompendium/wwwcompendium.html
http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.htm

Mapping pipeline skeletons onto heterogeneous platforms 23

[14] E. Fabiani and D. Lavenier. Placement of linear arrays. In FPL 2000, 10th International
Conference on Field Programmable Logic and Applications. IEEE Computer Society Press,
2000.

[15] L. Hollermann, T. S. Hsu, D. R. Lopez, and K. Vertanen. Scheduling problems in a practical
allocation model. J. Combinatorial Optimization, 1(2):129–149, 1997.

[16] T. S. Hsu, J. C. Lee, D. R. Lopez, and W. A. Royce. Task allocation on a network of
processors. IEEE Trans. Computers, 49(12):1339–1353, 2000.

[17] S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized communication in
hypercubes. IEEE Trans. Computers, 38(9):1249–1268, 1989.

[18] D. W. Krumme, G. Cybenko, and K. N. Venkataraman. Gossiping in minimal time. SIAM
J. Computing, 21:111–139, 1992.

[19] M. Maheswaran and H. J. Siegel. A dynamic matching and scheduling algorithm for heteroge-
neous computing systems. In Seventh Heterogeneous Computing Workshop. IEEE Computer
Society Press, 1998.

[20] F. Rabhi and S. Gorlatch. Patterns and Skeletons for Parallel and Distributed Computing.
Springer Verlag, 2002.

[21] T. Saif and M. Parashar. Understanding the behavior and performance of non-blocking
communications in MPI. In Proceedings of Euro-Par 2004: Parallel Processing, LNCS 3149,
pages 173–182. Springer, 2004.

[22] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balancing in parallel and
distributed systems. IEEE Computer Science Press, 1995.

[23] O. Sinnen and L. Sousa. Comparison of contention-aware list scheduling heuristics for cluster
computing. In T. M. Pinkston, editor, Workshop for Scheduling and Resource Management
for Cluster Computing (ICPP’01), pages 382–387. IEEE Computer Society Press, 2001.

[24] M. Spencer, R. Ferreira, M. Beynon, T. Kurc, U. Catalyurek, A. Sussman, and J. Saltz.
Executing multiple pipelined data analysis operations in the grid. In 2002 ACM/IEEE Su-
percomputing Conference. ACM Press, 2002.

[25] K. Taura and A. A. Chien. A heuristic algorithm for mapping communicating tasks on hetero-
geneous resources. In Heterogeneous Computing Workshop, pages 102–115. IEEE Computer
Society Press, 2000.

[26] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algorithms for heterogeneous pro-
cessors. In Eighth Heterogeneous Computing Workshop. IEEE Computer Society Press, 1999.

[27] D. Zhu, R. Melhem, and B. Childers. Power-aware scheduling for multi-processor real-time
systems. IEEE Trans. Parallel Distributed Systems, 14(7):686–700, 2003.

	1 Introduction
	2 Framework
	2.1 Applicative framework
	2.2 Target platform
	2.3 Mapping problem
	2.3.1 One-to-one Mapping
	2.3.2 Interval Mapping
	2.3.3 General Mapping

	3 Complexity results
	3.1 One-to-one Mapping
	3.2 Interval Mapping
	3.3 Fully Heterogeneous platforms

	4 Heuristics
	4.1 Greedy heuristics
	4.2 Sophisticated heuristics

	5 Experiments
	5.1 Experiment 1: balanced communication/computation, and homogeneous communications
	5.2 Experiment 2: balanced communication/computation, and heterogeneous communications
	5.3 Experiment 3: large computations
	5.4 Experiment 4: small computations
	5.5 Summary

	6 Assessing the absolute performance of the heuristics
	6.1 Linear program formulation
	6.2 LP Experiments
	6.2.1 LP limitation
	6.2.2 LP on small platforms

	7 Related work
	8 Conclusion

