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Abstract While in practice this algorithm is quite efficient, its wors

case complexity is exponenti@ll]. Despite its age, the al
We propose a formulation of a general-sum bimatrix game gorithm remains the state of the art.
as a bipartite directed graph with the objective of establis  Heuristics about the game structure, therefore, inviterint
ing a correspondence between the set of the relevant strucest in finding a sample Nash equilibrium, particularly when
tures of the graph (in particular elementary cycles) and the the game is large-sized. It is well-understood that most
set of the Nash equilibria of the game. We show that findingrandomly-generated games allow an equilibrium \gitall
the set of elementary cycles of the graph permits the compu-and balancedsupportst. There is theoretical and empir-
tation of the set of equilibria. For games whose graphs haveical evidence that in randomly generated bimatrix games
a sparse adjacency matrix, this serves as a good heuristic([) as n, the size of the game increases, the probability
for computing the set of equilibria. The heuristic also al- of the game having an equilibrium where each player’s sup-
lows the discarding of sections of the support space thatport has sizen becomes vanishingly small. This heuris-
do not yield any equilibrium, thus serving as a useful pre- tic is also used by[}2] and [1.0] who use a much simpler
processing step for algorithms that compute the equilibria algorithm than the Lemke-Howson to find a sample Nash
through support enumeration. equilibrium. Their algorithm enumerate all support pairs

(starting with the smallest-sized ones), and checks if &dNas

equilibrium can be formed from a given support pair. In
1 Introduction [@] it is reporter that in exhaustive computational experi
ence on a variety of games, this algorithm outperforms the
Lemke-Howson in finding one Nash equiIibriuIﬂ[lO].
In this paper, we investigate the larger problem of defin-
ing a good heuristic for computing treetequilibria. Our
approach in general shall be of support enumeration. Our
contribution to this line of research is that we formulate th
bimatrix game as a bipartite directed graph that captuees th
inter-dependencies of the strategies of the game. We term
this graph as thelominance graplof the game. We then
establish a correspondence betweengbiof elementary
structures of the graph and the set of the equilibria of the
game. In particular, we show that the set of the elementary
cycles of the graph is sufficient to compute the set of equi-
libria. Roughly speaking, we equate a cycle with a support
é)air. This heuristic also allows usdiiscardcertain portions
of support space that will never yield a Nash equilibrium.

Game theory is the study of strategic decision-making. The
decision-makers are called players. In bimatrix gamesy, onl
2 players are involved. Each player makes one decision in
the game. This decision pertains to the probability distrib
tion the player conceives over the set of strategies availab
to him. As a function of the two decisions, each player re-
ceives a real-valued number, called his payoff. When each
player tries to maximize his own payoff, their decisions
form an equilibrium in which neither player can increase
his own payoff by changing his own decision given that the
other player sticks to his part of the pair. Using Brouwer’s
fixed-point theorem, John Nasﬁ [8] proved the existence of
such an equilibrium, since named after him, for every finite
game. ltis equally true that a game may have more than on

such equilibrium. - . .

The problem of determining the Nash equilibria of a game The mptlvat|on for this approach is that_graph theory has
i . ; a predictably large body of work on finding the set of the

has occupied much of research in computational game the-

L relevant structures of the graph. For example, efficient
ory (see|[B], [1B] for excellent surveys). The principleaig grap P
rithm for finding a Nash equilibrium of a general-sum game 1A support is a subset of strategies that the player uses \wititiye

is the Lemke"’_'owson algofithmﬂ[4ﬂ[5])- I_t solves alinear pronanility: balanced here implies that the support sizbath players is
complementarity program (LCP) formulation of the game. equal




linear-time algorithms that find the set of elementary cy- support of a mixed strategy shall be denoted by,,. |s,|
cles (@])or strongly connected componen[lZ], foréarg denotes the size of the sgt The set of mixed strategies of
sized, sparsely connected graphs have been known for quit@layerl shall be denoted by (M).

some time. Notice. Henceforth, unless specified otherwiseshall de-
While support enumeration is a simpler technique to imple- note a pure strategy i andy a pure strategy iV, A,
ment than the Lemke-Howson (a given pair of supports canshall denote the:'* row vector of A and B, shall denote
be checked in polynomial time via a linear program if it they!” column vector ofB. p shall denote a mixed strat-
yields a Nash equilibrium or not), we do state the following egy from the sef\(A) andq a mixed strategy from the set
caveats. First, enumerative methods of LCPs are in generalA(N).

faster than support enumeratiop {[13], [g], [1]) and they re

quire less memory storage. Second, a potential drawback2.1 Dominated Strategies

of our approach is that if the dominance graph is not sparse,

the number of elementary cycles increases faster (with theStrategyr is said to be dest responsw the strategy if, V
game size) than support enumeration. Thirdly, no efficient ;v o M\{z}, Apy > Aur,. zis said to be a best response
algorithm is known that computes only the pair-wise dis- o 4 mixed strategy < A(N),ifVa' € M\{z}, Ay - q >
tinct elementary cycles of a graph. Since two or more cycles 4 , . ¢. Given a mixed strategy, the set of pure strategies
composed of the same vertices but in different order could {hat are a best responseqtds denoted bYBR(q). Finally,

be elementary, there would clearly be a waste if the set ofthe mixed strategy is said to a best response to the mixed
elementary cycles is computed. strategyy, if Vr € A(M)\{p},pT-A-q>rT-A-q. Given
The rest of the paper is organized as follows. In Section o strategiesg andb, pure or mixed, we shall use— b,

B we define bimatrix games, their solutions as well as the to mean % is a best response to.

support enumeration approach. Then in Sedfion 3 we definea pure strategy that is not a best response to any pure or
the formulation the game as a bipartite digraph. In Section mixed strategy is callestrictly dominated Formally, z is

A we establish some results about the correspondence bestrictly dominated, ifY ¢ € A(N), 32’ € M\{z}, such
tween the structures of the graph and the set of equilibria.that 4, . ¢ > A, - g. The set of strategies of a player can
Then, in Sectior]5, we discuss methods of finding the setphe made smaller by removing from it all strictly dominated
of elementary cycles. We also show how the dominancestrategies. The following linear progran®1 checks if the

graph can be feasibly constructed using a more generalizeghre strategy: is strictly dominated or not.
formulation. Finally in Sectiofi|6, we summarize this work

and discuss its future direction. LP1:
variables: Vy € N, qy; €
. . maximize: e
2 Bimatrix Game subject to:
. . . 1.3 Awygy +€< >0 Apyqy, V2’ € M\{z}
In this section we recall standard definitions from game the- yeN yEN
ory. A bimatrix gamey (henceforth, game) is played by two 2. qy=1

yeN

players called playet and player respectively, and is de- 3.q,>0,Vye N

fined by four elementg = (M, N, A, B). M andN are
the strategy sets of playetsand2 respectively. Strategies If LP1 has a feasible solution ard< 0, thenz is strictly

in M andN are also callegure strategies. Player hasm dominated. In other words, if is not strictly dominated,
pure strategies and playghasn pure strategiesd and B there exists a mixed strategy(obtained from they values
arem x n matrices and are called respectively playisr in LP1) such thatr — ¢. For strictly dominated strategies

and player2’'s payoff matrix. If playerl chooses strategy no suchg exists. Henceforth, we assume that from the sets
x € M and player2 chooseg € N, playerl receivesthe M andN strictly dominated strategies have been removed
entry A, as payoff and playe? receives the entry,,, as by the path-independent process of the iterated eliminatio
payoff. of strictly dominated strategies.

Notice. Henceforth, for convenience, we shall be give defi-

nitions and notations only for playérthat are also, by ob- 2.2 Nash Equilibrium

vious analogy, applicable to play2runless we state to the

contrary. We now recall two equivalent definitions of Nash equilib-

A mixedstrategyp for playerl1 is am-column vector where  j,m [B], the central solution concept in game theory.
p. represents the probability with which playerchooses

the strategy: € M. In a mixed strategy, pure strategies that Definition 1 The mixed strategy pailp, ¢) is a Nash equi-
receive nonzero probability are said to be irsitipport The librium, if for every mixed strategy’ # p of player 1 and



every mixed strategy # q of player2, 2.4 Computing Equilibria using Support
Enumeration
pl-A-qg>pT - A-q
pl-B-p>pl-B-¢ Since the set of mixed strategies of each player is an infi-
nite one, the set of Nash equilibria may be an infinite one.
Thus, if player2 is playingq, player1l cannot improve his  For example, in a two-strategy per player game, where the
payoff by playing a mixed strategy different thanThis is payoff matrices are both the identity matrix, every mixed
analogously true for playex as well. The following theo-  strategy of one player forms a Nash equilibrium with ev-
rem ({8]) leads to an equivalent definition of Nash equilib- ery mixed strategy of the other player (although the payoffs
rium. will be same for every pair). We are therefore interested in
determining a subsét of Nash equilibria that we define as
Theorem 1 The mixed strategy paiip, ¢) is a Nash equi-  follows. Let P(M) and P(N) denote the power sets of
librium, iff Vo € sp, 2 — gandVy € sq, y — p. andN respectively.

Thus, in the Nash equilibriurfp, ¢), the expected payoffto  Definition 4 Letg = (M, N, A, B) be a game. Thei) =
playerl on playing any pure strategye s, when player {s:s€ P(M)x P(N),3(p,q) suchthats, Us, = s and
chooses his pure strategies according ts the same, and  (p, q) is a Nash equilibriung.

the expected payoff to playérmay be lesser if he uses a

pure strategy that lies outsidg. This is analogously true We are thus interested in determining all the support set
for player2 as well. This implies that strictly dominated Pairs that form a Nash equilibrium. Definitigh 2 can be di-
strategies cannot be used in the support of any Nash equitectly converted into wha{[}0] call teasibility program

librium. A Nash equilibrium can be defined in these terms. Which is a linear program that accepts as arguments two
support setss, C M ands, C N, and checks if they

constitute a Nash equilibrium or not. Since the game in-
Definition 2 The mixed strategy paifp, ¢) with supports  Vvolves only two players, the constraints in Definit{gn 2 are

sp ands, respectively is a Nash equilibrium if: all linear. We denote the linear program corresponding to
Definition @ by FP1 A simple algorithm to computé€
AT .g=wuy, VrEs) is to runFP1 for every pair(s,, sq), Wheres, € P(M)
AL g <uy, V2’ e M\s, ands, € P(N). There are(2™ — 1)(2" — 1) elements

0T B, =y, Wy € s in P(M) x P(N) and hence this algorithm becomes in-
- v ', 4 tractable asn orn grows.

p - By <ua, Yy € N\sg
uy andus are the expected payoffs for playeand player 3 Dominance Graph of the Game
2 respectively for playing the mixed strategigsq).
We now develop our idea of deriving a graph from the game
g thatin such a way that the graph’s relevant structural prop-
erties (in particular, the number of its elementary cycles)
L . . serve as a good heuristic to compteWe call this graph
Agameis said to baon-degenera_néfor every mixed strat- the game’slominance graphEach pure strategy is a vertex
egy, the number of pure strategies that are a best response .o graph. The graph's adjacency matrix is based on two
toitis less than or equal to the size of its support. Formally kinds of sets that we call thégomainand therelevancy set
respectively of each pure strategy. We describe these con-
cepts and the construction of the graph in this section. The
central idea of the construction is that the elements ofthes
two sets represent the vertices of the graph.

2.3 Non-Degenerate Games

Definition 3 Letg = (M, N, A, B) be a bimatrix game. If
for every mixed strategy € A(M) and for every mixed
strategyq € A(N), |[BR(p)| < |sp| and[BR(q)| < |sq],

theng is said to be a non-degenerate game. .
3.1 Domain D(x)

A straightforward corollary due to Definitidh 3 is as follows
TheorerTﬂl says that in a Nash equilibrium mixed strategy
pair, each pure strategy of a player is a best response to the
Corollary 1 If (p,q) is a Nash equilibrium of a non-  other player's mixed strategy. Therefore a starting paint t
degenerate game then|s,| = |s,| (the supports are said  compute), is to compute for each pure strategy of a player,
to be balanced). the set of the mixed strategies to which the pure strategy is a



bestresponse. We define themainof x, denoted byD (),

to be the set of subsets &f, such that from every element
in D(z), a mixed strategy can be formulated to whicls

a best response.

Definition 5 The domain of strategy is the setD(z) =
{s:s C N,3gsuchthats, = sandz — ¢}

A strategyx that is not strictly dominated may have upto
2™ —1 elements (subsets &f) in its domain. The domain of

the pure strategies of play@rsuch that every strategy in
R(x) is in the support ofomemixed strategy to which is
a best response.

Definition 6 The relevancy set of strategy is the set
R(xz) ={y:y € N,3qsuchthay, > 0andz — ¢}

Thus, the relevancy set afis just the union of the elements
of D(z). The worst-case (as well as best-case) complexity
of computingD(z) is exponential. While computing(z)

a strategyr can be computed by enumerating the elements has this same worst-case complexity, its best-case complex

of the power set ofV and checking them individually to see
if they belong toD(z). We can check via linear program-
ming if, givensy, s C N, there exists a mixed strategy
suchthatt — qandv j € s1,¢; > 0andv k € so, gx = 0.
The linear prograniP2 corresponds to this check. It takes
as arguments the sets, sg.

LPZ(Sl, 50):
variables: Vy € N, ¢y; €
maximize: e
subject to:

1. Z Ax/yqy S

yeN

2. > qy=1
yeN
3.q; > €, V] € sy

4.q;, =0,Yk € sp

Only if LP2 has a feasible solution ard> 0, is it true
that there exists a mixed strategyguch thatr — ¢, andv
Jj € s1,q; > 0andV k € sg, gy = 0. This mixed strategy
is obtained from the values of the variablgs(which are
the probabilities of pure strategigd. Strictly dominated
strategies have empty domains.

> Agyqy, Vo' € M\{z}
yeN

D(z) can be computed by enumerating the elements of

P(N), the power set ofV, and executing-P2(s4, s¢) for
each element € P(N) settings; = s andsg = (N — s).
The computation oD (z) of eachz € M requires 2™ — 1)
runs of LP2. In non-degenerate games, the numbep
runs can be reduced somewhat by keeping trackcof)
pairs wheres, € D(zx). For example, ifls,| = 2, and
we have determined that, € D(z), then we do not need
to runLP2(s,, N'\s,) after having found anothet’ with
sq € D(2').

3.2 Relevancy Set R(z)

The computation oD (z) becomes intractable for large val-
ues ofn. Besides, thesizeof D(z) might be too large.
Therefore to us®(x) of eachr to obtain the adjacency ma-
trix of the graph is impractical. In Sectign b.1 we discuss
how a subset ofD(z) containing supports of small sizes

only can be used to construct the graph. The measure that

ity is much lower. We describe one method of computing
R(x) that works quite well in practice.

By the definition of the relevancy seR(z) is non-empty
iff = is non-strictly dominated. We now show how to de-
termine if a strategy* € N is an element ofR(x). In
LP1, we make two modifications: we change constr&int
tog, > 0,Vy € N\{y*}, and we add the constraift,- =

0. We call this LPMod LP1.

If = is non-strictly dominated thea > 0 in LP1. There-
fore, if in Mod LP1 (which is the same akP1 but with
gy~ = 0), € < 0, then it implies that: is now strictly domi-
nated only because play2iplaysy* with zero probability.

In other words, only by re-setting,- > 0, we establish
that there exists a mixed strategyf player2 in which he
playsg,~ with non-zero probability, to which is a best re-
sponse. Thus, we conclude that ik 0 in Mod LP1, then

y* € R(x).

However, ife > 0, it does not rule out that* could still be

in R(z). By executingMod LP1 n times, each time taking
a different strategy froniv, we might obtain only a subset
of R(z). Assume that this set iB’(z) C N. To determine
R(x) givenR/(z), we need to executeP?2 for either all the
pairs(s1, so) (wheres; takes on values from the power set
of N — R/(z) ands, from the power set of?’(x)) or until
R(z)=N.?2

In view of the worst-case complexity of computidt(z),

for the purpose of the present discussion we make the fol-
lowing simplifying assumption.

Assumption1V z € M, R(x)
R(y) =M.

This assumption does not affect any of the theoretical re-
sults we give, but only affects our ability to construct the
graph, an issue we address in Sec 5.1. As a matter of
fact, in practice, we have found that executiod LP1

on randomly generated bimatrix gamestimes for each

x, almost always gives uB(xz) = N. Our useof R(x) to
describe a graph in the following is purely for expository
reasons. Theorefh 1 and Definitifn 6 give us the following
simple corollary.

N, andV y € N,

20ther methods too exist for this purpose. For example; i§ not
strictly dominated.P1 will return a set of pure strategies of playethat

we shall therefore use to construct the graph is what we term ¢ inR(z). Therefore, only those not found hy1 need to be iteratively

as therelevancy sebf x, denoted byR(z). It is the set of

checked byLP2.



Corollary 2 If (p,q) is a Nash equilibrium of a game,
thens, C R(z) for everyz € s, ands, C R(y) for every
Y € Sq.

3.3 Dominance Graph based on R(z)

The relevancy set$(x) of eacha € M, and R(y) of
eachy € N as well as the setd/ and N lend a certain
structure to the game that can be formulated agartite
directed graphor digraph. A bipartite digraph is a tuple
G = (U,W, E), whereU, W are finite disjoint sets, and
Eis a|U| x |W| matrix called theadjacency matrior the
arc setsuch that¥,,,, = 1 if an arc exists fromu € U to
w € W, and0 otherwise. We say that the afe, w) € E,

if F.,. = 1. Thevertex sebf G is the union ofU andV.

By settingU = M andW = N, and definingF such
that £,, = 1iff y € R(z) and0 otherwise, we obtain
the dominance graph of the gamethe bipartite digraph
G, = (M,N,E). The vertex set of5, is denoted by
V = M U N. Thus for every arc irf/, one endpoint lies in
M and the other inV or vice-versaG, is al-graph, hence

denote the set of elementary cyclesafby Cg, ..

Henceforth, for convenience, we shall refer to elementary
cycles as cycles unless we state to the contrary. The set of
vertices that appear in a cygleis denoted by (1) and is
called its vertex set. Fare {1, 2}, the set of vertices (pure
strategies) of playerin cycle i is denoted by (1). Two
cyclesy, u' are calledequivalentif V(u) = V (i), else
they are said to bdistinct The setC¢ . of the elementary
cycles of G, can be patrtitioned intequivalenceclasses,

Vi ...,V7 such that any two cycles from the same class
are equivalent and any two cycles from different classes are
distinct. A class is represented by the vertex set of the cy-
cles that belong to that class. The cycles of a given class are
permutations of the vertices of that class.

To eventually be able to compus, it is enough to know
how many equivalence classes there ar&iand the defi-
nition (i.e., vertex set) of each class. It is not necessary t
compute the members of each class. By drawing one mem-
ber (any member) from each equivalence class, we obtain a
set of pairwise distinct cycles. We define thgport cycle
basisof G, denoted by, as follows.

between every ordered pair of vertices, not more than one

arc exists.

A bipartite digraphG = (U,W, E) is said to becom-
pletely connecteid for every vertexu € U and every vertex
w € W, the arcqu, w) and(w, u) exist in E. Note that if
Assumption[JL is madeG, is completely connected. In a
digraph, theout-degreeof a vertexv, denoted byO(v) is
the number of arcs emanating from the vertex, whileithhe
degreeof v, denoted byl (v) is the number of arcs entering
it. Note that inG.,., for eachv € V, O(v) > 1, since the
relevancy set of eachis non-empty.

3.4 Support Cycle Basis

Definition 7 Let P(V') denote the power set . The sup-
port cycle basis of5, is the setbg, = {s: s € P(V), 3
u € Cg,., such that (i) = s}.

Thus each element of a support cycle basis (henceforth
called the cycle basid)is asubsebdf V. There exists atleast
one cycle whose vertex set equals this subset. Naturally, it
may be possible that other cycles also exist whose vertex
set equals this subset. In the forthcoming discussion we de-
scribe a property of cycles that is such that if it is applleab

to one cycle, then it is also applicable to every cycle in that
cycle’s class. Thus we can refer without ambiguity to an el-
ement ofd, as a cycle as well a subset. As we shall see in
the next section, the cycle basis is important in formutatin

Some basic structural definitions from graph theory about a5 equilibria in graph-theoretic terms (note the certain
digraphs that we require to represent the equilibria of the g;miiitude between Definitiorl§ 4 afif 7).

gamey in terms of the digraply,. are as follows:

We are given the digrapty, as defined above. pathis
a sequence of verticés; ..., v;) suchthat' 1 < i < k,
the arc(v;,v;+1) exists inE. The first vertex; in the se-
guence is called the initial endpoint and the last vettgex
is called the terminal endpoint. dycle? is a path whose

4 Expressing Equilibria as Cycles

We now discuss the motivation behind the preceding con-
structions, that of the dominance graph and the cycle ba-

initial endpoint is the same as its terminal endpoint. An sis. Our objective in using these two constructs is that they
elementary(or simple) cycle is a cycle in which no vertex might provide heuristics that enable the computation of the
(barring the initial endpoint) occurs twice. Note that a cy- equilibria setQ more efficiently than comprehensive sup-
cle is a sequence of pure strategies where each strategy iport pair enumeration. We first show how Nash equilibria
alternatively picked from the two strategy sets. Téegth are related to elementary cycles.

of a cycle is the number of vertices in it (not counting the We say that a mixed stratedy, q) generates given cycle

repeating vertex). A cycle of lengthis called ak-cycle.
The longest cycle idr,. has2 K + 1 vertices wherés is the
size of the smaller of the two strategy setg,and N. We

Ssometimes also called a circuit, esp. in undirected graphs

wif V(p) C (sp Usg). We say that a cyclg generates a
given mixed strategyp, q) if s, = V1(u) ands, = Va(u).

4Not to be confused with theycle basisof a graph which is a set of
fundamental cycles of the graph



Theorem 2 Let g be a game andv, its dominance graph.
Then, for every Nash equilibriurfp, ¢) of g, there exists
atleast one cyclg: € dg, of length2K + 1 where K =
min(|s,|, |s4]), such thatV' () C (s, U s4). Moreover, if
[spl = [sq], thenV (1) = (sp U sq).

Proof: Assume(p, q) is a Nash equilibrium of. Denotes,,
by s1 ands, by s2. Vi € {1,2}, let L; be a stack in which
the elements o§; have been pushed in any order. L&t
denote the size of the smaller of the two stacks aride
subscript of that stack. Lei be a list. Thej!* element
of 11 is denoted by:;. Now, removeK elements fronmi
andL_,, ® each, and place theaiternativelyin p with an
element ofL;, beingy,. By Corollary[?,V i € {1,2},V
u € L;, sy € R(u) and thus¥Y v € s_;, (u,v) € E.
Therefore, for every < j < 2K, the arc(u;, f1j41) is an
element ofE. Since,u; € Ly and there ar@K elements
in u, pex € L_. Butthe arc(uak, p11) exists inE (by
Corollary@). Therefore, adding the elementat position

while a cycle itself may not generate a particular equilib-
rium, a cycle and an auxiliary set 8fcycles would gener-
ate that equilibrium. Note that eveBycycle is necessarily
elementary.

Consider a mixed strategfp, ¢) that is a Nash equilib-
rium. By Theorerr[IZ it generates a cycle. Let this cycle be
w € dq,. If |sp] = |sq| = K, then the cycle generates the
equilibrium as well. So, the case that requires generaliza-
tionisif [s,| # |sq|. Let|s,| < |s4], andlets = s, — Va(u)

(s contains the pure strategiesdnthat have not been “used
up”in p). By Corollary@, for eachy € s, and for each

u € Vi(u), the arcu, v) and(v, u) existin E. Thus, each
element € s forms the cycldv, u, v) with atleast one ver-
tex ofu € V4 ().

Therefore, every Nash equilibriuttp, ¢) is such that the
union of its support sets equals the union of the vertex sets
of a set of cycles(p, q) where each cycle is frod;,. In

this set, there is a cycle of length2 K 4+ 1 and some other
3-cycles, whose vertex sets have one element in common

2K +1, gives us an elementary cycle, as claimed in the first with the vertex set ofi. We call this set of cycles sup-

statement.

The vertexsetofiis Ly UL_(K),whereL _(K) C L_y
such thatL_(K)| = K. If (as in a non-degenerate game)
|Li| = |L—k| = K, the elementary cyclg, as constructed
above, has a vertex setthatequals) L _j,(K) = LyUL_y

as claimed in the second statemep&'D.

port tree(henceforth, tre€). We say that the mixed strategy
(p, q) generates the tredp, q) if the latter is obtained is the
manner just described. Thereforéjf ¢) generates(p, q),
(saUsq)= |J V(c). Moreover, as in the case of cycles

c€T(p,q)
and balanced supports, het, ¢) generatesp, ¢) as well.

Since the order in which the vertices are put in the stacksWe can thus find a tree @, that generates a given Nash
does not matter in the proof of Theordn 2, it follows that equilibrium (In the case of an equilibrium with balanced
(p, q) generates every cycle of the class to whidbelongs. ~ supports, there are rfacycles inr).

This allows us, as stated before, to refer to an element of

dc, as a cycle as well as a subset. We can also refer to th
cycle generated bfp, q).

4.1 Support Trees

Theoren{P implies that every Nash equilibrium of a game
generates a cycle. If the game is non-degenerate or if th
supports of the equilibrium are balanced, then the cycte als
generates the Nash equilibrium. In particuwery3-cycle

of G, generates a Nash equilibrium gf We cannot gener-

alize this statement, however. That is, not every Nash equi-

librium of g can be generated by a cycle of sizé.

Corollary 3 Given a gameg and its dominance grap',.,
and a Nash equilibriuntp, ¢) of g that generates the cycle
1 € d¢g, of length> 5. Then it is possible that does not
generate(p, ¢), that is, it is possible that, # Vi(u) or

sq # Va(n).

Due to this corollary, it would appear that computing the

cycle basis may not be sufficient to compute the set of Nash

equilibria 2. However, as we describe in the following,

5_k denotes “nok”

Theorem 3 Let g be a game andy, its dominance graph.

eEvery Nash equilibriur(p, ¢) of g generates atleast one

support treer(p, q) of G...

An important consequence of the two preceding theorems
is that, we can use them for deciding if a certain strategy
is eliminable i.e., it does not occur in the support of any

gNash equilibrium. More generally, we can use the theorems

to discard a subset of strategies, if we find that they do not
yield any cycle.

5 Computing the Support Cycle Basis

The two theorems of the last section establish that the set
of Nash equilibria®2 can be computed from the cycle ba-
sis only. So a general scheme to compQtéhat we call
support tree enumeraticas follows. We first determine the
cycle basigig, from C¢, which also gives us al-cycles.
Denote the set of-cycles bys?, , and byP? its power set.
The set of support trees is obtained by keeping those ele-
ments of(d¢, — d¢; ) x P? that satisfy the definition of a
support tree. Finally, for each cycle or support trfeund,

6A structure such as(p, q) is atreeof the underlying undirected graph
of G



we runFP1with argumentd/; (1) andVa ().
The cycle basis is just a set of cycle®f. The problem of

contains. For example, letbe a vertex ini5,, and let the
arcs(z,y) and(z,w) exist in E of G,. Suppose that is

determining the set of elementary cycles of a directed graphnot a best response 19 = is not a best response to but

is a well studied one in graph theory. To our knowledge,
the algorithm due to Johnsoﬂ [3] is the most efficient in this
regard. Its run-time is bounded 6B (v +e€)(c+1)), where
v is the number of verticeg, the number of arcs andthe

(y,w) € D(x). This implies, that: is a best response to a
mixed strategy; that has in its suppout, if and only if w

(or some other pure strategies) also occur in the support. A
graph such a&; contains more precise information.

number of elementary cycles of the graph. It computes theThus on the one hand, we have the small but quasi-

setC¢,. We do not know of any algorithm that computes
efficiently the subsels, of Cg, .

completely connected gragh,., and on the other, the very
large, but possibly sparsely connected gragh We can

Johnson'’s algorithm detects the strongly connected compo-therefore seek to construct a dominance graph thatiig-an

nents (SCCs) of a digrapgh and then finds all the elemen-
tary cycle of each SCC. An SCC is a subgétof the ver-
tices of G such that for every pair of verticag v, € V'
there exists an elementary path of verticed/éfsuch that

its initial endpoint isu and terminal endpoint is. There
exist efficient, linear-time algorithms that find all the SCC
of digraph. The efficiency of Johnson’s algorithm depends
on the density of the matri¥ (and on the number of SCCs;
the more SCCs, the better it is).

termediatebetweenz,. andG4. The intermediacy is in the
size of the two vertex sets @F,. In G4, they areP(M)
and P(N). In general, they can be any subsetsRif\/)
and P(N). We define an intermediate graph denoted by
G; asG; = (Py,(M), P(N),FE) whereP,(M) € P(M)
consists only of elements dP(M) of sizek or less and
P,(N) € P(N) consists only of elements @f(N) of size

[ or less. The definition oF requires some care. Given
ans € P,(M) we define all the outgoing arcs fromas

A completely connected bipartite graph has just one SCCfollows. (by analogy, the following discussion is also ap-
and has the maximum number of elementary cycles thatplicable for everyt € P;(N) ). Let D;(z) C D(x) denote

a graph of its size (in the number of vertices, ggycan

the subset of the domain efsuch that its elements are of

have. This number [([3]), grows, faster than the number sizel or less. For example, thB,(z) can contain only pure

of total supports of the game @&sgrows. Therefore, con-
structingG,. by making Assumptiof] 1 and then enumerat-
ing its cycles using Johnson’s algorithm (or any other) is

strategies and pairs of pure strategies fi¥mLet .S (v) de-
note the set of pure strategies in the venteand L(v) the
size ofS(v). Then,

guaranteed to be worse than enumerating the elements of

P(M) x P(N). On the other hand, as noted befaR&x)

is difficult to compute as well.

So, we would like to construct a graph without the (forced)
complete connectedness@f but without actually comput-
ing R,. Moreover, we would like Theorenj$ 2 af{d 3 to be
true for this graph as well. We now describe how a graph
that is based o® () can satisfy these criteria.

5.1 Dominance Graph based on D(z)

We define a dominance graph based on the domain, denoted

by G, as the bipartite digrapf; = (P(M), P(N), E). In

1. LetT(s) ={t € P(N):Vz€s,te Dx)} Then,
Vite T(S), Est =1

2. If T(s) is empty, letD(s) = {t € B(N) : S(t)

() Di(x)}. Then,V t such thatt = argILn(a))({w €
TES w
D(S)}, Est =1.

3. If T'(s) and D(s) are both empty, therv ¢ €

(U Dila), Eur = 1.

xres

4. If s = z (i.e., itis a pure strategy) and;(x) is empty,
thenvt¢ € P(N), Es: = 1.

this graph a vertex is an element of the power set of theln G, only Case 1 is needed. In Casts3 and4, we are
set of pure strategies and thus corresponds to either a purereatingartificial arcs. These are needed, sincedh, we

strategy or to a set of pure strategiesdp an arc is made
from a vertexs to the vertex, if every pure strategy i

is a best response to some mixed strategy with support
Thus, givens € P(M) andt € P(N), Es; = 1, iff, V

x € s,t € D(z). Using Theorenf]1, it can be verified that
all 3-cycles ofGG; are Nash equilibria, just as ti3ecycles

of G, are. Additionally, inG; only 3-cycles generate Nash
equilibria. Cycles of longer lengths need not be considered

disallow verticesy € P;(N) such thatL(v) > I. Thus, it

is possible that for a gives, there is no outgoing arc (the
vertex is isolated) using just Case 1. This would happen ei-
ther becaus®; (x) is empty for some: € s or that none of

z in s have a common element in their domaifs Hence

we need Case®, 3 and4. If the values ofl is small, the
computation ofD; () is tractable. The intuition behind the
definition of £/ above, is that in most games even for small

It is easy to see the motivation behind the construction of values of,, Caseg, 3 and4 are not needed, and hence artifi-

Gg4. Even if the setd(x) are considered as givei,. con-
tains a lot of superfluous information in terms of the arcs it

cial arcs (that introduce artificial cycles intg) need not be
made. We define a support tre@f G; to be a set of cycles



Table 1. Average size of d¢, in random bima-
trix games of sizes 7to 11. S = P(M) x P(N)
m=n= 7 8 9 10 11
19c..| 757 | 3775 | 11772 48768 | 252567
|dc.|/1S] | 0.04| 0.058| 0.045 | 0.046 | 0.06
T(secs) | <1 | <1 53 9.8 67

such that each pair of cycles in it has one vertex in common.

The definition ofG; leads to the following theorem.

Theorem 4 Given an intermediate dominance grafh =
(P.(M),P/(N), E) of a gameg, every Nash equilibrium
(p, q) of g generates atleast one support treef G; andr
generategp, q) as well.

We summarize a general scheme to compute thé)set
follows. For playersl and 2, we set the valueg and!
respectively, to fix the sizes df, (M) and P,(N). Then,
usingLP2, we comput&/ z € M,V 1 <i <k, D;(x), and

Vye N,V1<i<l D;(y). We then fill the entries of the

matrix £ as described in Sectidn b.1 to obtain the gragh

6 Conclusion and Future Work

We have presented a heuristic for the computation of the
set of equilibria of bimatrix games as well as for identifyin
eliminable strategies (those that are not in any Nash équili
rium). We have formulated the heuristic in graph-theoretic
terms with the idea that certain games can be converted to
sparsely connected digraphs, which can then be mined for
interesting structures. In this paper, we showed that we can
re-design a game to be a digraph whose elementary cycles
can be checked directly to see if they yield Nash equilibria.
The bulk of the paper concerned graphs conceived with the
relevancy set. As we stated,- was used mainly for exposi-
tory purposes. Our immediate work concerns more focused
computational experience with intermediate graphs At

the present time, there are not many approaches in the liter-
ature for computing the set of Nash equilibria, and we hope
that our approach is a useful contribution.
Acknowledgements.We are thankful to Martin Allen and
Vishesh Vikas for helpful discussions.
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