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Abstract: In this paper, we analyze forecast based inventory control policies for a
non-stationary demand. We assume that forecasts and the associated uncertainties
are given at the beginning of the horizon of forecasts. Two forecast based reorder
point policies are proposed : the (rk, Q) and the (rk, Qk) policies. These dynamic
policies represent an extension of the classical discrete time (r,Q) policy. The
parameters of these policies are determined by using a sequential approach which
satisfies a cycle service level. A numerical comparative study of these policies is
developed enabling us to show the benefit of using them when forecasts are reliable.
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1. INTRODUCTION

Nowadays, in an industrial environment marked
by an increasing competition, a better inventory
management within supply chains is the key of
customer satisfaction and cost reduction.

Many investigations have been performed since
the 30’s in order to develop new inventory control
policies. Thus, there is a wide literature dealing
with inventory control policies. Most of the models
investigated in the literature assumes a stationary
demand. The most known policies are the reorder
point policy, denoted by (r,Q) policy and the
order-up-to-level policy, denoted by (S, T ) policy.
Several other alternatives of these policies are de-
veloped such as : the (s, S) policy which combines
the two preceding policies by using at the same
time a reorder point s and a replenishment level
S, the (T, r,Q) policy which is a discrete time
reorder point policy and the (T, r, S) policy which
is a discrete time (s, S) policy. For more details on

these policies, cf. (Zipkin, 2000) and (Silver and
Peterson, 1985).

The customer demand is strongly influenced by
several economic factors which make it more and
more variable. In this context, the static policies
given above are not suitable to control systems
and it proves to be essential to use inventory
control policies considering a non-stationary de-
mand. Unfortunately, the literature in this area
is relatively poor. There is some literature based
on the work of (Scarf, 1959) and (Karlin, 1960).
These works study optimal inventory control poli-
cies with an objective to minimize total inventory
costs including backlog penalties. They consider
stochastic demands over periods which are inde-
pendent and identically distributed. They show
that the optimal policy is a dynamic (s, S) policy.
Since the optimal policies’ parameters can not be
determined easily, only bounds on the optimal
policies and their characteristics are obtained.



During the last years, a body of literature is also
developed by (Heath and Jackson, 1994), (Graves,
1999), (Lee et al., 1997) and (Chen et al., 2000)
studying forecast based inventory management
policies. This work considers auto-correlated non-
stationary demand, where forecasts are obtained
by using forecasting models and updated by using
the MMFE model (Martingale Model of Forecast
Evolution). They develop a dynamic order-up-
to-level policy where the replenishment level is
computed in each period to satisfy a target service
level. This work presents many advantages, the
principle disadvantage is that all results are de-
pendant on the forecast model and some assump-
tions of the inventory model remain restrictive.

In our work, we are not interested in the fore-
casting models. We assume that forecasts and
the forecast uncertainty are an exogenous data
given at the beginning of the horizon of forecasts.
Our objective is to study simple inventory control
policies assuming a non-stationary demand with
pragmatic assumptions and an easy implementa-
tion. Two forecast based inventory control policies
are proposed, namely : the (rk, Q) policy and the
(rk, Qk) policy. In this paper, the (rk, Qk) policy
is compared to the (rk, Q) policy and the discrete
time (r,Q) policy (denoted in the following by the
(1, r,Q) policy).

This paper is organized as follows : in section 2,
we begin by describing the framework of the study
and the assumptions. Then, we study the (rk, Q)
and the (rk, Qk) policies by giving the various
parameters which characterize them. In section 3,
a numerical comparative study of these policies
and the (1, r,Q) policy is given which enables
us to identify conditions under which the use of
these policies may bring significant benefits. The
conclusions are given in section 4.

2. FORECAST BASED INVENTORY
CONTROL POLICIES

2.1 System description and assumptions

In this paper, we study a pure single-stage
and single-item inventory system with a non-
stationary demand given in the form of uncertain
forecasts. The system is not capacitated and the
inventory replenishment requires a constant lead-
time, as represented in Fig. 1.

Fig. 1. The inventory system model

We assume that forecasts and forecast uncertain-
ties are given at the beginning of the horizon
of the forecasts. We also assume that forecast
uncertainties are random variables independent
and identically normally distributed over all the
periods of the horizon with parameters (0, σFU ),
as shown in Fig. 2.
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Fig. 2. The demand model

In practice, probability distributions of the fore-
cast uncertainty can be determined by using his-
torical statistics of demand and forecasts. We
also suppose that the forecast uncertainty may be
absolute or relative. The forecast uncertainty is
absolute if it is independent of forecasts and it
is relative, if it is proportional to the forecasts. If
the forecast uncertainty is relative, the probability
distribution is given in percentage.

We use a sequential approach to compute the
parameters of the policies which means that the
value of the ordering quantity is computed ig-
noring the impact upon it of the reorder point.
To compute the safety parameter, we use a cycle
service level objective, that means that we impose,
at each cycle (time period between two successive
orders), that the probability of not having a stock
out is higher than a fixed value, called Cycle
Service Level.

Let us introduce the notations used throughout
the paper :

Fk : forecast at period k

L : replenishment lead-time

Ik : inventory position at the end of period k

CSL : Cycle Service Level

A : fixed ordering cost

h : holding cost

H : number of periods in the horizon of forecasts

CFUR : cumulative forecast uncertainty over an
interval R

ΦCFUR
(.) : cumulative probability distribution of

CFUR



Φ(.) : standard normal cumulative probability
distribution.

Since the forecast uncertainty is normally dis-
tributed in each period, the cumulative forecast
uncertainty over an interval R composed of N

periods is normally distributed with parameters
(0, σCFUR

), where σCFUR
is given as follows :

• If the forecast uncertainty is absolute :

σCFUR
= σFU

√
N

• If the forecast uncertainty is relative :

σCFUR
= σFU

√

∑N

j=1 F 2
k+j−1

Φ−1
CFUR

(CSL) is called “maximal cumulative fore-
cast uncertainty over the interval R and for the
cycle service level CSL”.

Φ−1
CFUR

(CSL) = Φ−1(CSL)σCFUR

In the following, we briefly describe the (rk, Q)
and the (rk, Qk) policies, and we provide their
parameters.

2.2 The (rk, Q) policy

In the (rk, Q) policy, the system is controlled in
each elementary forecast period. At the beginning
of each period k, if the inventory position falls be-
low the reorder point rk, a quantity Q is ordered.
The quantity ordered is received after L periods.
The inventory evolution in the (rk, Q) policy is
represented in Fig. 3.
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Fig. 3. The (rk, Q) policy

In this policy, the protection interval is equal to
the sum of the replenishment lead-time L and
a single elementary forecast period (the single
period must be added due to the discrete time
review). Thus, the reorder point rk is equal to the
cumulative forecasts and the maximal cumulative
forecast uncertainty over L + 1 periods. The re-
order point is given by :

rk =

L+1
∑

j=1

Fk+j−1 + Φ−1(CSL)σCFUL+1

The reorder point rk is variable over time since the
forecasts and the forecast uncertainty are variable
over time. The second term in the expression of
rk plays the role of the safety stock which, in the
case of a relative forecast uncertainty, is variable
from one period to another.

The quantity Q can be computed by using the
Wilson’s formula, as follows :

Q =

√

2A
∑H

i=1 Fi

hH

More details on this policy are given in (Babäı and
Dallery, 2005) and (Babäı, 2005).

2.3 The (rk, Qk) policy

The (rk, Qk) policy is an extension of the (rk, Q)
policy. Indeed, in the (rk, Q) policy, the order-
ing quantity is constant over the horizon and
computed by using the Wilson’s formula. In the
(rk, Qk) policy, we use a method developed to
compute the ordering quantity which become vari-
able.

In this policy, the system is controlled in each
elementary forecast period. At the beginning of a
each period k, if the inventory position is less than
the reorder point rk, a quantity Qk is ordered.
The quantity ordered is received after L periods.
The inventory evolution in the (rk, Q) policy is
represented in Fig. 4.
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Fig. 4. The (rk, Qk) policy

The protection interval in the (rk, Qk) policy is
also equal to L + 1 periods. Thus, the reorder
point rk is equal to the cumulative forecasts and
the maximal cumulative forecast uncertainty over
L + 1 periods, and it is given by the following
formula :



rk =

L+1
∑

j=1

Fk+j−1 + Φ−1(CSL)σCFUL+1

In each period k, the ordering quantity Qk is
computed by using an heuristic method which
we developed as an extension of the Silver-Meal
Heuristic (Silver and Meal, 1973). Indeed, the
objective of the heuristic is to find the number
of periods Nk to be covered by the quantity Qk

which is ordered at the beginning of period k and
received at the beginning of the period k + L,
that minimizes the expected total cost, denoted
by CT (Nk).

The expected total inventory over Nk periods (k+
L, k + L + 1, .., k + L + Nk − 1), calculated at

the beginning of period k and denoted by X
Nk

k ,
is given by :

X
Nk

k =

L+Nk
∑

j=1

Fk+j−1 + NkΦ−1
CFUL+Nk

(CSL)

Thus, the expected total inventory cost over Nk

periods, calculated at the beginning of a period k

is :

CT (Nk) =
A + hX

Nk

k

Nk

The key idea of the heuristic is to start with an
initial value Nk = 1, to calculate the expected
total costs CT (Nk) and CT (Nk + 1), then to
increment Nk in order to seek the first period
N∗

k for which CT (N∗

k + 1) > CT (N∗

k ). If this
condition is satisfied, at the beginning of period k,
a batch of size Qk is ordered in order to cover the
maximal cumulative forecasted demand over L +
N∗

k periods by taking into account the inventory
position Ik−1, i.e.

Qk = max
[

∑L+Nk

j=1 Fk+j−1 + Φ−1
CFUL+Nk

(CSL)−

Ik−1, 0
]

3. NUMERICAL COMPARATIVE STUDY

In this section, we study the relative reduction
of the total inventory cost which results from the
implementation of the (rk, Qk) policy compared
respectively to the (1, r,Q) policy and to the
(rk, Q) policy for a stationary demand. We assume
that the cycle service level is so high that the
backlog rate is small. Consequently, the backlog
costs can be neglected, and the total inventory
cost is composed of the holding cost and the
ordering cost.

We assume that the demand and the forecast
uncertainty are normally distributed with para-
meters (mD, σD) and (0, σFU ). In the (1, r,Q)
policy, we use the probability distribution of the
demand to calculate the parameters of the policy.
To simulate the (rk, Q) and the (rk, Qk) policies,
the idea is to generate a realization of the de-
mand and a realization of the forecast uncertainty
over an horizon composed of N periods. This
enables us to calculate the forecasts in each period
of the horizon. We consider these forecasts and
the probability distribution of the forecast uncer-
tainty to compute the parameters of the (rk, Q)
and (rk, Qk) policies. The inventory consumption
in the system is done by using the real demand.

The relative reduction of the total inventory costs
are given by G1 and G2 as follows :

G1 =
Z(1,r,Q) − Z(rk,Qk)

Z(1,r,Q)

G2 =
Z(rk,Q) − Z(rk,Qk)

Z(rk,Q)

Where Z(1,r,Q), Z(rk,Q) and Z(rk,Qk) are respec-
tively the total inventory costs in the (1, r,Q), the
(rk, Q) and the (rk, Qk) policies.

We recall that in the (1, r,Q) policy, the system is
controlled at the beginning of each period. A fixed
quantity Q is ordered whenever the inventory
position falls below a static reorder point r. A
good approximation of the total inventory cost in
the (1, r,Q) policy is given by :

Z(1,r,Q) ≈ h

[

Φ−1(CSL)σD

√
L + 1 +

√

2AmD

h

]

The costs Z(rk,Q) and Z(rk,Qk) are computed
numerically.

The numerical values of the parameters used in
simulations are as follows :

N = 1000 periods, mD = 100, L = 2 periods,
CSL = 98%, A = 100 per order, h = 0.2 per unit
per period.

Results of the simulations are given in this paper
for an absolute forecast uncertainty. Results for
the case of a relative forecast uncertainty are not
presented here.

In the following, we begin by studying the impact
of the variability of the forecast uncertainty on G1

and G2 for a standard deviation of the demand
σD = 30. The curve of G1 as a function of σFU is
given in Fig. 5.



Fig. 5. Impact of the variability of the forecast uncertainty
on G1

The curve of the relative reduction of the cost
shows two parts : (i) a first part where the curve is
positive meaning that the average inventory cost
in the (1, r,Q) policy is higher than the one in the
(rk, Qk) policy. (ii) a second part where the curve
is negative meaning that the average inventory
cost in the (1, r,Q) policy is smaller than the one
in the (rk, Qk) policy.

The first part of the curve shows the advantage
of using forecasts to control the system, since the
relative reduction can go up to 40% if forecasts
are reliable. However, beyond a certain value of
the variance of the forecast uncertainty which is
close to the variance of the demand, it is more
advantageous to use the (1, r,Q) policy and it is
not necessary to make forecasts and to control the
system with the (rk, Qk) policy.

We showed in (Babäı and Dallery, 2005) that,
when the forecasts are reliable, the implementa-
tion of the (rk, Q) policy implies also considerable
benefits compared to the (1, r,Q) policy. Below,
we compare the performances of the (rk, Qk) pol-
icy and the (rk, Q) policy. We study the relative
reduction of the cost which results by using the
(rk, Qk) policy compared to the (rk, Q) policy.
The curve of G2 as a function of σFU is given
in Fig. 6.

Fig. 6. Impact of the variability of the forecast uncertainty
on G2

We remark that for a small variability of the fore-
cast uncertainty, the reduction of the cost which
results from the use of the (rk, Qk) policy com-
pared to the (rk, Q) policy is considerable, since
it may reach 18%. This highlights the advantage
of using the (rk, Qk) policy to control the system
for reliable forecasts. This reduction of the cost
decreases when the variability of the forecast un-
certainty increases and falls until 1%. In this part,
where the forecasts are not reliable, the (rk, Qk)
policy is not much advantageous compared to the
(rk, Q) policy.

We also study the impact of the demand variabil-
ity on G1 and G2 for a fixed forecast uncertainty.
We present in Fig. 7 and Fig. 8 the curve of G1

and G2 as a function of σD for an absolute forecast
uncertainty with σFU = 20.

Fig. 7. Impact of the variability of the demand on G1

Fig. 8. Impact of the variability of the demand on G2

As represented in Fig. 7 and Fig. 8, the higher
is the demand variability, the more it will be ad-
vantageous to control the system with the (rk, Q)
policy and much more advantageous with the
(rk, Qk) policy. It is obvious that more interesting
part of this curve is when the variability of the
forecast uncertainty is smaller than the variability
of the demand (reliable forecasts).

4. CONCLUSIONS

In this paper, we studied two forecast based in-
ventory control policies : the (rk, Q) policy and



the (rk, Qk) policy, and we described the various
parameters which characterize them. These para-
meters are given for two models of the forecast
uncertainty, namely : the absolute model and the
relative model.

We also provided a numerical comparative study
of the (rk, Qk) policy, the (rk, Q) policy and
the (1, r,Q) policy. We quantified the reduction
of the total inventory cost which results from
using the (rk, Qk) policy compared to the (rk, Q)
policy and the (1, r,Q) policy, and we highlight
the benefit of using forecasts in the inventory
control. This study enabled us to show that if
forecast uncertainties are small, i.e. the forecasts
are reliable, it is advantageous to use the forecast
based inventory control policies. On the other
hand, if the forecasts of the demand are not
reliable, which corresponds to the case where the
forecast uncertainty is high, it is more interesting
to use the classical (1, r,Q) policy.

In the future, more work could be done to study
the connection between the proposed policies and
the MRP policy which is not well highlighted in
the literature.
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