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Abstract

Surface representation is needed for almost all modeling
and visualization applications, but unfortunately, 3D data
from a passive vision system are often insufficient for a tra-
ditional surface reconstruction technique that is designed
for densely scanned 3D point data. In this paper, we de-
velop a new method for surface reconstruction by combin-
ing both 3D data and 2D image information. The silhou-
ette information extracted from 2D images can also be in-
tegrated as an option if it is available. The new method
is a variational approach with a new functional integrat-
ing 3D stereo data with 2D image information. This gives
a more robust approach than existing methods using only
pure 2D information or 3D stereo data. We also propose a
bounded regularization method to implement efficiently the
surface evolution by level-set methods. The properties of
the algorithms are discussed, proved for some cases, and
empirically demonstrated through intensive experiments on
real sequences.

1. Introduction

Given a set of uncalibrated 2D images of a 3D scene ac-
quired by a hand-held camera, obtaining a surface repre-
sentation of the objects in the scene has always been one of
the most challenging and fundamental problems of 3D com-
puter vision. Although effective for computing camera ge-
ometry, most of recent approaches [10, 6] reconstruct only
3D ’point cloud’ of the scene, whereas surface-based repre-
sentations are indispensable for most current modeling and
visualization applications. Surface reconstruction is a nat-
ural extension of the point-based geometric methods. But
unfortunately 3D data from such a passive system are of-
ten insufficient for a direct surface reconstruction method
that is designed for scanned 3D data. The main difficulties
are that the ’passive’ 3D points are noisy, sparse, irregularly
distributed, and missing in many big parts. These difficul-
ties have motivated us to develop a new approach to con-
structing surface representations from 3D stereo data [15],
but using extra 2D image information that is still available
from a passive system.

Surface reconstruction from 3D data Surface recon-
struction from scanned 3D point data has been a very tra-
ditional research topic in both computer vision and graph-
ics. Szeliski et al. [22] used a particle-based model of de-
formable surfaces; Hoppe et al. [11] presented a signed
distance for implicit surfaces; Curless and Levoy [3] de-
scribed a volumetric method; and Tang and Medioni [24]
introduced a tensor voting method. Most recently, Zhao
et al. [26] developed a level-set method based on a varia-
tional method of minimizing a weighted minimal surface.
Similar work to [26] has also been developed by Whitaker
[25] using a MAP framework. Surface reconstruction from
depth data obtained from stereo systems is more challeng-
ing than that from scanned 3D data as the stereo data are
usually much sparser and less regular. Fua [8] used a sys-
tem of particles to fit the stereo data. Kanade et al. [17]
and Fua and Leclerc [7] proposed a deformable mesh rep-
resentation to match the multiple dense stereo data. These
methods that perform reconstruction by deforming an ini-
tial model or tracking the discretized particles to fit the data
points are both topologically and numerically limited com-
pared to modern dynamic implicit surface approaches.

Surface reconstruction from 2D images Recently, sev-
eral new volumetric algorithms have been proposed [20, 14,
5, 13] that simultaneously reconstruct the surface and ob-
tain dense correspondence. The method of space carving
or voxel coloring [20, 14] directly works on discretized 3D
space, voxels, based on their image consistency and visibil-
ity. Kolmogorov and Zabih [13] proposed a direct discrete
minimization formulation that is solved by graph cuts. A
more general theory has been laid down by Faugeras and
Keriven [5]. It is a variational method implemented by level
sets, which is intrinsically a multiple view and handles nat-
urally the topology changes and occlusion problems based
on their earlier work [4, 19]. The approach has great poten-
tial, and some results have been presented. However, it is
not clear under what conditions their methods converge as
the actual proposed functional seems highly non-convex.

Our contributions Some ideas in our approach are in-
spired by these methods, but fundamentally these methods
either solely operate on 3D data or on 2D data. Our ap-



proach tries to bridge these approaches by combining both
3D and 2D data. This is possible because of a unified func-
tional based on a minimal surface formulation. We believe
that the combined functional will have far less local minima
than the one derived from 2D data alone, and that this will
result in more stable and more efficient algorithms. For the
efficient evolution of surfaces, we also propose a bounded
regularization method based on level-set methods. Its sta-
bility is also proved. Intensive experiments are also carried
out to demonstrate the validity of our method.

2. Problem statement

Given a set of calibrated 2D images, a set of 3D points
derived from the given images, and optionally a set of sil-
houettes extracted from the given images, the goal is to
reconstruct a surface representation of the objects in the
scene.

The problem is different from surface reconstruction
from a set of calibrated images as addressed in [5, 20, 14]
in which only 2D images are used without any 3D in-
formation. It is also different from surface reconstruc-
tion from scanned 3D data without 2D image information
[11, 22, 3, 8, 17, 26, 24].

It is very important to emphasize that the set of 3D points
considered here is not from scanned data, but derived from
the given set of images by stereo and bundle-adjustment
methods [15]. The ’passive’ 3D points are difficult to re-
construct as they are sparser and irregularly distributed and
have more missing parts than the ’active’ data. The major
motivation of this study is to improve the insufficiency of
3D stereo data by using original 2D image information. The
obtainment of 3D stereo data will be discussed in Section 7.

3. General Approach

The general methodology that we will follow is a vari-
ational approach inspired by the work of Faugeras and
Keriven [5], Caselles et al. [1, 2], Zhao et al. [26], and
many others. An intrinsic functional as a kind of weighted
minimal surface is defined to integrate both 3D point data
and 2D image data. The object surfaces are represented as
a dynamic implicit surface ��� x ����� in R � which evolves
in the direction of the steepest descent provided by the vari-
ation calculation of the functional we define to minimize.
The intrinsic nature of the functional (i.e., independent of
any surface parametrization) makes the implementation of
surface evolution by the level-set method possible, which in
turn handles the surface topology changes.

Our contribution is twofold. We first introduce a new
intrinsic functional which takes into account both 3D data
points and 2D original image information, unlike previous
works that consider either only 2D image information [5]
or only scanned 3D data [26] were considered. The new

functional is expected to have much smaller number of lo-
cal minima and better convergence. Secondly we propose
a bounded regularization method that is more efficient than
the usual full regularization methods.

4. Defining the functional

By analogy to 2D geodesic active contours [1] whose
nice mathematical properties have been established, the
weighted minimal surface formulation was introduced by
Caselles et al. [2], and Kichenassamy et al. [12] for 3D
segmentation from 3D images, i.e., the 3D surfaces they
seek are those minimizing the functional 	
	����� using the
weight ����� ����� � where �� is the infinitesimal surface el-
ement and � is a positive and decreasing function of the 3D
image gradient ��� .

Faugeras and Keriven [5] developed a surface recon-
struction from multiple images by minimizing the func-
tional 	�	 ���� using a weighting function � that mea-
sures the consistency of the reconstructed objects repro-
jected onto 2D images. This measure is usually taken to be a
function of the correlation functions � � x � n � between pairs
of 2D images, i.e., � � x � n ����� � � � x � n ��� . The correlation
function is dependent not only on the position x of the ob-
ject surface, but also its orientation n. Reference [5] and the
extended technical report also derived all the fundamental
evolution equations provided by the Euler-Lagrange equa-
tions of the functional for the weighting function involv-
ing the surface normal. A potentially general and power-
ful reconstruction approach was therefore established. But
the existence and uniqueness of a solution for the proposed
functional have not yet been elucidated.

In a different context for surface reconstruction from
sufficiently dense and regular sets of scanned 3D point
data, Zhao et al. [26] proposed to minimize the functional
	
	 ���� using a new weighting function � to be the dis-
tance function of any surface point x to the set of 3D data
points. Given a set of data points � and  � x � ��� the Eu-
clidean distance of the point x to � , the weighting function
is simply � � x �!��#" � x ����� . It gives interesting results with
good 3D data points.

For our purpose of surface reconstruction, we have both
3D data points and 2D image data. But it is interesting to
observe that the variational formulation mentioned above
in different contexts is all based on the minimal surface.
This makes it possible to define a unifying functional tak-
ing into account data of a different nature. Thus, we propose
to minimize the functional 	�	 ���� using a new weighting
function for the minimal surface formulation consisting of
two terms � � x � n �!�$#" � x � ���&%('*) � x � n � � � where the first
 � x ����� is the 3D data attachment term that allows the sur-
face to be attracted directly onto the 3D points; and the sec-
ond ) � x � n � � � is a consistency measure of the reconstructed
object in the original 2D image space. The consistency mea-



sure might be taken to be any photo-consistency or correla-
tion function. The functional to minimize is given by

� � x � �
��� �  " � x ����� % '*) � x � n � � ��������

The silhouette information is also a useful source of in-
formation for surface construction [23]. It is not sufficient
on its own as it gives only an approximate visual hull, but
it is complementary to other sources of information. It
amends the distance function of the weighting function as

 � x �������!� �
	��� �  � x � ��� ��� %  � x ���!��� �
where  is the 3D Euclidean distance function; � is the set
of 3D points; � is the surface of the intersections of the
cones defined by the silhouettes, i.e., the visual hull; and �
is a small constant favoring 3D points over the visual hull
in the neighborhood of 3D points.

5. Solving the variational problem
The solutions of the minimizing functional are given

by a set of PDEs: the Euler-Lagrange equation designated��� � � , and obtained from the functional � � 	
	 ����
to be minimized. The Euler-Lagrange equation is often
impossible to solve directly. One common way is to use
an iterative and steepest-descent method by considering a
one-parameter family of smooth surfaces x ��� ��� � � ��� � � ������� � � ���*� � � ��� � � ���*� � � ��� � � ���*� � ��� as a time-evolving surface
x parametrized by time t. The surface moves in the di-
rection of the gradient of the functional � with the veloc-
ity � ��� , according to the flow x  �"! x #%$�& '(&  �)!  �*� ��� �
This is the Lagrangian formulation of the problem that de-
scribes how each point on the dynamic surface moves in
order to decrease the weighted surface. The final surface is
then given by the steady state solution x  ���� . The prob-
lem with this approach is well known [21] because it does
not handle the topology change. However it is important
to notice that though the derivation has been based on a
parametrization, the various quantities including the veloc-
ity for the steepest descent flow are intrinsic, i.e., indepen-
dent of any chosen parametrization that makes the compu-
tation possible. This paves the way for the well-known and
powerful level-set formulation [18, 21] that regards the sur-
face as the zero level-set of a higher dimensional function.
As the flow velocity � ��� is intrinsic (it has been demon-
strated for a general � depending also on surface normal
in [5]), we may easily embed it into a higher dimensional
smooth hyper-surface ����� � x �!� � which evolves according
to �  ��+� �����-, n �/.%. ��� .0. 1 and the normal n �2� 3 $454 3 $ 454 6 .
Topological changes, accuracy, and stability of the evolu-
tion are handled by using the proper numerical schemes de-
veloped by Osher and Sethian [18].

6. A bounded regularization method
The Bounded Regularization Method The Euler-
Lagrange expression ��� might be complicated if the

weighting function � � x � n � depends also on the normal of
the surface [5]. Unfortunately or fortunately it seems that
the complication by this dependency on the surface nor-
mal is rather unnecessary in practice [9]. We therefore as-
sume a weighting function independent of the surface nor-
mal. Thus, the expression ���7, n consists simply of two
terms like the geodesic active contour case � � , n % � �8, n,
in which the first is the data attachment term and the sec-
ond the regularization term. By using n �9� 3 $454 3 $ 454 6 on the
level-set function, the surface evolves according to: �: � � � � ��� % �;.0. ��� .%. 1/<

where < � �9, 3 $454 3 $ 454 6 is the sum of the two principal
curvatures (twice its mean curvature). When � is taken to
be the correlation functions, it is the simplified version of
[5] presented in [9]. And when � is taken to be the 3D dis-
tance function, it is the first method proposed in [26]. How-
ever the curvature-based regularization �;.0. ��� .0. 1(< over-
smooths, resulting in a loss of geometric details and in slow
convergence as the time step has to be = � �?> � = � 1 � for a
stable solution.

In [27], a convection model is also proposed to sim-
ply ignore the regularization term �;.%. ��� .0. 1(< and speed up
the procedure, but this is only envisageable for applications
where data quality is sufficient, for instance, for synthetic
and high quality scanned data [27].

Motivated by the need for regularization of noisy data
and the inefficiency of the curvature-based regulariza-
tion, we propose an intermediate bounded regulariza-
tion method. It has a “bounded” regularization term	@�A � �����CBCDFE �/.%. ��� .0. 1 < instead of the “full” regularization
term �;.0. ��� .%. 1 < . The corresponding evolution equation is
given as:: �: � � � � ��� %G	��A � ��� �HBCDFE��I.0. ��� .%. 1 < �

The following remarks can be made:J The fully regularized surface evolution is obtained
when � BCDFELK .0. �;.%. M .J The unregularized one is obtained when � BCDFE � � .J As �ON �QP � BCDFE in the vicinity of the steady surface
for any � , it is expected that the fully regularized and
the bounded regularized evolutions behave the same
manner in this region.

Efficiency of the bounded regularization method The
efficiency of our proposed bounded regularization method
is evaluated by estimating the maximum time step = � BCDFE
for stability computation. We are currently yet unable to
quantify = � BCDFE of the bounded regularization method for
the general curvature-based regularization, but we are able
to prove it for a simplified isotropic regularization using
a Laplacian operator. This is motivated by the fact that



the curvature/anisotropic regularization term .0. ��� .0. 1/< �.%. ��� .0. 1  �A� 3 $454 3 $ 454 6 and the Laplacian/isotropic one
� � are

equal when .0. ��� .%. 1 ��� is enforced, which is the case in
practice to avoid too flat and too steep variations of � . It is
therefore tempting to simplify the evolution equation as: �: � � � � ��� %G	��A � ��� � BHD E � � � �
The following result can be established:

Assuming that the stability condition is the same for
curvature-based and Laplacian-based regularizations, the
stability .%. �����	� .%. M P .0. ��� .0. M is achieved if = � P = � BCDFE
with

= � BCDFE � = � 1
 �CBCDFE�%?.%. = � � . �� E �;. % . ��� �;. % . ���� �;. �I.0. M �
This can be proved as follows. Let assume � K

� �(.0. �;.%. M K �HBCDFE K � . Take = � � =;��� = � as the
space step, and = � the time step. Also denote the centered
(resp. forward and backward) differences for the x-axis at
the 3D grid point ����� by  � E����� (resp.  � E����� � �� E����� ). Further,

let � E ���  � E  � E����� � and  � 	��� � � ����� ��� BCDFE �!�  # � E() 6 with
similar notations � � �"� � .

We may choose the simplest up-wind discretization
scheme for � � ��� and centered discretization scheme for� � . Then the equation ! $!  ��	��A � ��� � BHD E � � � % � � ���
is discretized by � ���#������ � � ������ %�= � �%$ ������ %'& E ������ %'& � ������ %(& � ������ �
such that $%������ = � is equal to

 � � �� �#� ��� % � ��
� �
��� % � ���� �	� � % � ����

� �
� % � ������ �	� % � ������

� � �

 � ������ �

and & E ������ �  � E����� � � �  � E����� �*)�� �,+ �� E����� � �� � E����� � � with similar
notations for & � ������ and & � ������ .

Now we only need to prove for the case � P-� E ��� � P� � � P.� � , as other cases can be performed in a similar man-
ner. In this case, we have � ���	������ � �������� %*� E � �/�� �	� ��� ��/������ � %'� � � �������� � �/����

� �
� � %'� � � �������� �	� � �������� � %( � �/�� �	� ��� %�/��

� �
��� % �/���� �	� � % ������

� �
� % �������� �	� % ��������

� � �

 �/������ � . We

notice that � ���	������ is a weighted sum of ����10 �"02�30 such that the
sum of weights is 1. It is also easy to check that all these
weights are in 4 � �5�76 iff . � E .#% . � � . %Q. � � .#% 
  P8� . This
condition is satisfied if = � P = � BCDFE . In this case, � ���	������ is
in the convex hull of �9�� 0 � 0 � 0 , and thus we have proved that: ����� �(. � ��	������ . PQ.%. �/� .0. M . ;

We choose � BCDFE to be proportional to = � for our
bounded regularization method, i.e., fixing � � �=</>@?,A� E , and
obtain

= � BCDFE � = �
 � � % .0.0.%. � �;.%. � .%. M �
Under this condition, the complexity of = � BCDFE is given

by = � BCDFE��CB � = � � , the same for the bounded regularized
and unregularized evolutions, much better than = � BCDFE �
B � = � 1 � for the fully regularized evolution.

In practice, the time step = � � = � BCDFE is always used
for surface evolution of all our examples with the bounded
and curvature-based regularization.

7. Implementation and experiments

7.1. Data Acquisition

Acquisition of 3D stereo data We choose to implement
a general reconstruction method from an uncalibrated se-
quence [15]. First points of interest are detected and an
initial sparse correspondence is established for each pair
of images. Then the disparity map by best first propaga-
tion is computed for each pair. Next, we take each regu-
lar grid point in one image plane and its transformation by
the grid-induced homography in the other images as a new
corresponding pair of points. All these corresponding grid
points are used for further N-view geometry computation.
Finally, all the camera geometry and point positions are op-
timized over the whole sequence using a bundle adjustment
method. The difference with the standard uncalibrated ap-
proach [10, 6] is that we use a much denser set of points
re-sampled from the disparity map instead of points of in-
terest, increasing the robustness, reducing the uncertainties,
and obviously increasing the number of 3D points for sur-
face reconstruction.

To model a complete object, we usually make a full turn
around the object by capturing about 30-35 images to com-
pute the geometry of the sequence.

Surface initialization from 3D stereo data The stereo
data points are segmented into the foreground object and
the background. The background includes obviously out-
liers like the isolated and distant points from the major-
ity. The points of the foreground object are obtained as the
largest connected component of the graph neighborhood of
all points such that the distance between any two “edge”-
points of this graph should be smaller than a multiple of the
uncertainty median of the points. The surface initialization
is then obtained as follows. The object points are regularly
sliced into sections along the major direction of the point
cloud. A 2D-convex hull is computed for each section and
these convex hulls are used to define the successive sections
of a truncated cone as the bounding volume of the object.
The initialization of all examples shown in this paper is au-
tomatically obtained using this method. One example of the
initialization for the Bust sequence is shown on the top-left
of Figure 7. We note that the initialization procedures pro-
posed in [26, 27] can not be applied here because of the too
big holes without 3D points, especially at the object bottom.

Also all 3D points are rescaled into a �ED#�(FG�HD#�IFJ�HD �
voxel space for all examples by applying a similarity trans-
formation. The resulting voxel size is of the same order of
magnitude as the uncertainty median of the 3D points.

7.2. Description of different methods

BR3D is the Bounded Regularization method by taking
the weighting function � to be only the 3D distance from
the set of the reconstructed 3D points: � � x � �  � x � ��� . The
number of iterations is always 100 with � � � � �1� .



BR2D is the Bounded Regularization method by taking
the weighting function � to be the image correlation func-
tion � . More details are given in Section 7.3.
BR3D2D is the method using the weighting function �
as a combination of a 3D distance function and a 2D
image consistency measure using a bounded regulariza-
tion method: � � x � �  � x � ����%9� ) � x � � � , where ) �
� ��� � � 1� � x �&%

� 1� � x �&%
� 1� � x � and

� � x � is the standard de-

viation of the reprojected voxel in each of three color chan-
nels in 4 � �5�76 . The consistency measure ) is similar to the
photo-consistency of the space-carving method. The basic
idea is to avoid surface evolution in the immediate neigh-
borhood of the reconstructed points where the surface pre-
viously obtained by BR3D is assumed to be correct. It also
inflates the surface elsewhere and stops in surface portions
having inconsistent reprojections, mainly due to the differ-
ence between the object and the background colors. Thus,
we use the following evolution equation: �: � � � � ��� %G	��A � ��� � BCDFE �I.0. ��� .%. 1 � & % < � �
where & is an inflating constant introduced and used
in segmentation works [16, 2]. Note that the term	@�A � ����� BCDFE �/.%. ��� .0. 1 & is negligible in areas where � N � ,
i.e. in the close neighborhood of reconstructed points. This
is a much desired outcome. We chooseJ � � � in the immediate neighborhood of reconstructed

points  � x � ��� )�� = � in the unit cube 4 � � � 6 � and � �
� elsewhere;J &
� � D and � � � � � � with � ) � inside the current
surface � � � .

BR3DS The mixed method BR3DS combines both 3D
points and the silhouette information by using a weighting
function, � � x � � 	��A �  � x ����� ��� %  � x � � ���F� We choose� ����= � to favor the 3D points � over the visual hull � in
the immediate neighborhood of reconstructed points.
BR3D+2D The BR3D and BR3D2D methods are sequen-
tially applied. Fifty iterations are used with BR3D2D.
BR3D+S The BR3D and BR3DS methods are sequen-
tially applied. Fifty iterations are used with BR3DS.
BR3D+BR2D The BR3D and BR2D methods are se-
quentially applied. Fifty iterations are used with BR2D.
Freeze plane To avoid the convergence of the dynamic
surface to the empty surface, a freeze plane is often intro-
duced to stop/freeze the surface evolution in one of the two
delimited half spaces. The freeze plane is manually put to
fill in the biggest gap, often on the bottom or on the back of
the object if the sequence is not complete.

7.3. Results, comparisons, and discussions
The reconstructed surfaces and experiments summary

are shown in Figure 1 on many image sequences taken by
a hand-held still digital camera, except the Lady sequence
taken by a special device. Each row first shows 3 images
of the given sequence, which are followed by the recon-
structed stereo points, a Gouraud-shaded and a textured-
mapped view of the surface, both from the same viewpoint.

BR3D vs. BR3D+2D Combining 2D image information
using BR3D2D can significantly improve the final recon-
struction results as using only a 3D distance function may
fail when there are no sufficient reconstructed points on
some parts of the surface. This is illustrated in Fig. 2.

3D distance vs. image correlation Using only image
correlation as suggested in [5, 9] makes converge very dif-
ficult for low-textured objects. Here we take a reasonably
textured object, the bust, to test BR2D method and compare
it with the others.

The surface initialization is shown on the top-left of Fig-
ure 7 and is obtained with the method described in Sec-
tion 7.1. Figure 3 shows the results by BR2D method with
� � � � � � � ��� � and �
	 4%� � �5�76 for 400 (top) and 1000
(bottom) iterations with � � � � �1� (left), � � � � ��D (middle),
and � � � � (right), using a � F�� ZNCC-window. The low
bound � � � � �1� gives a too noisy surface, see the pyramid
part. The big bound � � �!� gives a too smooth surface, see
a too flat nose. The intermediate bound gives a compromise
between the two. The original correlation [5, 9] with full
regularization is even smoother than the big bound � � � �
case. Also the convergence is extremely slow, it is still not
done around the intersection of the concave part between
the cube and the pyramid after 800 iterations. We have also
found that the original correlation method is really slower
than BR2D, since its time step = � BCDFE is 380 smaller.

We experimented with the two-step method
BR3D+BR2D. The results are shown in Figure 7.
The results are similar to the previous case, and not very
satisfactory. However this method is more efficient: the
100 steps of BR3D-iterations takes only about 5 min. on
a P4 2.4 GHz (including initialization), compared with the
20 (resp. 50) min. for 400 (resp. 1000) BR2D steps.

Figure 4 shows the difference between BR3D (middle)
and BR3D+BR2D methods (right), with the best previous
bound � � � � � D and only 50 iterations for BR2D. Still the
nose is smoothed too much, and the chin is also degraded.

Isotropic vs. anisotropic smooth Using Laplacian/
isotropic

� � instead of the curvature/anisotropic smooth.%. ��� .0. 1I< ��.0. ��� .0. 1  �A� 3 $454 3 $ 454 6 leads to faster evolution, as
the level-set function update .%. ��� .0. 1�� � is done twice
as frequently for the anisotropic smoothing than for the
isotropic smoothing, which has a smaller discretization
neighborhood. It is also important to observe that no appar-
ent difference occurs between these two different smooth-
ings in the final surface geometry, as shown in Figure 5
(idem with � � � � � D or � ). This suggests that the benefit of
using curvature-based smooth is negligible in our context.

With vs. without silhouette Figure 6 shows results ob-
tained by BR3D, BR3D+2D, BR3D+S and the pure silhou-
ette method S for the Man 3 sequence. Using only 3D points
by BR3D will miss the low-textured cheeks, and using only



Figure 1. Each row shows the results for one example. First, experimental details. Second, 3 frames
of the sequence. Third, reconstructed 3D points. Fourth, Gouraud-shaded surface geometry. Fifth,
textured-mapped view of the geometry. In the details, ��� the number of cameras, ��� the number of
points; R image resolution, M the method used for the example, and F location of the freeze plane.
Times are about 5 & 3 min. for BR3D(S) & BR3D2D with a P4 2.4GHz.



the visual hull by S will miss many important concavities on
the surface like in the areas of the ears and nose. Combining
the two gives excellent final results.

Adding silhouette information improves the pure 3D re-
sults, but automatic extraction of silhouette from unknown
backgrounds is difficult and is done manually for this case.

8. Conclusion

We have presented a surface reconstruction method from
3D stereo data acquired by a hand-held camera. The ap-
proach has been based on the variational calculus. We have
introduced a new functional integrating both 3D stereo data
points and 2D image information. It builds a bridge between
the pure 2D image-based approach (having too many local
minima to be efficient in practice) and the pure 3D point
driven approach (often fails due to missing data). We have
also presented an efficient bounded regularization method
for implementing the level-set evolution. The new bounded
regularization method is significantly faster than the previ-
ous and full regularization. The stability has been proved
for the simplified isotropic smoothing case. The methods
have been intensively tested on many real sequences and
very convincing results have been shown.
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a. b.

Figure 2. Surface geometry obtained by BR3D
in (a) and BR3D+2D in (b). There are many
missing 3D points in the low-textured cheeks
(cf. Fig. 1), so BR3D using only 3D informa-
tion gives poor results while BR3D+2D gives
better results by adding 2D information.
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Figure 3. Surfaces obtained with the BR2D
method after 400 (top) and 1000 (bottom) iter-
ations with � � � � � � (left), � � � � � D (middle),
and � � � � (right).

Figure 4. One original image (left), sur-
faces obtained with BR3D (middle), and
BR3D+BR2D (right) with � � � � ��D .

Figure 5. Surfaces obtained with curvature-
based (left) and Laplacian-based (right)
smoothing for BR3D method.

a. b.

c. d.

Figure 6. Surfaces obtained with BR3D in (a),
with BR3D+S in (b), with BR3D+2D in (c), and
with S in (d).

a. b.

c. d. e.

Figure 7. Surface initialization (a), computed
by BR3D method (b), BR3D+BR2D with � � �
� �1� (c), BR3D+BR2D with � � � � ��D (d), and
BR3D+BR2D with � � �!� (e).


