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Abstract

We propose a formulation of a general-sum bimatrix game
as a bipartite directed graph with the objective of establish-
ing a correspondence between the set of the relevant struc-
tures of the graph (in particular elementary cycles) and the
set of the Nash equilibria of the game. We show that finding
the set of elementary cycles of the graph permits the compu-
tation of the set of equilibria. For games whose graphs have
a sparse adjacency matrix, this serves as a good heuristic
for computing the set of equilibria. The heuristic also al-
lows the discarding of sections of the support space that
do not yield any equilibrium, thus serving as a useful pre-
processing step for algorithms that compute the equilibria
through support enumeration.

1 Introduction

Game theory is the study of strategic decision-making. The
decision-makers are called players. In bimatrix games, only
2 players are involved. Each player makes one decision in
the game. This decision pertains to the probability distribu-
tion the player conceives over the set of strategies available
to him. As a function of the two decisions, each player re-
ceives a real-valued number, called his payoff. When each
player tries to maximize his own payoff, their decisions
form an equilibrium in which neither player can increase
his own payoff by changing his own decision given that the
other player sticks to his part of the pair. Using Brouwer’s
fixed-point theorem, John Nash [8] proved the existence of
such an equilibrium, since named after him, for every finite
game. It is equally true that a game may have more than one
such equilibrium.
The problem of determining the Nash equilibria of a game
has occupied much of research in computational game the-
ory (see [6], [13] for excellent surveys). The principle algo-
rithm for finding a Nash equilibrium of a general-sum game
is the Lemke-Howson algorithm ([4], [5]). It solves a linear
complementarity program (LCP) formulation of the game.

While in practice this algorithm is quite efficient, its worst
case complexity is exponential [11]. Despite its age, the al-
gorithm remains the state of the art.
Heuristics about the game structure, therefore, invite inter-
est in finding a sample Nash equilibrium, particularly when
the game is large-sized. It is well-understood that most
randomly-generated games allow an equilibrium withsmall
and balancedsupports1. There is theoretical and empir-
ical evidence that in randomly generated bimatrix games
([7]) as n, the size of the game increases, the probability
of the game having an equilibrium where each player’s sup-
port has sizen becomes vanishingly small. This heuris-
tic is also used by [2] and [10] who use a much simpler
algorithm than the Lemke-Howson to find a sample Nash
equilibrium. Their algorithm enumerate all support pairs
(starting with the smallest-sized ones), and checks if a Nash
equilibrium can be formed from a given support pair. In
[10] it is reporter that in exhaustive computational experi-
ence on a variety of games, this algorithm outperforms the
Lemke-Howson in finding one Nash equilibrium [10].
In this paper, we investigate the larger problem of defin-
ing a good heuristic for computing thesetequilibria. Our
approach in general shall be of support enumeration. Our
contribution to this line of research is that we formulate the
bimatrix game as a bipartite directed graph that captures the
inter-dependencies of the strategies of the game. We term
this graph as thedominance graphof the game. We then
establish a correspondence between theset of elementary
structures of the graph and the set of the equilibria of the
game. In particular, we show that the set of the elementary
cycles of the graph is sufficient to compute the set of equi-
libria. Roughly speaking, we equate a cycle with a support
pair. This heuristic also allows us todiscardcertain portions
of support space that will never yield a Nash equilibrium.
The motivation for this approach is that graph theory has
a predictably large body of work on finding the set of the
relevant structures of the graph. For example, efficient

1A support is a subset of strategies that the player uses with positive
probability; balanced here implies that the support size ofboth players is
equal



linear-time algorithms that find the set of elementary cy-
cles ([3])or strongly connected components ([12], for large-
sized, sparsely connected graphs have been known for quite
some time.
While support enumeration is a simpler technique to imple-
ment than the Lemke-Howson (a given pair of supports can
be checked in polynomial time via a linear program if it
yields a Nash equilibrium or not), we do state the following
caveats. First, enumerative methods of LCPs are in general
faster than support enumeration ([13], [6], [1]) and they re-
quire less memory storage. Second, a potential drawback
of our approach is that if the dominance graph is not sparse,
the number of elementary cycles increases faster (with the
game size) than support enumeration. Thirdly, no efficient
algorithm is known that computes only the pair-wise dis-
tinct elementary cycles of a graph. Since two or more cycles
composed of the same vertices but in different order could
be elementary, there would clearly be a waste if the set of
elementary cycles is computed.
The rest of the paper is organized as follows. In Section
2 we define bimatrix games, their solutions as well as the
support enumeration approach. Then in Section 3 we define
the formulation the game as a bipartite digraph. In Section
4 we establish some results about the correspondence be-
tween the structures of the graph and the set of equilibria.
Then, in Section 5, we discuss methods of finding the set
of elementary cycles. We also show how the dominance
graph can be feasibly constructed using a more generalized
formulation. Finally in Section 6, we summarize this work
and discuss its future direction.

2 Bimatrix Game

In this section we recall standard definitions from game the-
ory. A bimatrix gameg (henceforth, game) is played by two
players called player1 and player2 respectively, and is de-
fined by four elementsg = (M, N, A, B). M andN are
the strategy sets of players1 and2 respectively. Strategies
in M andN are also calledpurestrategies. Player1 hasm
pure strategies and player2 hasn pure strategies.A andB
arem × n matrices and are called respectively player1’s
and player2’s payoff matrix. If player1 chooses strategy
x ∈ M and player2 choosesy ∈ N , player1 receives the
entryAxy as payoff and player2 receives the entryBxy as
payoff.
Notice. Henceforth, for convenience, we shall be give defi-
nitions and notations only for player1 that are also, by ob-
vious analogy, applicable to player2, unless we state to the
contrary.
A mixedstrategyp for player1 is am-column vector where
px represents the probability with which player1 chooses
the strategyx ∈ M . In a mixed strategy, pure strategies that
receive nonzero probability are said to be in itssupport. The

support of a mixed strategyp shall be denoted bysp. |sp|
denotes the size of the setsp. The set of mixed strategies of
player1 shall be denoted by∆(M).
Notice. Henceforth, unless specified otherwise:x shall de-
note a pure strategy inM andy a pure strategy inN , Ax

shall denote thexth row vector ofA andBy shall denote
theyth column vector ofB. p shall denote a mixed strat-
egy from the set∆(M) andq a mixed strategy from the set
∆(N).

2.1 Dominated Strategies

Strategyx is said to be abest responseto the strategyy if, ∀
x′ ∈ M\{x}, Axy ≥ Ax′y. x is said to be a best response
to a mixed strategyq ∈ ∆(N), if ∀ x′ ∈ M\{x}, Ax · q ≥
Ax′ · q. Given a mixed strategyq, the set of pure strategies
that are a best response toq is denoted byBR(q). Finally,
the mixed strategyp is said to a best response to the mixed
strategyq, if ∀ r ∈ ∆(M)\{p}, pT ·A ·q ≥ rT ·A ·q. Given
two strategies,a andb, pure or mixed, we shall usea → b,
to mean “a is a best response tob”.
A pure strategy that is not a best response to any pure or
mixed strategy is calledstrictly dominated. Formally,x is
strictly dominated, if∀ q ∈ ∆(N), ∃ x′ ∈ M\{x}, such
thatAx′ · q > Ax · q. The set of strategies of a player can
be made smaller by removing from it all strictly dominated
strategies. The following linear programLP1 checks if the
pure strategyx is strictly dominated or not.

LP1:
variables: ∀y ∈ N , qy; ǫ
maximize: ǫ
subject to:
1.

∑

y∈N

Ax′yqy + ǫ ≤
∑

y∈N

Axyqy, ∀x′ ∈ M\{x}

2.
∑

y∈N

qy = 1

3. qy ≥ 0, ∀y ∈ N

If LP1 has a feasible solution andǫ < 0, thenx is strictly
dominated. In other words, ifx is not strictly dominated,
there exists a mixed strategyq (obtained from theq values
in LP1) such thatx → q. For strictly dominated strategies
no suchq exists. Henceforth, we assume that from the sets
M andN strictly dominated strategies have been removed
by the path-independent process of the iterated elimination
of strictly dominated strategies.

2.2 Nash Equilibrium

We now recall two equivalent definitions of Nash equilib-
rium [8], the central solution concept in game theory.

Definition 1 The mixed strategy pair(p, q) is a Nash equi-
librium, if for every mixed strategyp′ 6= p of player 1 and



every mixed strategyq′ 6= q of player2,

pT · A · q ≥ p′T · A · q

pT · B · p ≥ pT · B · q′

Thus, if player2 is playingq, player1 cannot improve his
payoff by playing a mixed strategy different thanp. This is
analogously true for player2 as well. The following theo-
rem ([8]) leads to an equivalent definition of Nash equilib-
rium.

Theorem 1 The mixed strategy pair(p, q) is a Nash equi-
librium, iff ∀ x ∈ sp, x → q and∀ y ∈ sq, y → p.

Thus, in the Nash equilibrium(p, q), the expected payoff to
player1 on playing any pure strategyx ∈ sp when player2
chooses his pure strategies according toq is the same, and
the expected payoff to player1 may be lesser if he uses a
pure strategy that lies outsidesp. This is analogously true
for player2 as well. This implies that strictly dominated
strategies cannot be used in the support of any Nash equi-
librium. A Nash equilibrium can be defined in these terms.

Definition 2 The mixed strategy pair(p, q) with supports
sp andsq respectively is a Nash equilibrium if:

AT
x · q = u1, ∀x ∈ sp

AT
x′ · q ≤ u1, ∀x′ ∈ M\sp

pT · By = u2, ∀y ∈ sq

pT · By′ ≤ u2, ∀y′ ∈ N\sq

u1 andu2 are the expected payoffs for player1 and player
2 respectively for playing the mixed strategies(p, q).

2.3 Non-Degenerate Games

A game is said to benon-degenerateif for every mixed strat-
egy, the number of pure strategies that are a best response
to it is less than or equal to the size of its support. Formally,

Definition 3 Let g = (M, N, A, B) be a bimatrix game. If
for every mixed strategyp ∈ ∆(M) and for every mixed
strategyq ∈ ∆(N), |BR(p)| ≤ |sp| and |BR(q)| ≤ |sq|,
theng is said to be a non-degenerate game.

A straightforward corollary due to Definition 3 is as follows.

Corollary 1 If (p, q) is a Nash equilibrium of a non-
degenerate gameg, then|sp| = |sq| (the supports are said
to be balanced).

2.4 Computing Equilibria using Support
Enumeration

Since the set of mixed strategies of each player is an infi-
nite one, the set of Nash equilibria may be an infinite one.
For example, in a two-strategy per player game, where the
payoff matrices are both the identity matrix, every mixed
strategy of one player forms a Nash equilibrium with ev-
ery mixed strategy of the other player (although the payoffs
will be same for every pair). We are therefore interested in
determining a subsetΩ of Nash equilibria that we define as
follows. LetP (M) andP (N) denote the power sets ofM
andN respectively.

Definition 4 Let g = (M, N, A, B) be a game. Then,Ω =
{s : s ∈ P (M)×P (N), ∃ (p, q) such thatsp ∪ sq = s and
(p, q) is a Nash equilibrium}.

We are thus interested in determining all the support set
pairs that form a Nash equilibrium. Definition 2 can be di-
rectly converted into what [10] call afeasibility program,
which is a linear program that accepts as arguments two
support sets,sp ⊆ M and sq ⊆ N , and checks if they
constitute a Nash equilibrium or not. Since the game in-
volves only two players, the constraints in Definition 2 are
all linear. We denote the linear program corresponding to
Definition 2 by FP1. A simple algorithm to computeΩ
is to runFP1 for every pair(sp, sq), wheresp ∈ P (M)
and sq ∈ P (N). There are(2m − 1)(2n − 1) elements
in P (M) × P (N) and hence this algorithm becomes in-
tractable asm or n grows.

3 Dominance Graph of the Game

We now develop our idea of deriving a graph from the game
g that in such a way that the graph’s relevant structural prop-
erties (in particular, the number of its elementary cycles)
serve as a good heuristic to computeΩ. We call this graph
the game’sdominance graph. Each pure strategy is a vertex
in this graph. The graph’s adjacency matrix is based on two
kinds of sets that we call thedomainand therelevancy set
respectively of each pure strategy. We describe these con-
cepts and the construction of the graph in this section. The
central idea of the construction is that the elements of these
two sets represent the vertices of the graph.

3.1 Domain D(x)

Theorem 1 says that in a Nash equilibrium mixed strategy
pair, each pure strategy of a player is a best response to the
other player’s mixed strategy. Therefore a starting point to
computeΩ, is to compute for each pure strategy of a player,
the set of the mixed strategies to which the pure strategy is a



best response. We define thedomainof x, denoted byD(x),
to be the set of subsets ofN , such that from every element
in D(x), a mixed strategy can be formulated to whichx is
a best response.

Definition 5 The domain of strategyx is the setD(x) =
{s : s ⊆ N , ∃ q such thatsq = s andx → q}

A strategyx that is not strictly dominated may have upto
2n−1 elements (subsets ofN ) in its domain. The domain of
a strategyx can be computed by enumerating the elements
of the power set ofN and checking them individually to see
if they belong toD(x). We can check via linear program-
ming if, givens1, s0 ⊆ N , there exists a mixed strategyq
such thatx → q and∀ j ∈ s1, qj > 0 and∀ k ∈ s0, qk = 0.
The linear programLP2 corresponds to this check. It takes
as arguments the setss1, s0.

LP2(s1, s0):
variables: ∀y ∈ N , qy; ǫ
maximize: ǫ
subject to:
1.

∑

y∈N

Ax′yqy ≤
∑

y∈N

Axyqy, ∀x′ ∈ M\{x}

2.
∑

y∈N

qy = 1

3. qj ≥ ǫ, ∀j ∈ s1

4. qk = 0, ∀k ∈ s0

Only if LP2 has a feasible solution andǫ > 0, is it true
that there exists a mixed strategyq such thatx → q, and∀
j ∈ s1, qj > 0 and∀ k ∈ s0, qk = 0. This mixed strategy
is obtained from the values of the variablesqy (which are
the probabilities of pure strategiesy). Strictly dominated
strategies have empty domains.
D(x) can be computed by enumerating the elements of
P (N), the power set ofN , and executingLP2(s1, s0) for
each elements ∈ P (N) settings1 = s ands0 = (N − s).
The computation ofD(x) of eachx ∈ M requires (2n − 1)
runs of LP2. In non-degenerate games, the numberLP2
runs can be reduced somewhat by keeping track of(x, q)
pairs wheresq ∈ D(x). For example, if|sq| = 2, and
we have determined thatsq ∈ D(x), then we do not need
to run LP2(sq, N\sq) after having found anotherx′ with
sq ∈ D(x′).

3.2 Relevancy Set R(x)

The computation ofD(x) becomes intractable for large val-
ues ofn. Besides, thesizeof D(x) might be too large.
Therefore to useD(x) of eachx to obtain the adjacency ma-
trix of the graph is impractical. In Section 5.1 we discuss
how a subset ofD(x) containing supports of small sizes
only can be used to construct the graph. The measure that
we shall therefore use to construct the graph is what we term
as therelevancy setof x, denoted byR(x). It is the set of

the pure strategies of player2 such that every strategy in
R(x) is in the support ofsomemixed strategy to whichx is
a best response.

Definition 6 The relevancy set of strategyx is the set
R(x) = {y : y ∈ N , ∃ q such thatqy > 0 andx → q}

Thus, the relevancy set ofx is just the union of the elements
of D(x). The worst-case (as well as best-case) complexity
of computingD(x) is exponential. While computingR(x)
has this same worst-case complexity, its best-case complex-
ity is much lower. We describe one method of computing
R(x) that works quite well in practice.
By the definition of the relevancy set,R(x) is non-empty
iff x is non-strictly dominated. We now show how to de-
termine if a strategyy∗ ∈ N is an element ofR(x). In
LP1, we make two modifications: we change constraint3.,
to qy ≥ 0, ∀y ∈ N\{y∗}, and we add the constraint,qy∗ =
0. We call this LP,Mod LP1.
If x is non-strictly dominated thenǫ ≥ 0 in LP1. There-
fore, if in Mod LP1 (which is the same asLP1 but with
qy∗ = 0), ǫ < 0, then it implies thatx is now strictly domi-
nated only because player2 playsy∗ with zero probability.
In other words, only by re-settingqy∗ ≥ 0, we establish
that there exists a mixed strategyq of player2 in which he
playsqy∗ with non-zero probability, to whichx is a best re-
sponse. Thus, we conclude that ifǫ < 0 in Mod LP1, then
y∗ ∈ R(x).
However, ifǫ ≥ 0, it does not rule out thaty∗ could still be
in R(x). By executingMod LP1 n times, each time taking
a different strategy fromN , we might obtain only a subset
of R(x). Assume that this set isR′(x) ⊂ N . To determine
R(x) givenR′(x), we need to executeLP2 for either all the
pairs(s1, s0) (wheres1 takes on values from the power set
of N − R′(x) ands0, from the power set ofR′(x)) or until
R(x) = N . 2

In view of the worst-case complexity of computingR(x),
for the purpose of the present discussion we make the fol-
lowing simplifying assumption.

Assumption 1 ∀ x ∈ M , R(x) = N , and ∀ y ∈ N ,
R(y) = M .

This assumption does not affect any of the theoretical re-
sults we give, but only affects our ability to construct the
graph, an issue we address in Section 5.1. As a matter of
fact, in practice, we have found that executingMod LP1
on randomly generated bimatrix games,n times for each
x, almost always gives usR(x) = N . Our useofR(x) to
describe a graph in the following is purely for expository
reasons. Theorem 1 and Definition 6 give us the following
simple corollary.

2Other methods too exist for this purpose. For example, ifx is not
strictly dominated,LP1 will return a set of pure strategies of player2 that
are inR(x). Therefore, only those not found byLP1 need to be iteratively
checked byLP2.



Corollary 2 If (p, q) is a Nash equilibrium of a gameg,
thensq ⊆ R(x) for everyx ∈ sp andsp ⊆ R(y) for every
y ∈ sq.

3.3 Dominance Graph based on R(x)

The relevancy setsR(x) of eachx ∈ M , and R(y) of
eachy ∈ N as well as the setsM andN lend a certain
structure to the game that can be formulated as abipartite
directed graphor digraph. A bipartite digraph is a tuple
G = (U, W, E), whereU , W are finite disjoint sets, and
E is a |U | × |W | matrix called theadjacency matrixor the
arc setsuch thatEuw = 1 if an arc exists fromu ∈ U to
w ∈ W , and0 otherwise. We say that the arc(u, w) ∈ E,
if Euw = 1. Thevertex setof G is the union ofU andW .
By settingU = M and W = N , and definingE such
that Exy = 1 iff y ∈ R(x) and 0 otherwise, we obtain
the dominance graph of the gameg, the bipartite digraph
Gr = (M, N, E). The vertex set ofGr is denoted by
V = M ∪ N . Thus for every arc inE, one endpoint lies in
M and the other inN or vice-versa.Gr is a1-graph, hence
between every ordered pair of vertices, not more than one
arc exists.
A bipartite digraphG = (U, W, E) is said to becom-
pletely connectedif for every vertexu ∈ U and every vertex
w ∈ W , the arcs(u, w) and(w, u) exist inE. Note that if
Assumption 1 is made,Gr is completely connected. In a
digraph, theout-degreeof a vertexv, denoted byO(v) is
the number of arcs emanating from the vertex, while thein-
degreeof v, denoted byI(v) is the number of arcs entering
it. Note that inGr, for eachv ∈ V , O(v) ≥ 1, since the
relevancy set of eachv is non-empty.

3.4 Support Cycle Basis

Some basic structural definitions from graph theory about
digraphs that we require to represent the equilibria of the
gameg in terms of the digraphGr are as follows:
We are given the digraphGr as defined above. Apath is
a sequence of vertices(v1 . . . , vk) such that∀ 1 ≤ i < k,
the arc(vi, vi+1) exists inE. The first vertexv1 in the se-
quence is called the initial endpoint and the last vertexvk

is called the terminal endpoint. Acycle3 is a path whose
initial endpoint is the same as its terminal endpoint. An
elementary(or simple) cycle is a cycle in which no vertex
(barring the initial endpoint) occurs twice. Note that a cy-
cle is a sequence of pure strategies where each strategy is
alternatively picked from the two strategy sets. Thelength
of a cycle is the number of vertices in it (not counting the
repeating vertex). A cycle of lengthk is called ak-cycle.
The longest cycle inGr has2K +1 vertices whereK is the
size of the smaller of the two strategy sets,M andN . We

3sometimes also called a circuit, esp. in undirected graphs

denote the set of elementary cycles ofGr by CGr
.

Henceforth, for convenience, we shall refer to elementary
cycles as cycles unless we state to the contrary. The set of
vertices that appear in a cycleµ is denoted byV (µ) and is
called its vertex set. Fori ∈ {1, 2}, the set of vertices (pure
strategies) of playeri in cycleµ is denoted byVi(µ). Two
cyclesµ, µ′ are calledequivalentif V (µ) = V (µ′), else
they are said to bedistinct. The setCGr

of the elementary
cycles ofGr can be partitioned intoequivalenceclasses,
V 1, . . . , V J such that any two cycles from the same class
are equivalent and any two cycles from different classes are
distinct. A class is represented by the vertex set of the cy-
cles that belong to that class. The cycles of a given class are
permutations of the vertices of that class.
To eventually be able to computeΩ, it is enough to know
how many equivalence classes there are inG and the defi-
nition (i.e., vertex set) of each class. It is not necessary to
compute the members of each class. By drawing one mem-
ber (any member) from each equivalence class, we obtain a
set of pairwise distinct cycles. We define thesupport cycle
basisof Gr denoted byδGr

as follows.

Definition 7 LetP (V ) denote the power set ofV . The sup-
port cycle basis ofGr is the setδGr

= {s : s ∈ P (V ), ∃
µ ∈ CGr

, such thatV (µ) = s}.

Thus each element of a support cycle basis (henceforth
called the cycle basis)4 is asubsetof V . There exists atleast
one cycle whose vertex set equals this subset. Naturally, it
may be possible that other cycles also exist whose vertex
set equals this subset. In the forthcoming discussion we de-
scribe a property of cycles that is such that if it is applicable
to one cycle, then it is also applicable to every cycle in that
cycle’s class. Thus we can refer without ambiguity to an el-
ement ofδGr

as a cycle as well a subset. As we shall see in
the next section, the cycle basis is important in formulating
Nash equilibria in graph-theoretic terms (note the certain
similitude between Definitions 4 and 7).

4 Expressing Equilibria as Cycles

We now discuss the motivation behind the preceding con-
structions, that of the dominance graph and the cycle ba-
sis. Our objective in using these two constructs is that they
might provide heuristics that enable the computation of the
equilibria setΩ more efficiently than comprehensive sup-
port pair enumeration. We first show how Nash equilibria
are related to elementary cycles.
We say that a mixed strategy(p, q) generatesa given cycle
µ if V (µ) ⊆ (sp ∪ sq). We say that a cycleµ generates a
given mixed strategy(p, q) if sp = V1(µ) andsq = V2(µ).

4Not to be confused with thecycle basisof a graph which is a set of
fundamental cycles of the graph



Theorem 2 Let g be a game andGr its dominance graph.
Then, for every Nash equilibrium(p, q) of g, there exists
atleast one cycleµ ∈ δGr

of length2K + 1 whereK =
min(|sp|, |sq|), such thatV (µ) ⊆ (sp ∪ sq). Moreover, if
|sp| = |sq|, thenV (µ) = (sp ∪ sq).

Proof: Assume(p, q) is a Nash equilibrium ofg. Denotesp

by s1 andsq by s2. ∀ i ∈ {1, 2}, let Li be a stack in which
the elements ofsi have been pushed in any order. LetK
denote the size of the smaller of the two stacks andk the
subscript of that stack. Letµ be a list. Thejth element
of µ is denoted byµj . Now, removeK elements fromLk

andL−k
5 each, and place themalternativelyin µ with an

element ofLk beingµ1. By Corollary 2,∀ i ∈ {1, 2}, ∀
u ∈ Li, s−i ⊆ R(u) and thus,∀ v ∈ s−i, (u, v) ∈ E.
Therefore, for every1 ≤ j < 2K, the arc(µj , µj+1) is an
element ofE. Since,µ1 ∈ Lk and there are2K elements
in µ, µ2K ∈ L−k. But the arc(µ2K , µ1) exists inE (by
Corollary 2). Therefore, adding the elementµ1 at position
2K +1, gives us an elementary cycle, as claimed in the first
statement.
The vertex set ofµ is Lk∪L−k(K), whereL−k(K) ⊆ L−k

such that|L−k(K)| = K. If (as in a non-degenerate game)
|Lk| = |L−k| = K, the elementary cycleµ, as constructed
above, has a vertex set that equalsLk∪L−k(K) = Lk∪L−k

as claimed in the second statement.QED.
Since the order in which the vertices are put in the stacks
does not matter in the proof of Theorem 2, it follows that
(p, q) generates every cycle of the class to whichµ belongs.
This allows us, as stated before, to refer to an element of
δGr

as a cycle as well as a subset. We can also refer to the
cycle generated by(p, q).

4.1 Support Trees

Theorem 2 implies that every Nash equilibrium of a game
generates a cycle. If the game is non-degenerate or if the
supports of the equilibrium are balanced, then the cycle also
generates the Nash equilibrium. In particular,every3-cycle
of Gr generates a Nash equilibrium ofg. We cannot gener-
alize this statement, however. That is, not every Nash equi-
librium of g can be generated by a cycle of size≥ 5.

Corollary 3 Given a gameg and its dominance graphGr,
and a Nash equilibrium(p, q) of g that generates the cycle
µ ∈ δGr

of length≥ 5. Then it is possible thatµ does not
generate(p, q), that is, it is possible thatsp 6= V1(µ) or
sq 6= V2(µ).

Due to this corollary, it would appear that computing the
cycle basis may not be sufficient to compute the set of Nash
equilibria Ω. However, as we describe in the following,

5
−k denotes “notk”

while a cycle itself may not generate a particular equilib-
rium, a cycle and an auxiliary set of3-cycles would gener-
ate that equilibrium. Note that every3-cycle is necessarily
elementary.
Consider a mixed strategy(p, q) that is a Nash equilib-
rium. By Theorem 2 it generates a cycle. Let this cycle be
µ ∈ δGr

. If |sp| = |sq| = K, then the cycle generates the
equilibrium as well. So, the case that requires generaliza-
tion is if |sp| 6= |sq|. Let |sp| < |sq|, and lets = sq −V2(µ)
(s contains the pure strategies insq that have not been “used
up” in µ). By Corollary 2, for eachv ∈ s, and for each
u ∈ V1(µ), the arcs(u, v) and(v, u) exist inE. Thus, each
elementv ∈ s forms the cycle(v, u, v) with atleast one ver-
tex ofu ∈ V1(µ).
Therefore, every Nash equilibrium(p, q) is such that the
union of its support sets equals the union of the vertex sets
of a set of cyclesτ(p, q) where each cycle is fromδGr

. In
this set, there is a cycleµ of length2K + 1 and some other
3-cycles, whose vertex sets have one element in common
with the vertex set ofµ. We call this set of cycles asup-
port tree(henceforth, tree)6. We say that the mixed strategy
(p, q) generates the treeτ(p, q) if the latter is obtained is the
manner just described. Therefore if(p, q) generatesτ(p, q),
(sa ∪sq) =

⋃

c∈τ(p,q)

V (c). Moreover, as in the case of cycles

and balanced supports, hereτ(p, q) generates(p, q) as well.
We can thus find a tree ofGr that generates a given Nash
equilibrium (In the case of an equilibrium with balanced
supports, there are no3-cycles inτ ).

Theorem 3 Let g be a game andGr its dominance graph.
Every Nash equilibrium(p, q) of g generates atleast one
support treeτ(p, q) of Gr.

An important consequence of the two preceding theorems
is that, we can use them for deciding if a certain strategy
is eliminable i.e., it does not occur in the support of any
Nash equilibrium. More generally, we can use the theorems
to discard a subset of strategies, if we find that they do not
yield any cycle.

5 Computing the Support Cycle Basis

The two theorems of the last section establish that the set
of Nash equilibriaΩ can be computed from the cycle ba-
sis only. So a general scheme to computeΩ that we call
support tree enumerationas follows. We first determine the
cycle basisδGr

from CGr
which also gives us all3-cycles.

Denote the set of3-cycles byδ3
Gr

, and byP 3 its power set.
The set of support trees is obtained by keeping those ele-
ments of(δGr

− δ3
Gr

) × P 3 that satisfy the definition of a
support tree. Finally, for each cycle or support treeµ found,

6A structure such asτ(p, q) is atreeof the underlying undirected graph
of Gr



we runFP1with argumentsV1(µ) andV2(µ).
The cycle basis is just a set of cycles ofGr . The problem of
determining the set of elementary cycles of a directed graph
is a well studied one in graph theory. To our knowledge,
the algorithm due to Johnson [3] is the most efficient in this
regard. Its run-time is bounded byO((v+e)(c+1)), where
v is the number of vertices,e the number of arcs andc the
number of elementary cycles of the graph. It computes the
setCGr

. We do not know of any algorithm that computes
efficiently the subsetδGr

of CGr
.

Johnson’s algorithm detects the strongly connected compo-
nents (SCCs) of a digraphG and then finds all the elemen-
tary cycle of each SCC. An SCC is a subsetV ′ of the ver-
tices of G such that for every pair of verticesu, v,∈ V ′

there exists an elementary path of vertices ofV ′ such that
its initial endpoint isu and terminal endpoint isv. There
exist efficient, linear-time algorithms that find all the SCCs
of digraph. The efficiency of Johnson’s algorithm depends
on the density of the matrixE (and on the number of SCCs;
the more SCCs, the better it is).
A completely connected bipartite graph has just one SCC
and has the maximum number of elementary cycles that
a graph of its size (in the number of vertices, sayk) can
have. This number ([3]), grows, faster than the number
of total supports of the game ask grows. Therefore, con-
structingGr by making Assumption 1 and then enumerat-
ing its cycles using Johnson’s algorithm (or any other) is
guaranteed to be worse than enumerating the elements of
P (M) × P (N). On the other hand, as noted before,R(x)
is difficult to compute as well.
So, we would like to construct a graph without the (forced)
complete connectedness ofGr but without actually comput-
ing Rx. Moreover, we would like Theorems 2 and 3 to be
true for this graph as well. We now describe how a graph
that is based onD(x) can satisfy these criteria.

5.1 Dominance Graph based on D(x)

We define a dominance graph based on the domain, denoted
by Gd as the bipartite digraphGd = (P (M), P (N), E). In
this graph a vertex is an element of the power set of the
set of pure strategies and thus corresponds to either a pure
strategy or to a set of pure strategies. InGd an arc is made
from a vertexs to the vertext, if every pure strategy ins
is a best response to some mixed strategy with supportt.
Thus, givens ∈ P (M) and t ∈ P (N), Est = 1, iff, ∀
x ∈ s, t ∈ D(x). Using Theorem 1, it can be verified that
all 3-cycles ofGd are Nash equilibria, just as the3-cycles
of Gr are. Additionally, inGd only 3-cycles generate Nash
equilibria. Cycles of longer lengths need not be considered.
It is easy to see the motivation behind the construction of
Gd. Even if the setsR(x) are considered as given,Gr con-
tains a lot of superfluous information in terms of the arcs it

contains. For example, letx be a vertex inGr, and let the
arcs(x, y) and(x, w) exist inE of Gr. Suppose thatx is
not a best response toy, x is not a best response tow but
(y, w) ∈ D(x). This implies, thatx is a best response to a
mixed strategyq that has in its supporty, if and only if w
(or some other pure strategies) also occur in the support. A
graph such asGd contains more precise information.
Thus on the one hand, we have the small but quasi-
completely connected graphGr, and on the other, the very
large, but possibly sparsely connected graphGd. We can
therefore seek to construct a dominance graph that is anin-
termediatebetweenGr andGd. The intermediacy is in the
size of the two vertex sets ofGi. In Gd, they areP (M)
andP (N). In general, they can be any subsets ofP (M)
and P (N). We define an intermediate graph denoted by
Gi asGi = (Pk(M), Pl(N), E) wherePk(M) ∈ P (M)
consists only of elements ofP (M) of sizek or less and
Pl(N) ∈ P (N) consists only of elements ofP (N) of size
l or less. The definition ofE requires some care. Given
an s ∈ Pk(M) we define all the outgoing arcs froms as
follows. (by analogy, the following discussion is also ap-
plicable for everyt ∈ Pl(N) ). Let Dl(x) ⊆ D(x) denote
the subset of the domain ofx such that its elements are of
sizel or less. For example, theD2(x) can contain only pure
strategies and pairs of pure strategies fromN . Let S(v) de-
note the set of pure strategies in the vertexv andL(v) the
size ofS(v). Then,

1. LetT (s) = {t ∈ Pl(N) : ∀ x ∈ s, t ∈ Dl(x)}. Then,
∀ t ∈ T (s), Est = 1

2. If T (s) is empty, letD(s) = {t ∈ Pl(N) : S(t) =⋂

x∈s

Dl(x)}. Then,∀ t such thatt = arg max
L(w)

{w ∈

D(s)}, Est = 1.

3. If T (s) and D(s) are both empty, then∀ t ∈
(
⋃

x∈s

Dl(x)), Est = 1.

4. If s = x (i.e., it is a pure strategy) andDl(x) is empty,
then∀ t ∈ Pl(N), Est = 1.

In Gd only Case 1 is needed. In Cases2, 3 and4, we are
creatingartificial arcs. These are needed, since inGi, we
disallow verticesv ∈ Pl(N) such thatL(v) > l. Thus, it
is possible that for a givens, there is no outgoing arc (the
vertex is isolated) using just Case 1. This would happen ei-
ther becauseDl(x) is empty for somex ∈ s or that none of
x in s have a common element in their domainsDl. Hence
we need Cases2, 3 and4. If the values ofl is small, the
computation ofDl(x) is tractable. The intuition behind the
definition ofE above, is that in most games even for small
values ofl, Cases2, 3 and4 are not needed, and hence artifi-
cial arcs (that introduce artificial cycles intoGi) need not be
made. We define a support treeτ of Gi to be a set of cycles



Table 1. Average size of δGr
in random bima-

trix games of sizes 7 to 11. S = P (M) × P (N)
m = n = 7 8 9 10 11
|δGr

| 757 3775 11772 48768 252567
|δGr

|/|S| 0.04 0.058 0.045 0.046 0.06
T (secs) < 1 < 1 5.3 9.8 67

such that each pair of cycles in it has one vertex in common.
The definition ofGi leads to the following theorem.

Theorem 4 Given an intermediate dominance graphGi =
(Pk(M), Pl(N), E) of a gameg, every Nash equilibrium
(p, q) of g generates atleast one support treeτ of Gi andτ
generates(p, q) as well.

We summarize a general scheme to compute the setΩ as
follows. For players1 and 2, we set the valuesk and l
respectively, to fix the sizes ofPk(M) andPl(N). Then,
usingLP2, we compute∀ x ∈ M , ∀ 1 ≤ i ≤ k, Di(x), and
∀ y ∈ N , ∀ 1 ≤ i ≤ l, Di(y). We then fill the entries of the
matrixE as described in Section 5.1 to obtain the graphGi.
We then use an elementary cycle-finding algorithm such as
[3] to get the cycle basis ofGi. We then find sets of cycles
from δGi

that contain pairwise intersecting cycles. Then the
programFP1 is run for each such set to obtainΩ.

5.2 Results

Table 1 shows some preliminary results (the games were
generated by the GAMUT software [9]) about the sizes of
the cycle basis inGr. The relevancy sets were obtained
throughMod LP2, and in fact in all cases, the relevancy sets
equaled the other player’s strategy set. We did not use John-
son’s algorithm since it does not directly compute the cycle
basis. For our purpose, we have conceived a simple enu-
merating algorithm that builds elementary cycles of length
k + 1 from those of lengthk. The different cycle lengths to
be considered arek = 3, 4, . . . (2K + 1). Each elementary
k-cycle of lengthk is stored in a vector. Before storing, the
vertices are sorted, and converted into a number using a cod-
ing scheme. In the first step, all3-cycles are computed by
a simple search. When searching for a(k + 1)-cycle from
a k-cycle, an expansion is done (using fixed look-ahead)
only if the resulting cycle is not already present in the set
of (k + 1)-cycles. We also conducted several experiments
to generate statistics about the domain set for a variety of
10×10 games using GAMUT. We do not report our findings
here for want of space, but we do mention that (predictably)
for random games, the adjacency matrix ofGd is very dense
(about 65% of entries are1). Games with sparse matrices
were “WarOfAttrition”(15%), “LocationGame”(10%) and
“GuessTwoThirdsAve”(15%) among others.

6 Conclusion and Future Work

We have presented a heuristic for the computation of the
set of equilibria of bimatrix games as well as for identifying
eliminable strategies (those that are not in any Nash equilib-
rium). We have formulated the heuristic in graph-theoretic
terms with the idea that certain games can be converted to
sparsely connected digraphs, which can then be mined for
interesting structures. In this paper, we showed that we can
re-design a game to be a digraph whose elementary cycles
can be checked directly to see if they yield Nash equilibria.
The bulk of the paper concerned graphs conceived with the
relevancy set. As we stated,Gr was used mainly for exposi-
tory purposes. Our immediate work concerns more focused
computational experience with intermediate graphsGi. At
the present time, there are not many approaches in the liter-
ature for computing the set of Nash equilibria, and we hope
that our approach is a useful contribution.
Acknowledgements.We are thankful to Martin Allen and
Vishesh Vikas for helpful discussions.
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