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We study the transition from basic state to fully developed turbulence for an inertially-
driven von Kármán flow between two counter-rotating large impellers fitted with curved
blades. The laminar basic flow is very similar to the flow between smooth disks in an effec-
tive aspect ratio. The transition to turbulence in this closed flow is globally supercritical
and is driven by the destabilisation of the azimuthal shear-layer, i.e., Kelvin–Helmholtz
instability. Quasi-periodicity and chaos precedes the emergence of turbulent spectra. The
energy of the velocity fluctuations can be used as an order parameter to characterize the
transition. This quantity defines a critical Reynolds number Rec for the appearance of
time-dependence in the flow, and an upper threshold Ret for the saturation of the insta-
bility cascade which can be viewed as a threshold for developed turbulence. The turbulent
dissipation measured as a dimensionless drag coefficient reaches a plateau past this finite
value Ret, as expected for a “Kolmogorov” turbulence for Re → ∞. The spectral anal-
ysis in temporal domain reveals that almost all of the fluctuations energy is stored in
time-scales one or two orders of magnitude slower than the time-scale based on impeller
frequency. The transformation of the time-spectrum from a peak-frequency spectrum to
a continuous spectrum is described and discussed.

1. Introduction

Hydrodynamic turbulence is rather a general rule than an exception in fluid flows. For
instance it is a key feature for weather forecast, contaminants dispersion, sediments trans-
port or engineering problems such as drag increase due to the turbulent wake of cars (see
the reference books of Tennekes & Lumley 1972; Lesieur 1990). In a few ideal cases, exact
solutions of the Navier–Stokes equations are available, based on several assumptions such
as auto-similarity, stationarity, or symmetry (for a collection of examples, see Schlichting
1979). Unfortunately, they are often irrelevant in practice, because they are unstable.
Two of the simplest examples are the centrifugal instability of the Taylor–Couette flow
between two concentric cylinders, and the onset of Rayleigh–Bénard convection between
two differentially heated plates: once the amount of angular momentum or heat is too im-
portant to be carried by molecular diffusion, a more efficient convective transport arises.
Increasing further the parameter control in these two examples, secondary bifurcations
occur, leading rapidly to temporal chaos, and/or to spatio-temporal chaos, then to turbu-
lence. A universal understanding of the transition to turbulence is far from available and
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several scenarii, such as the Landau, the Ruelle–Takens or the Spatio-Temporal Inter-
mittency scenarii have been widely discussed in the last decades (see for instance Berge
et al. 1984; Manneville 1990; Cross & Hohenberg 1993). Differences in the transition
process have been found depending on the system class (small vs. extended systems).
Furthermore, the transition can even be globally subcritical in some open shear flows
(see for instance Dauchot & Manneville 1997; Grossmann 2000).

1.1. Instabilities of the von Kármán swirling flow between flat disks

The disk flow is an example where exact Navier–Stokes solutions are available. The
original problem of the flow of a viscous fluid over an infinite rotating flat disk has
been considered by von Kármán (1921) who was looking for self-similar exact solutions
of the stationary axisymmetric Navier–Stokes equations (this work is well described in
Schlichting 1979). Experimentally, the problem of an infinite disk in an infinite medium
is difficult to address. Addition of a second coaxial disk has been proposed by Batchelor
(1951) and Stewartson (1953). A cylindrical housing to the flow can also be added.
Instabilities and transitions have been extensively studied in this system (for instance in
Mellor et al. 1968; Harriott & Brown 1984; Escudier 1984; Sørensen & Christensen 1995;
Gelfgat et al. 1996; Spohn et al. 1998; Gauthier et al. 1999; Schouveiler et al. 2001; Nore
et al. 2003, 2004, 2005). The basic principle of this flow is the following: a layer of fluid
is carried near the disk by viscous friction and is thrown outwards by centrifugation.
By incompressibility of the flow, fluid is pumped toward the centre of the disk. The
first numerical studies of this problem have been carried out by Cochran (1934). Since
the review of Zandbergen & Dijkstra (1987), this family of flow is called “von Kármán
swirling flow”. In all cases, it deals with the flow between smooth disks, at low-Reynolds
numbers, enclosed or not into a cylindrical container. We will focus on the results of Nore
et al. (2003, 2004, 2005), who study the exact counter-rotating regime where the flow
is divided into two toric cells separated by an azimuthal shear-layer, i.e. the situation
described in the present article. The Reynolds-number range covered in their studies is
140 ≤ Re ≤ 600, with flat disks.

1.2. The “French washing machine”: an inertially-driven, highly turbulent von

Kármán swirling flow.

In the meanwhile, several approaches have been carried in parallel concerning developed
turbulence, focused on statistical properties of flow quantities at small scales (Frisch 1995)
or taking into account the persistence of coherent structures in a more deterministic point
of view (Tennekes & Lumley 1972; Lesieur 1990). One of the major difficulty concerning
a self-consistent statistical treatment of turbulence is that turbulence itself is not an
intrinsic property of the fluid, but strongly depends on the flow in which it takes place.
Nevertheless, some universal statistics are expected in the limit of infinite Reynolds
numbers (Re → ∞) (see Frisch 1995). Experimentally, the so-called “French washing-
machine” has been a basis for extensive studies of very high-Reynolds number turbulence
in the last decade (Douady et al. 1991; Fauve et al. 1993; Zocchi et al. 1994; Cadot et al.

1995; Labbé et al. 1996; Tabeling et al. 1996; Cadot et al. 1997; La Porta et al. 2001;
Moisy et al. 2001; Titon & Cadot 2003; Leprovost et al. 2004; Marié & Daviaud 2004;
Ravelet et al. 2004). To reach a Kolmogorov regime in these studies, a von Kármán
flow is inertially-driven between two disks fitted with blades, at a very high-Reynolds
number (105 . Re . 107). Due to the inertial stirring, very high turbulence levels can
be reached, with fluctuations up to 50% of the blades velocity, as we shall see in this
article. It first allowed extensive studies of intermittency at small scales of turbulence
(Zocchi et al. 1994; Tabeling et al. 1996; Moisy et al. 2001). This flow is also a prototype
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for strongly non homogeneous non isotropic turbulence (Zocchi et al. 1994), and without
any neat mean flow, the Taylor hypothesis is no longer suitable (Pinton & Labbé 1994).
In addition, La Porta et al. (2001) carried out one of the first Lagrangian studies in this
type of flow. Labbé et al. (1996); Titon & Cadot (2003); Leprovost et al. (2004) also
studied the statistics of global quantities such as the injected power statistics. The role
of large scales structures on turbulent momentum transfer has been highlighted by Marié
& Daviaud (2004).

In any particular turbulent flow, the statistical properties at a finite Re could still
depend on the way the flow became turbulent. Several people measured or reported very
long time fluctuations in the turbulent von Kármán flow, leading to spectra behaving as
f−1 at frequencies two order of magnitude lower than the injection frequency (Zocchi
et al. 1994; Bourgoin et al. 2002; Ravelet 2005). The construction of the spectrum with
Re is studied in the present paper.

Moreover, we have shown that the large scale structure of the flow could be unstable
in some cases, a phenomenon we called “global” or “turbulent bifurcation” for it seems
to happen only for a turbulent flow (Ravelet et al. 2004). In this last work, we discussed
about the respective role of the turbulent fluctuations and of the changes in the mean-
flow structure with increasing the Reynolds number. The purpose of the present article
is thus to characterize the transition to turbulence in an inertially-driven von Kármán
flow. We give in the next paragraph a short definition of turbulence, and a review of the
different tools to characterize the transition to turbulence.

1.3. Experimental characterization of the transition to turbulence in a closed flow

At very low-Reynolds number a flow is usually laminar, i.e. spatially smooth and sta-
tionary or periodic in time. Visualisations of the basic laminar state are thus a good tool
to characterize the flow and will help us to understand the first steps in the transition
to turbulence. Although a clear definition of turbulence is hard to give, a flow is called
turbulent when it presents the following features (Lesieur 1990):

(a) it is unpredictable at long times;
(b) the transport and mixing properties are enhanced with respect to molecular diffu-

sion processes;
(c) the velocity field is rough and has a wide range of spatial and temporal scales.
The two first properties are shared with chaotic flows. We will thus have to deal with

dynamical system tools. With the use of these, great advances have been made in the
understanding of transition to turbulence these two last decades, following the cascade
of bifurcations which lead to turbulence in different types of systems. In our case, we
should expect a globally supercritical transition, due to a Kelvin–Helmholtz instability
(Nore et al. 2004). Here again, we will use flow visualisations to follow the very first
bifurcations. We will then try and identify some flow quantities as order parameters for
a quantitative measurement of the bifurcation characteristics.

The last property (c) deals with statistical tools, the spatial power spectrum of velocity
fluctuations being expected to behave as a k−5/3 power-law in the limit of vanishing
viscosity or infinite Re as stated by Kolmogorov (1991a,b), (see for instance Frisch 1995;
Lesieur 1990). This kind of experimental measurements are usually performed in the time
domain, and extrapolated to the space domain. This kind of analysis is suitable for jet
or grid turbulence, with the help of the Taylor Hypothesis. We will see in this article
that in our closed shear-flow the temporal power spectra of fluctuations measured in
the shear-layer are very close to behave as a power law at high frequencies, and exhibit
interesting behaviours at very low frequencies, down to one hundredth of the impeller
rotation frequency.
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In a more global point of view, the study of the scaling of energy dissipation with the
Reynolds number is a common tool which characterizes the flow regime. For instance,
in a pipe flow, the dimensionless pressure drop scales like 64Re−1 in the laminar regime
(Schlichting 1979). The dimensionless torque exerted on a housed disk should also scale
like Re−1 in a laminar flow. For open flow on a flat plate, (resp. for a disk in an infi-
nite medium) the friction coefficient (the dimensionless torque) scales like Re−1/2, due
to the formation of a laminar boundary layer (Schlichting 1979). But, when turbulence
arises, the observed scaling for these quantities is different. In free shear-flows or in open
bounded-flows, turbulence models such as the mixing-length or wall laws are suitable un-
der several assumptions (only one imposed length scale, small fluctuations with respect
to a mean flow, see Tennekes & Lumley 1972). These models predict other scalings for
the dimensionless friction coefficients, with power-laws (the dimensionless torque scales
like Re−1/5 for the free disk flow with the use of Blasius 1/7th wall law) or with logarith-
mic corrections. In a closed wall-bounded shear-flow, more precisely a Taylor–Couette
flow, the study of the scaling of the torque evidenced a transition between two different
turbulent regimes (Lathrop et al. 1992). Moreover, in the case of rough boundaries, a
final Kolmogorov-regime is usually observed, where the dimensionless friction becomes
independent of Re (Schlichting 1979; Cadot et al. 1997; van den Berg et al. 2003; Gioia &
Chakraborty 2006; Goldenfeld 2006). We will thus also follow the evolution of the scaling
of dissipation with the Reynolds number in our experiment.

1.4. Outline of the present article

In this article, we first describe the experimental setup, the fluid properties and the
measurement techniques in § 2. We then characterize the basic laminar flow and its first
instabilities in § 3. In § 4 we describe the transition from the laminar regime to turbu-
lence through quasi-periodicity and chaos and explore the construction of the temporal
spectrum of velocity fluctuations. We then summarize and discuss the main results in § 5.

2. Experimental setup

2.1. Dimensions, symmetries and control parameter

The cylinder radius and height are, respectively, Rc = 100 mm and Hc = 500 mm.
A sketch of the experiment can be found in figure 1(a). We use bladed disks to ensure
inertial stirring. Most of the inertially-driven von Kármán setups studied in the past dealt
with straight blades (Cadot et al. 1995; Labbé et al. 1996). Here, the impellers consist
of 185 mm diameter stainless-steel disks each fitted with 16 curved blades, of curvature
radius 50 mm and of height h = 20 mm (figure 1b). The distance between the inner faces
of the disks is H = 180 mm, which defines a flow volume of aspect ratio H/Rc = 1.8.
With the curved blades, the directions of rotation are no longer equivalent and we can
either rotate the impellers anticlockwise (with the convex face of the blades forward,
direction +) or clockwise (with the concave face of the blades forward, direction −).

The impellers are driven by two independent brushless 1.8 kW motors, with speed
servo loop control. The maximal torque they can reach is 11.5 N.m. The motor rotation
frequencies {f1 ; f2} can be varied independently in the range 1 ≤ f ≤ 15 Hz. Below 1 Hz,
the speed regulation is not efficient enough, and the dimensional quantities are measured
with insufficient accuracy. We will consider exact counter-rotating regimes f1 = f2 in
this article and the imposed speed of the impellers will be referred as f .

The experimental setup is thus axisymmetric and symmetric towards rotations of π
around any radial axis passing through the centre O (Rπ-symmetry), and we will consider
here only Rπ-symmetric mean solutions, though mean flows breaking this symmetry do
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Figure 1. (a) Sketch of the experiment. The flow volume between the impellers is of height
H = 1.8 Rc. (b) Impellers used in this article. The disks radius is R = 0.925 Rc and they
are fitted with 16 curved blades: the two different directions of rotation defined here are not
equivalent. This model of impellers has been used in the VKS1 sodium experiment (Bourgoin
et al. 2002) and is called TM60.

C µ at 15oC µ at 30oC ρ Re range

99% 1700 580 1260 50 − 2000
93% 590 210 1240 130 − 5600
85% 140 60 1220 5.5 × 102 − 1.9 × 104

81% 90 41 1210 8.4 × 102 − 2.8 × 104

74% 43 20 1190 1.8 × 103 − 5.6 × 104

0% 1.1 0.8 1000 5.7 × 104 − 1.2 × 106

Table 1. Dynamic viscosity µ (10−3 Pa.s) at various temperatures, density ρ (kg.m−3) at 20oC
and achievable Reynolds number range for various mass concentrations C of glycerol in water.

exist for these impellers, at least at very high-Reynolds numbers (Ravelet et al. 2004).
The study of the Reynolds number dependence of the “global turbulent bifurcation” is
out of the scope of the present article and will be presented elsewhere. Also, since we
drive the impellers independently, there is always a tiny difference between f1 and f2

and the Rπ-symmetry of the system cannot be considered as exact. In the following, we
will keep using this symmetry —very useful to describe the observed patterns– but we
will keep in mind that our system is only an approximation of a Rπ-symmetric system.
The consequences on the dynamics will be analyzed in the discussion (§ 5.1).

In the following, all lengths will be expressed in units of Rc. We also use cylindrical
coordinates {r ; z} and the origin is on the axis of the cylinder, and equidistant from
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Figure 2. Dynamic viscosity of the various mixes vs. temperature in oC. The mass concentration
in glycerol are given in percentage. The points are measured in a Couette viscometer, and the
continuous lines are second order polynomial fits. The dashed line is a fit on the data of Hodgman
(1947).

the two impellers to take advantage of the Rπ-symmetry (see figure 1a). The time unit
is defined with the impeller rotation frequency f . The integral Reynolds number Re
is thus defined as Re = 2πfR2

cν
−1 with ν the kinematic viscosity of the fluid. In our

previous works (Leprovost et al. 2004; Marié & Daviaud 2004; Ravelet et al. 2004, 2005),
we used water at 20− 30oC as working fluid. The Reynolds numbers range we can reach
with this fluid is thus: 6.3 × 104 . Re . 1.2 × 106. To decrease Re down to laminar
regimes, i.e. to a few tens, we need a fluid with a kinematic viscosity a thousand times
greater than that of water. We thus use 99%-pure glycerol which kinematic viscosity
is 0.95 × 10−3 m2.s−1 at 20oC (Hodgman 1947) and should be able to study the range
50 . Re . 900. To cover a wide range of Reynolds numbers and match these two extreme
ranges, we then use different mixes of glycerol and water, at temperatures between 15
and 35oC. The physical properties of these mixtures are given in table 1, where C is the
mass percentage of glycerol in the mixture. The viscosities of samples of the solutions
are measured in a Couette viscosimeter (figure 2). We varied the shear rate in the range
100 − 1500 s−1. For a pure fluid an Arrhenius law usually describes the temperature
dependence of the dynamic viscosity; nevertheless the law for a mix of fluids is not that
simple (Nguyen et al. 2004). We thus fit the temperature dependence by a second order
polynomial law (figure 2). To compute the kinematic viscosity, we finally use these fits
and the density at 20oC (table 1), neglecting the temperature dependence of the density.

We use several fluids of different viscosities in order to cover a wide range of Reynolds
numbers. Moreover, the viscosity of the fluids is approximately five times greater at 15oC
than at 35oC as can be seen in figure 2. We thus need to control the temperature and
installed rolled copper tubes behind the impellers, in which water coming from a thermal
bath circulates. Plexiglas disks can be mounted between the impellers and the copper
tubes to hydrodynamically isolate the von Kármán flow volume and thus reduce the
turbulent coupling between the back side of the impellers and the heat exchanger. They
are at typically 50 mm of the impeller back side. However, these disks reduce the thermal
coupling: they are used in turbulent water flows and taken away in low-Reynolds-number
flows. The temperature of the working fluid is measured with a platinum thermoresistance
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(Pt100) mounted on the cylinder wall ({r = 1 ; z = 0}). An expansion bucket is also
hold on the roof of the experimental room in order to get rid of bubbles.

2.2. Experimental tools, dimensionless measured quantities and experimental errors

Several techniques have been used in parallel: flow visualisations with light sheets and
air bubbles, torque measurements and velocity measurements.

Flow visualisations are made in vertical planes illuminated by approximately 2 mm
thick light sheets. We look at two different positions with respect to the flow: either the
central meridian plane where the visualised components are the radial and axial ones or
in a plane almost tangent to the cylinder wall where the azimuthal component dominates.
Tiny air bubbles (less than 1 mm) are used as tracing particles.

Torques are measured as an image of the current consumption in the motors given by
the servo drives and have been calibrated by calorimetry. Brushless motors are known
to generate electromagnetic noise, due to the Pulse-Width-Modulation supply. We use
armored cables and triphase sinusoidal output filters (Schaffner FN5010-8-99), and the
motors are enclosed in Faraday cages, which enhances the quality of the measurements.
The minimal torques we measured are above 0.3 N.m, and we estimate the error in the
measurements to be ±0.1 N.m. The torques T will be presented in the dimensionless
form:

Kp = T (ρR5

c(2πf)2)−1

Velocity fields are measured by Laser Doppler Velocimetry (LDV). We use a single
component DANTEC device, with a He–Ne Flowlite Laser (wave length 632.8 nm) and a
BSA57N20 Enhanced Burst Spectrum Analyzer. The geometry of the experiment allows
us to measure in one point either the axial component Vz(t) or the azimuthal component
Vθ(t). Though the time-averaged velocity field V is not a solution of the Navier-Stokes
equations, it is a solenoidal vector field, and it is axisymmetric. We thus use the in-
compressibility condition ∇ · V = 0 to compute the remaining radial component Vr. In
cylindrical coordinates and for an axisymmetric velocity field it writes:

1

r

∂ rVr

∂r
+

∂Vz

∂z
= 0

Vr(r, z) = −
1

r

∫ r

0

r′
∂Vz

∂z
(r′, z)dr′

We also define the poloidal stream function:

Ψ(r, z) =
1

r

∫ r

0

r′Vz(r
′, z)dr′

In the following, all the velocities will be presented in a dimensionless form:

v = (2πRcf)−1 V

The measurements of the time-averaged velocity field are performed on a {r×z} = 11×17
grid, using a weighting of velocities by the particles transit time, to get rid of velocity
biases as explained by Buchhave et al. (1979). This acquisition mode does not have a
constant acquisition rate, so we use a different method for the acquisition of well-sampled
signals to perform temporal analysis at single points. In this so-called dead-time mode, we
ensure an average data rate of approximately 5 kHz, and the Burst Spectrum Analyzer
takes one sample every single millisecond such that the final data rate is 1 kHz. For
practical reasons, this method is well-suited for points close to the cylindrical wall, so we
choose the point {r = 0.9 ; z = 0} for the measurements in figures 7, 8 and 10 of § 4. The
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signals are resampled at 300Hz by a “Sample And Hold” algorithm (Buchhave et al.

1979).
Let us now consider the experimental error on the Reynolds number value. The speed

servo-loop control ensures a precision of 0.5% on f , and an absolute precision of ±0.002
on the relative difference of the impellers speeds (f2 − f1)/(2f). The main error on
the Reynolds number is thus a systematic error that comes from the estimation of the
viscosity. As far as the variation of the viscosity with temperature is about 4% for 1oC
and the variation with concentration is about 5% for 1% of mass concentration, we
estimate the error on Re to be ±10% (the temperature is known within 1oC). However,
the experimental reproducibility of the Reynolds number is much higher than ±10%. In
the range 100 . Re . 500 we are able to impose Re within ±5.

3. Viscosity dominated steady states at low-Reynolds number

We describe here the basic flow state and the first bifurcated mode, in the range
30 . Re . 300.

3.1. Basic state

We focus on the negative direction of rotation (−) in a first time. At very low-Reynolds
number, the basic laminar flow respects the symmetries of the problem. It is stationary,
axisymmetric and Rπ-symmetric. This state is stable at Re = 90, where we present a
flow visualisation in figure 3(a-b). In figure 3(a), the light sheet passes through the axis of
the cylinder. The visualised velocities are the radial and axial components. The poloidal
part of the flow consists of two toric recirculation cells, with axial pumping directed to
the impellers.

The flow is also made of two counter-rotating cells, separated by an azimuthal flat
shear-layer, which can be seen in figure 3(b) where the light sheet is quasi-tangent to
the cylinder wall. Both the azimuthal and axial component vanishes in the plane z = 0
which is consistent with the axisymmetry and the Rπ-symmetry. This flat shear-layer is
sketched in figure 3(e).

3.2. First instability

The first instability for this flow has been determined by visualisation and occurs at Re =
175 ± 5 for both directions of rotation. The bifurcation is supercritical, non-hysteretic,
and leads to a stationary regime, with an azimuthal modulation of m = 2 wave number.
We present a visualisation of this secondary state in figure 3(c), at Re = 185. The
axisymmetry is broken: one can see the m = 2 modulation of the shear-layer, also sketched
in figure 3(e). One can also note that Rπ-symmetry is partly broken: the bifurcated flow
is Rπ-symmetric with respect to two orthogonal radial axis only. This first instability
is very similar to the Kelvin–Helmholtz instability. Nore et al. (2003) made a proper
theoretical extension of the Kelvin–Helmholtz instability in a cylinder. Their model is
based on the use of local shear-layer thicknesses and Reynolds numbers to take into
account the radial variations in the cylindrical case.

3.3. Evolution of the torque

The flow is laminar for these two modes. The viscous terms are thus dominant in the
momentum balance such as at constant viscosity the torque on the impellers is propor-
tional to the impellers frequency for low values of Re, as shown in figure 4. In addition,
we plot in figure 5 the dimensionless torque Kp as a function of the Reynolds number,
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(a)       0      π/2 π 3π/2 2π

m = 0

m = 2, fixed

m = 2, rotating

Re < 175

175 < Re < 330

Re > 330

(e)

(b) (c) (d)

Figure 3. Visualisation and schematics of the basic laminar flow for impellers rotating in
direction (−). The lightning is made with a vertical light sheet. Pictures are integrated over
1/25 s with a video camera, and small air bubbles are used as tracers. Laminar axisymmetric
flow at Re = 90, meridian view (a). Views in a plane near the cylinder wall at Re = 90 (b),
Re = 185 (c)and Re = 345 (d). The development of the first m = 2 instabilities —steady
undulation (c) and rotating vortices (d)— is clearly visible on the shape of the shear-layer. We
give sketches of the shear-layer for these Reynolds numbers in (e).

for all the experiments we performed. This quantity scales as Re−1 in the laminar regime
(Schlichting 1979).

Increasing further the Reynolds number, the flow stays laminar almost until Re ' 300,
where the dimensionless torque starts to shift from a Re−1 law (see fits and captions in
Figs. 4 and 5). Until right now, we have chosen to emphasize one direction of rotation,
namely (−), for the presentation of the basic states. We also study the direction (+)
(see figure 1b), which at high-Reynolds numbers leads to a different mean flow, and to
a three times weaker power consumption (Ravelet et al. 2005). A surprising result is
that at low Re, the two directions of rotations are equivalent as can be seen in figure 5.
The two curves (circles for direction (−) and left triangles for direction (+)) collapse for
Re . 300 on a single curve of equation Kp = 36.9Re−1 and separates after this laminar
regime where viscous terms dominate the momentum balance equation. We performed
velocity field measurements for the two flows at Re ' 120. We present them in figure 6(c-
f). At first order, no differences between the two directions are evidenced. The order of
magnitude of the mean poloidal and toroidal velocities are the same for both directions
of rotation in the laminar regime, whereas at very high Re, they strongly differ (Ravelet
et al. 2005).

3.4. From viscous to inertial stirring

The flow is thus not sensitive to the shape of the impeller blades in the laminar regime.
We make the hypothesis that for these large impellers of radius 0.925Rc, fitted with
blades of height h = 0.2Rc, the flow at low Re is equivalent to the flow between flat disks
in an effective aspect ratio Γ = (H−2h)/Rc = 1.4. Nore et al. (2004) numerically studied
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Figure 4. Dimensional Torque T vs. rotation frequency f , with 99%-pure glycerol at 16oC for
impellers rotating in direction (−). The vertical line corresponds to Re = 300. Dashed line is a
linear fit: T = 0.38f (fitted below f = 3.5 Hz).
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Figure 5. Dimensionless torque Kp vs. Re in a log-log scale. (◦) : direction of rotation (−).
(/) : direction of rotation (+). Relative error on Re is ±10% ; absolute error of ±0.1 N.m on
the torque. The solid line is a nonlinear fit of equation Kp = 36.9 ×Re−1 between Re = 30 and
Re = 250. Rec and Ret are the transition values computed from the fits of figure 10. The single
points, displayed at Re = 5× 105, correspond to measurements in water, where Kp is extracted
from a fit of the dimensional torque in a + b × f 2 for 2 × 105 . Re . 9 × 105 (Ravelet et al.
2005).
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Figure 6. Comparison between a numerical simulation (a-b) performed with the code of Nore
et al. (2003) in a cylinder of aspect ratio Γ = 1.4 at Re = 120 and two experimental velocity
fields measured by LDV in direction (+) at Re = 130 (c-d) and in direction (−) at Re = 120
(e-f). The flow quantities which we present are in (a-c-e) the azimuthal velocity vθ and in (b-d-f)
the poloidal stream function Ψ. Presenting the fields between 0 ≤ r ≤ 1 and 0 ≤ z ≤ 0.7 is
sufficient due to axisymmetry and Rπ-symmetry. Blades or smooth disk are at z = 0.7.

the flow between counter-rotating smooth flat disks enclosed in a cylinder and report the
dependence of the first unstable mode wave number on the aspect ratio Γ = H/Rc. In
their computations, the critical wave number is m = 1 for Γ = 1.8, whereas for Γ = 1.4,
it is m = 2 as we do observe in our experiments.

We thus compare our experimental velocity fields to a numerical simulation performed
at the same Re and in aspect ratio Γ = 1.4 in figure 6. The three fields are very close.
A possible physical explanation for this effect is the presence of viscous boundary layers
along the resting cylinder wall. The typical length scale of the boundary layer thickness
can be estimated as δ = Re−1/2. At the Reynolds number when the impellers blades
start to become visible, i.e. at Re ' 300, this boundary layer thickness is of the order
of δ ' 6 mm, while the gap between the impellers and the cylinder wall is 7.5 mm. It
is also of the order of magnitude of the minimum distance between impeller blades. For
Re . 300, the fluid is thus kept between the blades and can not be expelled radially: it
rotates solidly with the impellers. The stirring cannot be considered as inertial and does
not depend on the blades shape.

For Reynolds numbers higher than 300, the inertial stirring becomes dominant. Also,
in this Reynolds number range, the secondary mode —an azimuthal m = 2 stationary
mode below Re = 300— becomes unstable with respect to time-dependence.

4. A globally supercritical transition to turbulence

This section is devoted to the study of time-dependence from the laminar regime up
to the transition to turbulence. Since the stirring is inertial and the blades are curved,
the dynamics is different for the two directions of rotation. We now restrict our study to
impellers rotating in the negative direction (circles in figure 5).

Around Re ' 300, the flow is characterized by a laminar m = 2 shear-layer which
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breaks the initial axisymmetry. In addition to visualisations we perform precise velocity
measurements at a given point in this layer. We measure the azimuthal component vθ at
{r = 0.9 ; z = 0}, using the dead-time acquisition mode (see § 2). This section is divided
into two subsections. In a first subsection, we describe the observed dynamics and how the
chaotic and turbulent spectra build up. In the second subsection, we draw quantitative
data about the dynamical regimes, we discuss the mechanisms and we propose a global
view of the transition to turbulence.

4.1. Some states encountered on the route to turbulence

4.1.1. From quasi-periodicity to chaos: the low-frequency spectrum

We present time series of the velocity and their power spectral densities at three
Reynolds numbers in figure 7: Re = 330± 5, Re = 380± 5 and Re = 440± 5.

The point at Re = 330 ± 5 is the first point where a clear temporal dynamics is
observed: a sharp peak in the spectrum (figure 7b) is present at the impeller rotation
frequency fa = f —emphasized in the Inset of figure 7(a)— and some energy is also
localized at low frequency around fa ' f/30. In comparison, a similar measurement
performed at Re ' 260 reveals a flat signal with a very low flat-spectrum with just a
tiny peak —1/1000 of the amplitude measured at Re = 330— at fa = f . On the long
time series at low Re (figures 7a, c and e), the high-frequency oscillation at the impeller
frequency is too fast to be explicitly visible but is responsible for the large width of the
signal line.

In figure 7(a) the mean velocity is not zero, but almost constant around vθ = +0.17
during the 600 time units of acquisition, i.e., during 600 disks rotations. This value of
the velocity has no special meaning and depends on the phase between the shear-layer
and the measurement point. The measurement point indeed stays on the same side of
the shear-layer. Yet, on much longer time scales, we observe the shear-layer to rotate
slowly in a given direction with a typical time scale of 5000f−1. This corresponds still
to a very low frequency, of the order of the dissymmetry of the speed servo loop control
between both independent motors, see § 2.2. This is probably the limit of the symmetry
of our system: on the visualisations at Re ' 190 and Re ' 230, a similar shift in the
same direction of the m = 2 shear-layer has been monitored (see discussion in § 5.1).

For 330 < Re < 400 the velocity signal is quasi-periodic. This is illustrated at Re = 380
in figure 7(c-d). The mean velocity is now zero: the shear-layer rotates slowly such that the
measurement point is alternatively in the cell rotating with the upper impeller (vθ > 0)
and in the cell rotating with the lower impeller (vθ < 0). Visualisations confirm that
this corresponds to a propagating wave and also show that the m = 2 shear-layer is
now composed of two vortices (figure 3d) and thus deserves the term “mixing-layer”.
Along the equatorial line, one notice that the parity is broken (as defined in Coullet
& Iooss 1990). The velocity varies between −0.3 . vθ . 0.3. The wave oscillation is
slow but one order of magnitude faster than the drift described above: one can see two
periods during 600 time units, i.e. a frequency of f/300 which is very difficult to resolve
by spectral analysis owing to the shortness of the signal (cf caption of figure 7). At
Re = 380 (figure 7c-d), the peak at the rotation frequency is still present, but starts to
spread and becomes broadband. The power spectral density at frequencies higher than
3f decreases extremely rapidly to the noise level. Let us note that Rπ-symmetry remains
only with respect to a pair of orthogonal radial axis which rotates with the propagating
wave.

The upper limit of the quasi-periodic regime is Re = 400 ± 5. Above this threshold,
the dynamics of the mixing-layer becomes chaotic: the velocity signal (see figure 7e)
at Re = 440 can be described as series of almost random jumps from one side to the
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Figure 7. Temporal signal vθ(t) measured by LDV at {r = 0.9 ; z = 0} and power spectral
density (PSD), at: (a-b) Re = 330, (c-d) Re = 380 and (e-f) Re = 440. fa is the analysis
frequency whereas f is the impellers rotation frequency. The Inset in (a) is a zoom over the fast
oscillation at frequency f . In order to improve the signal to noise ratio for the 4 to 5 decades
spectra, we compute the power spectrum by the Welch periodogram method twice: first with a
very long window to catch the slow temporal dynamics; second with a shorter window, to reduce
fast scales noise by averaging. We then plot together the lower part of the first spectrum and
the higher part of the second one.

other side of the v = 0 axis. The peaks reached by the velocity are now in the range
−0.4 . vθ . 0.4. The alternate changeover between the two counter-rotating cells is
moreover “chaotic” and involves more or less long stays in one side followed by very fast
transitions to the other side of the mixing-layer.
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From the visualisations, we observe that the m = 2 symmetry is now broken. The
mixing-layer vortices, which are still globally rotating around the cell in the previous
direction, also behave more and more erratically with increasing Re: their individual
dynamics includes excursions in the opposite direction as well as towards one or the
other impeller.

The spectral analysis of the signal at Re = 440 (figure 7f), does not reveal any well-
defined frequency peak anymore. However, a continuum of highly-energetic fluctuations
at low frequency, below fa = f and down to fa = f/100, emerges. A small bump at the
rotation frequency f is still visible, and a region of fast fluctuations above the injection
frequency also seems to arise.

4.1.2. From chaos to turbulence: the high-frequency spectrum

Increasing further the Reynolds number, one obtains the situation depicted in figure 8.
The slow dynamics which could be thought as depending only on the largest spatial scales
of the flow is well built above Re ' 103. The velocities corresponding to the two cells
at Re = 1.0 × 103 and above (figures 8a, c and g) are of the order of ±0.6. The power
spectral density below the injection frequency seems to behave with a f−1 power-law
over two decades for these two Reynolds numbers (figure 8b-d). The spectral density
saturates below 10−2f .

Concerning the fast time scales, which are usually interpreted as a trace of small spatial
scales fluctuations, one can see some evolution between Re = 1.0×103 and Re = 6.5×103.
At the former Reynolds number, there are few fast fluctuations which decay faster than
f−5/3 and the intermittent changeovers are easy to identify in the temporal signal in
figure 8(a). At the latter Reynolds number, the fast (small scales) fluctuations are bigger
and almost behave with a f−5/3 law (figure 8h).

We want to emphasize that in such a closed flow with no net mean flow at the point
we have chosen and with fluctuations of the order of the mean kinetic energy, the Taylor
hypothesis is not suited (Lumley 1965) and that one should not a priori interpret time
spectra as space spectra Pinton & Labbé (1994) (see discussion in § 5.2.2).

4.2. Quantitative characterization of the transitions

Since the various dynamic states encountered have been described and illustrated in the
previous subsection, we now wish to address the question of the nature of the transitions.

4.2.1. From order to chaos

Our diagnostic is mainly based on two properties of the velocity signal: the amplitude
of the velocity fluctuations along time and their main frequency. In the quasi-periodic
regime, even if only few periods are monitored along single time-series, we carefully esti-
mate the period by measuring the time delay between crossings of the v = 0 axis. These
value are reported of figure 9(a) with closed circles. In a equivalent way, the periodicity
of the travelling of the mixing-layer vortices on the visualisations give complementary
data, represented by closed squares on the same figure.

The main result is obvious: the quasi-periodic low-frequency fQP behaves linearly with
Re above a threshold ReQP very close to 330. Both measurement methods agree even
if the visualisations deserves large error bars in Re at least due to the shortness of our
records and to a poorer thermal control. Fit is made on velocity data only. We observe
some level of imperfection in the quasi-periodic bifurcation, due to the pre-existing drift
below fQP which we believe to be related to small differences between both impeller
frequencies. In fact we observe on our movies the mixing-layer to start rotating along the
drift direction.
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Figure 8. (a-b): Temporal signal vθ(t) measured by LDV at {r = 0.9 ; z = 0} and power spectral
density at Re = 103. (c-d): Temporal signal and power spectral density at Re = 1.7× 103. (e-f):
Power spectral densities at 2.7 × 103 and 3.8 × 103. (g-h) Temporal signal and power spectral
density at 6.5× 103. Solid lines in the power spectra plots are power-law eye-guides of slope −1
and −5/3. Spectra are computed as explained in the caption of figure 7.



16 F. Ravelet, A. Chiffaudel and F. Daviaud

0

5

10

10
00

 f Q
P
 / 

f (a)

150 200 250 300 350 400 450
0

0.02

0.04

0.06

Re

V
θ2  r

m
s

(b)

Figure 9. (a) Low-frequency fQP of the quasi-periodic regime of velocity vθ(t) measured at
{r = 0.9 ; z = 0} (closed circles) and drift frequency of the m = 2 shear-layer pattern from
flow visualisations (closed squares). The solid line is a linear fit of fQP between the two thresh-
olds ReQP = 330 and Rechaos = 400, indicated by vertical dotted lines. (b) Variance of vθ(t)
measured at {r = 0.9 ; z = 0} vs. Re: zoom of figure 10.

The amplitude can be monitored by computing the evolution of the kinetic energy
fluctuations, i.e., the variance v2

θ rms of the LDV-time-series. This method allows con-
sidering altogether the broadband frequency response of the signal (see below). The
variations of v2

θ rms due to the drift below onset, which appear very small in figure 7(a),
can be estimated as typically 0.01. Data are plotted in figure 9(b) together with the fit
in (Re − Rec)

1/2 which will be discussed below. Both fits on amplitude and frequency
converge to exactly the same threshold ReQP = Rec = 328.

We conclude that the quasi-periodic mode bifurcates at Re = 330 ± 5. We believe
that both peaks at fa = f and fa = fQP appear together through respectively a finite-
frequency type-I0 bifurcation for f and a zero-frequency type-II0 bifurcation for fQP

(Cross & Hohenberg 1993). However, we did not carry highly Reynolds-number resolved
observations below Re = 330 and it cannot be exclude that the f -peak appears alone
first between Re = 260 and ReQP .

The transition to chaos is observed for Re > Rechaos = 400±5. There is no hysteresis.
Very close to the chaotic threshold, the signal sometimes exhibits a few almost-quasi-
periodic oscillations still allowing us to measure a characteristic frequency. The measured
values have been also plotted on figure 9(a) and are clearly above the linear fit and could
reveal a vanishing time scale, i.e., a precursor of the very sharp positive/negative jumps
of vθ reported in the chaotic and turbulent regimes. In a narrow region around the
chaotic transition, i.e., between Re = 389 and Re = 408, we also notice on the signal a
fast oscillation mode —not visible on the presented figures— at frequency f/(6.2± 0.2),
independent of Re.
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Figure 11. Probability density function (PDF) of vθ for 16 Reynolds numbers in the range
2.5 × 103 . Re . 6.5 × 103.

4.2.2. From order to turbulence

It is known that fully turbulent von Kármán flow can generate velocity fluctuations of
typically 50% of the driving impellers velocity. So, we compute the variance v2

θ rms of the
LDV-time-series at the measurement point versus the Reynolds number. This quantity is
homogeneous to a kinetic energy and may be referred to as the azimuthal kinetic energy
fluctuations. The results are reported in figure 10 for all the measurements performed
between 260 . Re . 6500. This curve quantitatively characterizes the transition to
turbulence once the time-dependent regimes are reached. A puzzling feature is that this
quantity —the kinetic energy of the fluctuating azimuthal velocity at one point— behaves
like an order parameter for a standard supercritical bifurcation. This quantity can be
fitted with a law in the square root of the distance to a threshold Rec (figure 10), using
data between Re = 350 and Re = 2500. Even more puzzling, this threshold is found to be
Rec = 330 and coincides with the onset of quasi-periodicity as detected on the variation
of the low-frequency on the quasi-periodic signal (see above).

The (Re − Rec)
1/2 behaviour can be fitted through the quasi-periodic and chaotic
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regimes, up to Re ∼ 3000. There, the azimuthal kinetic energy fluctuations level saturates
at v2

θ rms ' 0.27, i.e. fluctuations of velocities at this point of the mixing-layer are of the
order of 50% of the impeller tip speed. This saturation is also revealed by the Probability
Density Functions (PDF) of vθ presented in figure 11. These PDF are computed for
16 Reynolds numbers in the range 2.5 × 103 . Re . 6.5 × 103. One can notice the
bimodal character of the PDF: the two bumps, which are symmetric, correspond to the
two counter-rotating cells. Furthermore, all these PDF collapse and are therefore almost
independent of Re in this range. This is also consistent with the spectral data of figure 8(b-
d) where the (fa/f)−1 slowest time-scales regions which contain most of the energy —
below f— appear similar for Re = 1.0×103 and above (figure 8). The crossover Reynolds
number Ret at which the kinetic energy of fluctuations saturates in figure 10 is estimated
by taking the intersection of the horizontal asymptote with the fit: Ret = 3.3 × 103.
This value corresponds precisely to the value where the asymptotic plateau is reached
in the Kp vs. Re diagram (figure 5). In such an inertially-driven turbulent flow, the
bulk dissipation is much stronger than the dissipation in boundary layers and the global
dimensionless quantities thus do not depend on the Reynolds number past a turbulent
threshold (Lathrop et al. 1992; Cadot et al. 1997). In our experiment, a plateau is clearly
reached in the negative sense for Re & Ret = 3.3 × 103, whereas in the positive sense
of rotation, some logarithmic corrections are still observed on the variation of Kp in the
range 104 . Re . 5 × 104.

Finally, looking at the time-spectra above Ret (figure 8f-h), we observe a completely
developed power-law domain with −5/3 slope at high-frequency for fa > f . This be-
haviour reminds the Kolmogorov k−5/3 classical energy cascade (see discussion below).
Furthermore, this −5/3 slope power-law domain is observed to build up progressively
between Re ' 1000 and Ret (figure 8a-e).

From the above reported observations, we conclude that the transition to turbulence
is completed at Ret for the negative direction of rotation and that the azimuthal kinetic
energy fluctuation can clearly be considered as an order parameter for the whole transi-
tion, from the onset of time-dependence Rec = ReQP = 330 to the fully turbulent state
transition/crossover at Ret = 3.3× 103, i.e., over a decade in Reynolds number.

The last experimental question we wish to address concerns the transition or the
crossover between chaos and turbulence for Re ' 1000. It seems to be no evidence of any
special sign to discriminate between the two regimes. An empirical criterion we could
propose would be the completeness of the (fa/f)−1 low-frequency part of the spectrum,
clearly achieved for Re = 1000 (figure 8b). This region also corresponds to the minimum
of the Kp(Re) curve (figure 5). One can propose that below this Reynolds number, the
power injected at the impeller rotation frequency mainly excites low frequencies belonging
to the “chaotic” spectrum, whereas above Re ' 1000 it also drives the high frequencies
through the Kolmogorov-Richardson energy cascade.

The minimum of Kp(Re) near Re ' 103 (circles in figure 5) was difficult to make clear
experimentally because of the dispersion of data collected at different glycerol concen-
trations, different speed and different temperatures. To obtain a precise profile of the
curve in this region, we measured the torque in a single run at fixed impeller speed with-
out temperature regulation (figure 12). The fluid warms up gently during the run, from
T ' 16oC to T ' 31oC, and the Reynolds number evolves from Re ' 820 to Re ' 2700.
The torque indeed decreases first and then increase, confirming the non-monotonic be-
haviour of the dimensionless torque in this Reynolds number range (density variation is
neglected).
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Figure 12. Time evolution of the torque (experimental point and gliding average) and of the
temperature (thin line) without temperature regulation, for impellers rotating at −10 Hz, with
85% glycerol concentration. A data set is reported with respect to Re on figure 5.

5. Discussion

Before entering our discussion, let us summarize the observed steps revealed by our
analysis on the supercritical route to turbulence in the von Kármán flow with inertial
stirring:
• Re < 175 : m = 0, axisymmetric, full Rπ-symmetric steady basic flow,
• 175 < Re < 330 : m = 2, discretely Rπ-symmetric steady flow,
• 330 < Re < 400 : m = 2, non Rπ-symmetric, equatorial-parity-broken quasi-periodic

flow,
• 400 < Re . 1000 : chaotic flow,
• 1000 . Re . 3300 : transition to turbulence,
• Re & 3300 : inertially-driven fully turbulent flow.
Although this list as well as the previous section of the paper concerns only the case of

negative rotation of the impellers, some aspect of the forthcomming discussion will also
invoke the other rotation direction which has not been especially studied with the same
point of view. Some complementary results can be found in (Marié et al. 2003; Ravelet
et al. 2005; Monchaux et al. 2006b).

5.1. Symmetries and first bifurcations

The similarity of the behaviour of the flow at low-Reynolds number with intermediate-
size nonlinear system is obvious: breaking a spatial symmetry first, then a temporal
symmetry and finally transit to chaos by a quasi-periodic scenario.

Comparable study has been carried both experimentally and numerically in the von
Kármán flow with flat disk and variable aspect ratio by Nore et al. (2003, 2004, 2005). Our
results agree well with their results on the first instability mode m = 2 if considering
the fluid in the blade region as almost solidly driven, which reduces the aspect ratio.
However, all thresholds appear at much lower Re for bladed impellers than for flat disks:
175 vs. 300 for the first steady bifurcation and 330 vs. more than 600 for the first temporal
instability of m = 2 mode, not observed in Nore et al. (2005) study.

Another important difference between both system concerns its symmetries. Whereas
Nore and collaborators deal with exact counter rotation by using a single motor to drive
both disks, our experimental setup uses two independent motors and reaches only a ap-
proximation on a counter-rotating regime. As a consequence, the Rπ-symmetry is stricto

sensu broken at any Reynolds number and the group of symmetry of our problem is
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SO(2) instead of O(2). So instead of non-rotating mixed modes, pure mode and hete-
roclinic cycles specific of O(2) we only observe rotating instability patterns (Crawford
& Knobloch 1991), i.e., traveling waves. Below Rec = 330, the m = 2 pattern of the
mixing-layer (figure 3c) rotates very slowly due to the frequency mismatch between both
impeller. Above Rec = 330, the parity of the pattern gets broken (figure 3d) and starts
rotating faster and faster with Re (figure 9a). This bifurcation is similar to the 1-D drift
instability of steady patterns related to the parity break (Coullet & Iooss 1990). Oth-
erwise, the comparison of our traveling waves with those observed with flat disks (Nore
et al. 2003, 2005) rises two comments: the frequencies are of the same order of magnitude,
which let us believe that the same hydrodynamics is involved, whereas the bladed system
superimposes an oscillation at the driving frequency f and the flat disks do not.

We also wish to consider the symmetry of the von Kármán flow with respect to the
rotation axis. In fact, the time-averaged flow is exactly axisymmetric while the instan-
taneous flow is not because of the presence of blades. However, axisymmetry can be
considered as an effective property at any time at low-Reynolds number and at least up
to Re = 175, since we have shown that the blades have almost no effect on the flow (see
§3.4). With increasing Re, the blades start playing their role and effectively break the
axisymmetry of the instantaneous flow.

Finally, we emphasize that the observations made below Re ∼ 400 closely remind the
route to chaos trough successive symmetry break for low degree of freedom dynamical
systems. Our system can thus be considered as a small system —in fact this is coherent
with the aspect ratio which is of order of 1— until the Reynolds number becomes high
enough to excite small dynamical scales in the flow.

5.2. The three scales of the von Kármán flow

The observations reported in this article —visualisations, spectra— evidenced three dif-
ferent scales. In particular, time-spectra contain two time-frequency domains above and
below the injection frequency fa = f . Let us first make a rough sketch of the correspon-
dance between temporal and spatial frequency scales of the whole flow:
• the smallest space-frequencies, at the scale of the vessel, describe the basic swirling

flow due to the impeller and produce the intermediate frequency-range, i.e., the peak at
fa = f in the time-spectrum;
• the intermediate space-frequencies due to the shear-layer main instabilities produce

the lowest time-frequencies;
• the highest space-frequencies produce, of course, the highest temporal frequencies,

i.e., the Kolmogorov region.
We can thus emphasize that there is a non-monotonic mapping between space- and

time-frequencies, which definitively excludes the validity of Taylor’s hypothesis over the
full range of the spectra.

5.2.1. The 1/f low-frequency spectrum

Once chaos is reached at Re = 400, a strong continuous and monotonic low-frequency
spectrum is generated (Fig. 7f). In the chaotic regime below Re ∼ 1000, the spectrum
evolves to a neat −1 power law. Then, this part of the spectrum does not evolve anymore
with Re.

Low-frequency −1 exponents in spectra are common and could be due to a variety
of physical phenomena: so-called “1/f noises” have been widely studied ,e.g., in the
condensed matter field (see for instance Dutta & Horn 1981).

For turbulent von Kármán flows driven by two counter-rotating impellers, this low
time-scale dynamics has been already observed over at least a decade in liquid helium
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by Zocchi et al. (1994) as well as for the magnetic induction spectrum in liquid metals
(Bourgoin et al. 2002; Volk et al. 2006). However, experiments carried on a one-cell flow
—without turbulent mixing-layer— did not show this behaviour (Marié 2003; Ravelet
et al. 2004; Ravelet 2005). We therefore conclude that the 1/fa-spectrum is related to
the chaotic wandering of the mixing-layer. Once again, the mixing-layer slow dynamics
dominates the whole dynamics of our system, from momentum transfer (Marié & Daviaud
2004) to the very high level of turbulent fluctuations (Fig. 10,11).

Furthermore, we can make the hypothesis that the −1 slope is due to the distribution
of persistance times in each side of the bimodal distribution (Fig. 11). Similar study
of the low-frequency spectral construction is currently under progress for the magnetic
induction in the von Kármán sodium experiment. In both cases, longer statistics are
needed to check this idea.

5.2.2. The turbulent fluctuations

We emphasize above how the flow transits from chaos to turbulence between Re ' 1000
and Ret = 3300. We labeled this region “transition to turbulence” and observed the
growth of a power-law region in the time-spectra for fa > f . Does this slope trace back
the Kolmogorov cascade in the space-spectra ?

As the classical Taylor hypothesis cannot apply to our full range spectrum, we follow
the Local Taylor Hypothesis idea (Pinton & Labbé 1994) for the high-frequency part fa >
f . Whereas Pinton & Labbé (1994) did not apply their technique —using instantaneous
velocity instead of a constant advection— to the extreme case of zero advection, we think
it can be applied here owing to the shape of the azimuthal velocity PDF (figure 11). These
distributions shows first that the instantaneous zero velocity is a quite rare event: a local
minimum of the curve. The modulus of velocity spends typically 75% of the time between
1/2Vm and 3/2Vm, where ±Vm are the positions of the PDF maxima. The sign of the
advection has no effect on the reconstructed wavenumber. We can thus conclude that
frequency and wavenumber modulus can be matched each other at first order by a factor
equal to the most probable velocity |Vm| or by the mean of |vθ|, both very close to each
other. This approach is coherent with a binary view of the local turbulent signal jumping
randomly between two opposite mean values, just as in turbulent flow reversal model of,
e.g., Benzi (2005). Then, the high-frequency part of the spectrum is equivalent to the
spectrum obtained by averaging the spectra of every single time-serie between jumps,
while the low-frequency part is dominated by dynamics of the jumps themselves.

Owing to these arguments, we are convinced that an algebraic region dominates the
high-frequency part of k-spectra above Ret in the negative direction of rotation. Ob-
served exponents are of the order of the Kolmogorov exponent −5/3, probably a little
bit smaller in absolute value. Similar exponents are also encountered at other locations in
the vessel with the same rotation. However, careful study by Marié (2003); Marié & Davi-
aud (2004) in positive direction at higher Re ∼ 106 revealed smaller exponents, between
−1 and −1.3, depending of the velocity component considered. Exponent measurement
and quantitative comparison with any kind of model is far out the scope of our present
studies and should be undertaken with extreme care.

5.3. Inertial effects

The initial motivation to drive our experiment continuously from laminar to turbulent
regimes was to get an overview of the transition to turbulence and to check the range
where multistability exists (see next paragraph and Ravelet et al. 2004). A first surprise
was the continuity and global supercriticality of this transition (figure 10), the central
subject of this paper. Another surprise came from the importance of inertial effects and
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from how they clearly discriminate both directions of rotation at both low- and high-
Reynolds numbers (see § 3.4 and figure 5). The figure 13 presents the same points as
in figure 5 together with additional data for smooth disks and for the bifurcated state
discussed thereafter in § 5.4. The dimensionless torque Kp is approximately 30 times
smaller for smooth disks than for bladed disks, and does not display a plateau at high-
Reynolds number but a Re−1/4 scaling law, as described by Cadot et al. (1997). It is
tempting to compare our curve Kp(Re) with the classical work of Nikuradse (1932,
1933) consisting in a complete and careful experimental data set about the turbulence
in a pipe flow with controlled wall roughness. The data concern the friction factor —
equivalent of Kp— measured over a wide range between Re = 500 and Re = 106, which
is shown to strongly depend of the wall roughness above Re ' 3000. The wall roughness
is made by controlled sand grains of diameter in the range 1/507 to 1/15 of the pipe
radius, somewhat smaller than our blades height h/Rc = 1/5 which can be thought as
an effective roughness.

This data set has defied theory along decades and still motivates papers. Recently,
Goldenfeld (2006) and Gioia & Chakraborty (2006) proposed phenomenological inter-
pretations and empirical reduction of Nikuradse’s data. In few words, both recent works
connect the very high-Reynolds inertial behaviour —a plateau at a value which scales
with the roughness to the power 1/3— to the Blasius Re−1/4 law for the dissipative region
at intermediate Re. Goldenfeld (2006), using a method from critical point physics, finds
a scaling for the whole domain above Re ' 3000, whereas Gioia & Chakraborty (2006)
describe the friction factor over the same Reynolds range according to Kolmogorov’s
phenomenological model.

Compared with pipe flow results and models, our Kp(Re)-curve (figures 5 and 13)
looks very similar except for the region Gioia & Chakraborty (2006) call the energetic
regime. Indeed, in our specific case the basic flow itself is already dominated by vortices of
the size of the vessel. The two directions of rotation have quite different behaviours. The
negative direction (circles in figures 5 and 13) shows a minimum followed by a plateau
above Ret = 3300 and is in agreement with the general inertial behaviour described
above. However for the positive direction (left triangles in figure 5), the Kp curve seems
continuously decreasing up to Re ' 106. Looking closer, one can observe a short Re−1/4

Blasius regime for Re between 300 and 1500 —highlighted by a fit in figure 13— followed
by a very slow variation over the next two decades. For this direction it is more difficult
to define a threshold for the expected plateau we observe in pure water (Marié 2003).
Nevertheless, this threshold should be greater than 105, i.e., much higher than with
negative rotation.

A possible explanation of this strong difference may rely in the structure of the flow
inside the impellers, i.e. in-between the blades. Let us first assume that this flow is
dominated by what happens along the extrados of the blades, on which the pressure is the
higher. Then we can assume that the blades curvature leads to stable boundary layers in
positive rotation and to Goertler instability in negative rotation. The first case develops
Blasius boundary layers, whereas the latter develops turbulent boundary layers with
much more vortices. Therefore, when the boundary layer detaches —somewhere along the
blades or at least at their end— the Blasius boundary layer in the positive rotation sheds
less turbulent vortices than the Goertler’s instable layer does in the negative rotation.

The above description can be sufficient to explain why the negative rotation is able
to produce a strong Kolmogorov cascade even at quite low-Reynolds numbers near Ret.
However if, in the positive rotation case, the flow is only seeded by vortices produced
by the stable boundary layer which develops along the smooth blade faces, it is clear
that a Blasius Re−1/4 can be observed in this transition Reynolds range and that a full
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Figure 13. Compilation of the dimensionless torque Kp vs. Re for various flows. The figure
displays data of figure 5 (see its caption) for the symmetric (s)-flow regime. For Re & 104 in
the direction of rotation (−), the high-torque branch (stars) corresponds to the (b)-flow regime,
i.e. to the “turbulent bifurcation”. Since both motors do not deliver the same torque in this
Rπ-symmetry broken (b)-flow, the average of both values has been plotted. Some data for flat
disks of standard machine shop roughness, operated in pure water up to 25Hz (squares and

Re−1/4 fit) are also displayed. Another −1/4 power law is fitted for the positive direction of
rotation for 330 ≤ Re ≤ 1500 and is displayed between Re = 102 and Re = 104.

inertial regime does not occur below a very high-Reynolds number owing to the very
small roughness of the blades faces. This could be why both curves in figure 5 look so
different: the lower one looks qualitatively like a low-roughness boundary flow and the
upper one looks like a high-roughness boundary flow. Anyway, this may only account for
a part of the flow driving: the resistive torque is much higher for any bladed impellers
than for flat disks as shown in figure 13.

As a main result of its paper, Goldenfeld (2006) claims that full understanding of
turbulence requires explicit accounting for boundary roughness: our observation of the
closed von Kármán turbulent flow does not contradict this proposition at all.
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5.4. High-Reynolds number: towards multistability and turbulent bifurcation

The von Kármán flow driven by high-curvature bladed impellers rotating in the negative
direction presents another original behaviour: Ravelet et al. (2004) have shown that the
turbulent von Kármán flow can exhibit multistability at high-Reynolds number. To study
and analyze this phenomenon, it is necessary to introduce an additional parameter with
respect to the present paper study: the rotation velocity difference ∆f = f2−f1 between
the two impellers. The so-called “Turbulent bifurcation” and multistability are observed
exclusively for the negative direction of rotation. So, the ∆f = 0 regime presented along
this paper —called (s) for symmetric in Ravelet et al. (2004)— can be observed only if
both motors are started together, i.e., if ∆f is kept equal to zero at anytime. Once some
velocity difference is applied long enough —depending of the magnitude of |∆f |—, the
flow changes abruptly to a one cell flow with axial pumping towards one of the impellers
only instead of towards each impeller. This new flow —called (b) for bifurcated in Ravelet
et al. (2004)— strongly breaks the Rπ-symmetry, has no middle shear-layer and requires
much higher torque from the motors: typically 3 times the value of (s)-flow, with a finite
difference between the two motors. The mean reduced torque at ∆f = 0 is plotted with
stars in figure 13: branches (s) and (b) co-exist for Re & 104.

It is worth noting that this multistability can only be observed above Ret, i.e. for flows
with a well developed turbulent inertial Kolmogorov cascade. Furthermore, cycles in the
parameter plane {Kp2 − Kp1; f2 − f1} have been made for various Re between 100 and
3×105 (Ravelet 2005). At low-Reynolds numbers —Re . 800—, this cycle is reduced to a
continuous, monotonic and reversible line in the parameter plane. The first apparition of
“topological” transformations of this simple line into multiples discontinuous branches of
a more complex cycle is reported at Re ' 5×103, in the neighborhood of the transitional
Reynolds number Ret, and multistability for ∆f = 0 is first observed for Re ∼ 104. The
extensive study of this turbulent bifurcation with varying Re will be reported elsewhere.

From the above preliminary report of our results, we emphasize the fact that the
turbulent bifurcation seems really specific of fully developed turbulent flows. Whereas the
exact counter-rotating flow will not bifurcate (Ravelet et al. 2004), for 0 < |∆f |/f � 1,
this turbulent bifurcation around Re = 104 will correspond to a first order transition
on the way to infinite Reynolds number dynamics. This flow really appears as an ideal
prototype of an ideal system undergoing a succession of well-defined transitions on the
way from order to high-Reynolds-number turbulence.

5.5. Conclusions

The von Kármán shear-flow with inertial stirring has been used for a global study of the
transition from order to turbulence. The transition scenario is consistent with a globally
supercritical scenario and this system appears as a very powerful table-top prototype for
such type of study.

Many results of the present study proceed from velocity data collected in the middle
of the shear-layer and we have shown that this layer and its chaotic/turbulent wandering
can be responsible for the frequency content of the chaotic/turbulent spectrum of the
data.

Further studies currently in progress invoke both a wider range of data in space, with
the use of Particle Image Velocimetry, and a wider range in Reynolds number. Owing
to the conclusions driven from the study of the azimuthal velocity variance, it is very
appealing to characterize further the statistical properties of the turbulent velocity.

Also, with the slightly different point of view of controlling the disorder level, we
have also shown that a thin annulus located in the mid-plane of the flow modifies the
dynamics of the shear-layer (Ravelet et al. 2005). This property was recently used in
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the Von Kármán Sodium (VKS) experiment held at Cadarache, France and devoted to
the experimental study of dynamo action in a turbulent liquid sodium flow. Dynamo has
effectively been observed for the first time in this system with a von Kármán configuration
using, among other characteristics, an annulus in the mid-plane (Monchaux et al. 2006a).
Moreover, clear evidence has been made that the mixing-layer large-scale patterns have
a strong effect on the magnetic field induction at low frequency (Volk et al. 2006; Ravelet
et al. 2006). Further studies of this effect in water experiments are under progress.

We are particularly indebted to Vincent Padilla and Cécile Gasquet for building up
and piloting the experiment. We acknowledge Caroline Nore for making her simulations
available, Arnaud Guet for his help on the visualisations and Frédéric Da Cruz for the
viscosity measurements. We have benefited of very fruitful discussions with B. Dubrulle,
N. Leprovost, L. Marié, R. Monchaux, C. Nore, J.-F. Pinton and R. Volk.
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swirling flow. Euro. Phys. Journal B 39, 121.

Lesieur, M. 1990 Turbulence in Fluids, second revised edition edn. Kluwer academic publishers.

Lumley, J. L. 1965 Interpretation of time spectra measured in high-intensity shear flows. Phys.
Fluids 8, 1056–1062.

Manneville, P. 1990 Dissipative structures and weak turbulence. Academic Press.
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dynamo based on experimental von Kármán type flows. Euro. Phys. Journal B 33, 469.

Marié, L. & Daviaud, F. 2004 Experimental measurement of the scale-by-scale momentum
transport budget in a turbulent shear flow. Phys. Fluids 16, 457.

Mellor, G. L., Chapple, P. J. & Stokes, V. K. 1968 On the flow between a rotating and
a stationary disk. J. Fluid Mech. 31, 95.

Moisy, F., Willaime, H., Andersen, J. S. & Tabeling, P. 2001 Passive scalar intermittency
in low temperature helium flows. Phys. Rev. Letters 86, 4827.

Monchaux, R., Berhanu, M., Bourgoin, M., Moulin, M., Odier, Ph., Pinton, J.-F.,
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