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ABSTRACT

In this paper, we analyze a single-stage and single-item inventory control system with non-stationary demand and uncertain
system parameters. We propose two extensions of a previous work on the dynamic reorder point policy (the (rk, Q) policy [2]).
In the first extension, we include three types of uncertainties pertaining to the demand uncertainty, the lead time uncertainty,
and the yield uncertainty. We study the impact of these uncertainties on the (rk, Q) policy and we provide an approximation
of the optimal parameters of the policy using a sequential approach under a cycle service level constraint. The approximative
parameters obtained in this paper are good ones for small values of the variability of uncertainties. In the second extension,
we focus on the demand uncertainty. We determine the optimal parameters of the (rk, Q) policy using a sequential approach
under a fill rate service level constraint. In the two extensions, we focus on the safety stock parameter and we propose a
method to compute it.
Keywords: inventory control, forecasts, cycle service level, fill rate, safety stock, policy parameters

1. INTRODUCTION

There is an abundant literature on inventory control poli-
cies which extends since the 30’s. The most known poli-
cies are the reorder point policy, called also as the (r,Q)
policy and the order-up-to-level policy, called as the (S, T )
policy. Several other alternatives of these policies are de-
veloped such as the (s, S) policy, the (T, r,Q) policy and
the (T, r, S) policy. Most of the models given in the litera-
ture to analyze these policies assumes a stationary demand
and a cycle service level. Note that these policies are static,
i.e. their parameters are constant over time. For more de-
tails on these policies, the reader is referred to [8] and [10].
There is also some literature that studies dynamic inventory
control policies based on the investigations of [4] and [6].
However, this literature is interested in optimal inventory
control policies that are not easy for implementation.

In earlier papers [1] and [2] , we proposed a dynamic re-
order point policy for a non stationary demand, namely,
the (rk, Q) policy. The parameters of this policy are de-
termined using a sequential approach which means that the
value of the ordering quantity Q is computed ignoring the
impact upon it of the reorder point rk. Indeed, the order-
ing quantity is independent of uncertainties, whereas the
reorder point takes into account the impact of the uncer-
tainties by the mean of a safety parameter. To determine
the safety parameter, a cycle service level approach is used
which means that we impose, at each cycle (time period
between two successive orders), that the probability of not
having a stockout is higher than a target cycle service level.
Our proposed policy in these investigations includes only
the uncertainty associated with demand.

In real inventory control systems, besides the randomness
related to demand forecasts, several other types of random-
ness may exist. For example, randomness in the replenish-
ment process, randomness related to product quality, ran-
domness due to the unreliability of suppliers, etc. These
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randomness implies several uncertainties in the system,
such as the lead time uncertainty and the yield uncertainty.
Therefore, in order to guarantee a better service level, the
computation of the parameters of the control policy have to
take into account these uncertainties. There is an extensive
literature that studies inventory policies by considering the
yield uncertainty [3], [5], [7] and [9]. There is also much
work that studies inventory systems under the lead time un-
certainty [8] and [10]. However, we remark that in these
works the impact of each uncertainty on the policy para-
meters is analyzed separately and most of the results are
given for a stationary demand and static policies. This has
motivated us to extend our results concerning the (rk, Q)
policy by including yield and lead time uncertainties.

We also remark that most of the work on dynamic inventory
control policies considers a cycle service level to compute
the parameters of the policies. So, we extend results pro-
vided in [2] by considering a fill rate service level which
is amongst the most useful measure of service in inventory
control systems.

This paper is organized as follows: in Section 2, we de-
scribe the system and the assumptions we consider. In Sec-
tion 3, we briefly recall the principle and the parameters
of the (rk, Q) policy. We study the impact of uncertainties
on the parameters of the policy and we provide the optimal
parameters by considering the three uncertainties simulta-
neously and a cycle service level. In Section 4, we provide
the optimal parameters of the (rk, Q) policy for a fill rate
service level. The conclusions are given in Section 5.

2. SYSTEM DESCRIPTION AND ASSUMPTIONS

We consider a single-stage and single-item inventory sys-
tem with a non-stationary demand. The system is not ca-
pacitated and the inventory replenishment requires a lead-
time L, as represented in Fig. 1.

We assume that demand is known by means of uncertain
forecasts, i.e. forecasts and forecast uncertainties are given
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Fig. 1: The inventory system model

for each forecast period. We also assume that Forecast Un-
certainties (FU ) are independent and identically normally
distributed over all the periods of the horizon of forecasts
with parameters (0, σFU ). We also consider that the fore-
cast uncertainty is additive, i.e. at each period, the proba-
bility distribution of FU is independent of the forecast. For
more details on other type of forecast uncertainty models,
the reader is referred to [1].

The replenishment lead time L is random. Since, we con-
sider a discrete time control system, we assume that L is
a random variable with a discrete probability distribution.
The lead time L takes a value Li with a probability Pi (i.e.
P (L = Li) = Pi).

We consider that the supplier is not reliable which implies
a yield uncertainty, i.e. if a quantity Q is ordered to replen-
ish the stock, the received quantity Qr is a function of the
quantity Q and the yield uncertainty EQ, and is expressed
as follows: Qr = Q+EQ (i.e. additive uncertainty model).
We assume that the yield uncertainty is also normally dis-
tributed with parameters (mEQ, σEQ).

We also consider these notations:

Fk: forecast at period k

L: replenishment lead time

Ik: inventory position at the end of period k

CSL: target cycle service level

A: fixed ordering cost

h: holding cost

H: number of periods in the horizon of forecasts

CFUR: cumulative forecast uncertainty over an interval R

ΦCFUR
(.): cumulative distribution function of CFUR

φCFUR
(.): probability density function of CFUR

Φ(.): standard normal cumulative distribution function

P (x): probability of the random event x

3. THE (rk, Q) POLICY UNDER DEMAND, YIELD
AND LEAD TIME UNCERTAINTIES

In the (rk, Q) policy, the system is controlled at each fore-
cast period. At the beginning of each period k, if the inven-
tory position falls below the reorder point rk, a quantity Q

is ordered. The quantity ordered is received after L peri-
ods. The inventory level evolution in the (rk, Q) policy is
represented in Fig. 2.

If the lead time L and the order quantity Q are constant, i.e.
only the forecasted demand is uncertain, the reorder point
rk is equal to the cumulative forecasts over L + 1 periods
plus the safety stock necessary to cover the forecast uncer-
tainty with the cycle service level. The safety stock Ssk is
equal to the maximal cumulative forecast uncertainty over
the protection interval which is equal to L+1 periods. The
reorder point is given by:

rk =

L+1
∑

j=1

Fk+j−1 + Ss∗k where:

Ss∗k = Φ−1(CSL)σCFUL+1

The quantity Q can be computed by using the Wilson’s for-
mula, as follows:

Q =

√

2A
∑H

i=1
Fi

hH

More details on this policy and their parameters are given
in [1] and [2].

In the following, we study the impact of each uncertainty
on the (rk, Q) policy. The optimal parameters under de-
mand, yield and lead time uncertainties are given in Section
3.3.

3.1. Impact of the yield uncertainty

Here, we consider that there is a yield uncertainty in the
system, i.e. when a quantity Q is ordered, the received
quantity is random. As shown in Fig. 3, a small yield
uncertainty does not have any influence on the stockout
probability during the replenishment lead time since there
is only a shift in the period when the order is placed.

Thus, the equation of the safety stock and the reorder point
are as the same as in the (rk, Q) policy without the yield
uncertainty:

rk =

L+1
∑

j=1

Fk+j−1 + Φ−1(CSL)σCFUL+1

However, the ordered quantity changes and may be approx-
imated by:

Q =

√

2A
∑H

i=1
Fi

hH
− mEQ

This approximation is a good one for small values of the
variability of the yield.
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Fig. 2: The (rk, Q) policy

3.2. Impact of the lead time uncertainty

Since we use a sequential approach to determine the para-
meters of the policy, the optimal ordered quantity is inde-
pendent of the lead time uncertainty.

However, under the lead-time time uncertainty, at each pe-
riod k the equation of the reorder point rk changes.

Proposition.

The reorder point rk can be computed numerically by re-
solving the equation:

∑

i

PiΦFD Li+1(rk) = CSL

Where FD Li + 1 denotes the cumulative forecasted de-
mand over Li + 1 periods and ΦFD Li+1(.) its cumulative
distribution function.

This equation may be solved by using, for example, an al-
gorithm of dichotomy.

Proof.

The reorder point rk is computed such as:

P (Cumulative Demand over L+1 ≤ rk) = CSL (1)

Since the lead time L has a discrete probability distribution.
By using the Total Probability Theorem and equation (1),
we have:

∑

i

PiP (Cumulative Demand over Li + 1 ≤ rk) = CSL

Denote by FD Li + 1 the cumulative forecasted demand
over Li + 1 periods and by ΦFD Li+1(.) its cumulative
distribution function. Hence, at each period k:

ΦFD Li+1 = CFULi+1 +

Li+1
∑

j=1

Fk+j−1

At each period, the random variable FD Li + 1 is then

normally distributed with a mean
∑Li+1

j=1
Fk+j−1 and a

standard deviation σCFULi+1
given by:

σCFULi+1
= σFU

√

Li + 1

Thus, the reorder point rk is given by:

∑

i

PiΦFD Li+1(rk) = CSL

Hence, at each period k, the reorder point rk can be com-
puted numerically by solving this last equation.

3.3. Optimal parameters under demand, yield and
lead time uncertainties

The impact of these uncertainties on the (rk, Q) Policy are
studied separately in Section 3.1 and 3.2. In this Section,
we give the optimal parameters of the (rk, Q) policy by
considering the demand, yield and lead time uncertainties
simultaneously. We assume that uncertainties are relatively
small. The result is given by using a sequential approach to
satisfy a target cycle service level CSL.

The reorder point rk can be computed numerically by re-
solving the equation:

∑

i

PiΦFD Li+1(rk) = CSL

The optimal quantity to order is given by:
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Fig. 3: The (rk, Q) policy under the yield uncertainty

Q =

√

2A
∑H

i=1
Fi

hH
− mEQ

4. THE (rk, Q) POLICY UNDER A FILL RATE
SERVICE LEVEL CONSTRAINT

In Section 3, a cycle service level approach is used, under
three types of uncertainties, to determine the reorder point.
In this section, we are interested in a fill rate service level
approach, and we consider only a forecast demand uncer-
tainty.

Recall that the cycle service level may be defined as the
probability to not have a stockout during a cycle (a cycle is
defined as the period between two successive orders). The
fill rate is the proportion of demand satisfied directly by the
available stock [8].

Let us give a simple example to explain the difference be-
tween the cycle service level and the fill rate. We con-
sider the Tab 1. which shows the ordered quantities and
the stockout over 10 forecast periods.

In this case, the fraction of periods without stockout is 8/10,
thus a cycle service level of 80 % is satisfied. In terms
of quantity, only 55 demands are satisfied over a total de-
mand of 1450, so a fill rate of 96.21 % is satisfied ((1450-
55)/1450=96.21%).

Since we use a sequential approach, the formula of the op-
timal quantity to order does not change and is given by:

Q =

√

2A
∑H

i=1
Fi

hH

Tab 1. Example to illustrate service level measures

Period Demand Stockout

1 180 0
2 75 0
3 235 45
4 140 0
5 180 0
6 200 10
7 150 0
8 90 0
9 160 0

10 40 0
Total 1450 55

So, our aim in this section is to compute the reorder point
rk necessary to satisfy the target fill rate at each period k.
Let Fr denotes the target fill rate, n(rk) the average num-
ber of stockout during a cycle, and Ssk the safety stock.

Proposition.

The optimal safety stock Ss∗k can be computed numerically
by solving the equation:

Q(1 − Fr) = − Ss∗k

[

1 − Φ

(

Ss∗k
σCFUL+1

)]

+ σCFUL+1
φ

(

Ss∗k
σCFUL+1

)

The optimal reorder point rk is then given by:

rk =

L+1
∑

j=1

Fk+j−1 + Ss∗k
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Fig. 4: The (rk, Q) policy with stockout

Proof.

At each period k, the fill rate is defined as follows:

Fr = 1 −
n(rk)

Average demand during a cycle

As shown in Fig 4, the demand during the cycle which be-
gins at period k is:

Q + Ik−1 − Ij−1

Where j is the first period where an order is placed after
the period k.

In practice, if we consider a long horizon of forecasts, we
can approximate the average forecasted demand during a
cycle by Q, where:

Q =

√

2A
∑H

i=1
Fi

hH

The average number of stockout, denoted by n(rk), is de-
fined as follows:

n(rk) =

∫ +∞

x=rk

(x − rk)φL+1(x)dx

We showed in [1] that:

n(rk) = − Ssk

[

1 − Φ

(

Ssk

σCFUL+1

)]

+ σCFUL+1
φ

(

Ssk

σCFUL+1

)

Thus, the optimal safety stock Ss∗k can be computed nu-
merically, by using for example an algorithm of dichotomy,
to solve the following equation:

Q(1 − Fr) = − Ss∗k

[

1 − Φ

(

Ss∗k
σCFUL+1

)]

+ σCFUL+1
φ

(

Ss∗k
σCFUL+1

)

Hence, the reorder point rk is given by:

rk =

L+1
∑

j=1

Fk+j−1 + Ss∗k

5. CONCLUSIONS

In this paper, we studied the (rk, Q) policy under demand,
yield and lead time uncertainties. A sequential approach is
considered and a cycle service level is used to compute the
optimal parameters of this policy. We provided good ap-
proximations of the optimal parameters of the (rk, Q) pol-
icy for small values of the variability of uncertainties. We
showed that, under the yield uncertainty, there is only an
impact on the ordered quantity, however, the reorder point
does not change. We also showed that, under the lead time
uncertainty, the reorder point changes and it can be com-
puted numerically.

In the second part of the paper, we briefly explained the
difference between the cycle service level and the fill rate.
Then, we determined the optimal parameters of the (rk, Q)
policy using a sequential approach under a fill rate service
level constraint. In this part, only the demand uncertainty
is considered.

In the future, it would be interesting to develop this analysis
by studying the behavior of the optimal parameters for high



values of the variability of uncertainties. More work could
also be done to conduct the same study provided in this
paper for other inventory control policies such as the order-
up-to-level policies. Another interesting further research
consists in developing the optimal parameters of the (rk, Q)
policy for a fill rate service level under demand, yield and
lead time uncertainties.
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