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FAST SEGMENTATION-BASED DENSE STEREO FROM QUASI-DENSE MATCHING

Yichen WEI', Maxime LHUILLIER? and Long QUAN"

!Department of Computer Science, Hong Kong University of Science and Technology
’LASMEA-UMR 6602 UBP/CNRS

ABSTRACT

We propose a segmentation-based dense stereo algorithm
within an energy minimization framework. The cost func-
tion includes a new consistency term to take into account
an initial quasi-dense disparity map and handles occlusions
explicitly. Based on quasi-dense matching and color seg-
mentation, optimization is performed efficiently by assum-
ing a constant disparity for each region. The assumption
is made robust by over-segmentation and a dynamic region
splitting method done by graph cut. The efficiency and ac-
curacy of the algorithm are demonstrated on standard stereo
data. Experiment results show that the algorithm compares
favorably with other state-of-the-art stereo algorithms.

1. INTRODUCTION

Two main problems in dense stereo are lack of texture
and occlusion in the image. We propose a segmentation-
based algorithm that handles the two problems appropri-
ately within an energy minimization framework. Experi-
ment results show that the algorithm compares favorably
with other state-of-the-art stereo algorithms. It has the fol-
lowing features: (1) Color segmentation is used to capture
disparity discontinuities and a constant disparity is assumed
for each region. The assumption leads to an efficient im-
plementation and is robust due to over-segmentation and a
dynamic region splitting step. (2) A quasi dense matching
algorithm is integrated as pre-processing step. Based on
the quasi dense correspondences, the dense disparity map is
initialized efficiently, and a new consistency term is intro-
duced in the cost function to make the matching more reli-
able in textureless areas. (3) The optimization is performed
using a fast greedy method generalized from the method in
[16]. The algorithm handles occlusion explicitly while only
computes one disparity(depth) map from two or more input
images.

Related Work Segmentation-based stereo matching has
received a lot of attention recently [16, 6, 2, 12]. It is ad-
vantageous in that the disparity smoothness within the re-
gion and discontinuities on the region boundary can be ef-
ficiently assumed. However, it suffers from the difficulty

of appropriate segmentation and causes problems when dis-
parity discontinuities do not coincide with region boundary.
This can be solved using iterative segmentation[2, 12] or
simply ignored[16, 6]. Our solution is a trade-off. We show
that using over-segmentation and an efficient dynamic re-
gion splitting method can almost capture all the disparity
discontinuities. Our approach is closer to [16, 6] but dif-
fers in the initialization step, smoothness handling and op-
timization method. Our approach is quite different from
[2, 12] which perform the segmentation and fit the motion
parameters of each region iteratively, therefore, more com-
putationally expensive.

Recently, noticeable progress has been made in stereo
by formulating the problem within an energy minimization
framework and solving the minimization by graph cut al-
gorithm [13, 4, 8, 9, 3]. Our algorithm differs from above
approaches in two aspects: (1) The energy function includes
a new consistency term and handles occlusion explicitly
while only computes one disparity map; (2) The optimiza-
tion is done by a simple and efficient greedy algorithm.
Graph cut is used in the dynamic region splitting.

Organization The paper is organized as follows. Sec-
tion 2 formulates and discusses our approach. Section 3
gives the algorithms and implementation details. Experi-
ment results are reported in Section 4. Section 5 concludes
this paper.

2. FORMULATION AND APPROACH

Preliminaries Our approach will be formulated using two
horizontally rectified images. The generalization to multi-
ple input images is straightforward.

Let I denote the reference(left) image and /; be the sec-
ond(right) image. The algorithm computes a disparity func-
tion d over I, such that every pixel p in I corresponds to
pixel p+d,, in I, where d, is the disparity of p, a horizontal
displacement vector. Figure 1(a) and (b) show the reference
image and ground truth disparity map on Tsukuba data, re-
spectively.

To handle occlusion, a visibility function visible(p, d)
is defined. It returns ¢true if p is visible when warping Iy
to the viewpoint of I; according to the disparity function d,



i.e., visible(p,d) = false,if 3q,q+dy = p+dpyNdg > dp,
otherwise visible(p, d) = true.

A robust quasi-dense matching algorithm [11] is in-
tegrated as pre-processing. It computes the correspon-
dence information for only those sufficiently textured ar-
eas. Matching is propagated from the most reliably matched
pixels to their neighbors. Propagation is stopped when
texture cue is not sufficient. More details can be found
in [11]. Let Q be the set of correspondences computed,
Q ={(p,q) | p € In,q € I}. One may think that Q par-
tially defines the disparity function d. Figure 1(c) shows a
quasi dense disparity map. Note that Q satisfies the unique-
ness constraint, i.e., each pixel can be involved in Q at most
once.

Definition of a new cost function Previous
algorithms[13, 4, 8, 9, 2, 12] formulate the dense
stereo matching as an energy minimization problem where
the energy function typically includes the following two
terms:  Fyatq(d) and Fspmoothness(d). The data term,
Egatq(d), measures how consistent the disparity function
d agrees with the input images. The smoothness term,
Fsmoothness, encodes the smoothness assumption imposed
by the algorithm.

Our cost function is defined with the following three
terms

E(d) = Fdata (d) + Fomoothness (d) + Econsistency (d)
)]
Our algorithm tries to compute a disparity function d that
minimizes (1).

The first two terms play the similar role as mentioned
earlier. In addition, a new term E oy sistency 1S introduced
to measure the agreement of the disparity function d with
the pre-computed quasi dense correspondences.

The data term FEy,,, differs from the previous ones in
that it handles occlusion explicitly,

Edata(d) = Z D(pv d)u

where D(p,d) is 0, if visible(p,d) = false, and can be
any other robust matching cost measure(SSD, SAD, nor-
malized correlation, etc.) otherwise. In the implementation,
we use the robust truncated absolute difference, D(p,d) =
min(0,|Io(p) — Ii(p + dp)| — K), where K is a positive
constant.

The smoothness term E,,000thness €ncourages smooth
disparities over the 4-connected neighborhood system A/ =

{(, @) | Pz — @] + Py — qy| = 1},

Esmoothness(d) = Z S(dpa dq)a
(P.a)EN

where S(d,,dg) is 0, if d, = dg, and returns a positive
penalty Agnoothness Otherwise.

The consistency term penalizes the disparities that are
inconsistent with Q,

Econsistency(d) = Z C(pa d)7
p

where C(p, d) returns a positive penalty Aconsistency if (i)
visible(p, d) = true, and (i))3p’, (p', p+d,) € QAP # p'.
Otherwise, C'(p, d) is 0.

Segmentation-based representation While the above
formulation is completely independent, a segmentation-
based representation is favored due to the following con-
siderations:

e In practice, disparity discontinuities usually coincide
with intensity edges that can be readily captured by
color segmentation [5]. The disparity smoothness
within a region is assumed explicitly. Computational
complexity is therefore reduced significantly.

e The form of energy function (1) does not allow using
the efficient graph cut algorithm[10] in the optimiza-
tion due to the occlusion handling. Instead, the method
in [16] is generalized and simplified. It handles occlu-
sion based on segmentation and computes an approxi-
mate solution very fast.

Pixels in a region R are assumed to have the same dis-
parity dr. Note here the same notation d is used, which
will not cause any ambiguity. Our algorithm actually as-
signs each region a disparity. The assumption enables very
efficient computation but is essentially only valid for fronto-
parallel surfaces. It causes problems when involving large
slanted surfaces. However, we claim that, by using over-
segmentation and taking a further dynamic region splitting,
the assumption becomes a good approximation in practice.
The region splitting is done by graph cut and will be de-
scribed in Section 3. Figure 1(d) and (e) show examples of
color segmentation and region splitting, respectively.

Although the smoothness constraint is imposed inside
each region, the smoothness term in (1) is still meaningful
since it regularizes the computation for small regions.

Discussions on the consistency term This term is in-
troduced to exploit the fact that only textured pixels can
be matched reliably and they should assist or constrain the
matching process of other textureless pixels. This idea has
also been exploited in [19].

Combined with the segmentation representation, this
term makes a textureless region R be matched more reli-
ably. Even when a few pixels in R can be pre-matched cor-
rectly and appear in Eeopsistency, they tend to fix dg at its
correct value. Experiment results show that the consistency
term really helps in textureless and occluded areas.

The main problem is that there are outliers in the pre-
computed correspondences, caused by the so called fore-
ground fattening problem and typically distributed near the



(b)

(d)

Fig. 1. Tsukuba data. (a)reference image. (b)ground truth disparity map. (c)disparity map partially defined by the quasi
dense correspondence. (d)color segmentation. (e)an example of dynamic region splitting. The green colored region in (d) is
split into several smaller regions in either red or green in (e). This clearly demonstrates that the splitting step helps to capture
disparity discontinuities further where the color segmentation fails.

surface boundary on the textureless background. That is the
reason of using condition (i) in function C(p, d). Under this
condition, outliers in the occluded area will not take effect
since they should be invisible in case of a correct disparity
function.

3. ALGORITHM AND IMPLEMENTATION

In the pre-processing, the color segmentation [5] is applied
to Ip and quasi dense matching algorithm [11] is applied
to the image pair. Afterwards, the disparity function d is
initialized based on the quasi dense correspondences and
then the cost function (1) is optimized by a greedy algorithm
to obtain the final disparity function. The initialization and
optimization steps are elaborated in the following.

3.1. Initialization

In this phase, the problem is to initialize the disparity dr
for each region R. The method is straightforward based
on the pre-matched pixels. For each region R, let displt,
and displ , be the two disparities that receives the most
and second most votes from the pre-matched pixels in R.
Let pureness(R) be the ratio of difference in the number
of votes for displt,, dispZ, , and the total number of pre-
matched pixels in R. If pureness(R) is smaller than a pre-
defined threshold (0.8 in the implementation), the region R
will be split dynamically. The pureness testing and split-
ting are performed iteratively until all regions are initial-
ized. A region R becomes initialized when (i) there is no
pre-matched pixels in R, or (ii) R becomes smaller than a
pre-defined threshold or (iii) pureness(R) is larger than the
pre-defined threshold. In case (i) dg is assigned the smallest
possible disparity. In case (ii), (iii), dg is assigned disp¥,,.

Dynamic Region Splitting For computational consider-
ation, it is assumed that all pixels in R have only two dif-
ferent disparities: displt, and dispZ, ,. The splitting is a
process of assigning each pixel one of the two disparities.
New regions consist of connected pixels with the same as-
signed disparity. Figure 1(e) shows one example.

The disparity assignment is a bi-labelling problem that
can be addressed as an energy minimization problem in
MAP-MREF framework and solved exactly via graph cut[7,
4]. The implementation of graph cut in [3] is used, which is
efficient for vision applications. Refer to [4] for details.

3.2. Optimization

In this phase, the problem is to minimize the energy func-
tion (1). We use a simple greedy algorithm that is similar to
a-expansion algorithm in [4, 8, 9].

For every possible disparity « and each region R, dp is
changed to v and energy decrease 6 E(d, R, o) = E(df) —
E(d) is computed, where dZ is a disparity function by
changing dp to a. If E(d, R, ) < 0, R is recorded. Af-
ter all the regions have been tested, the disparities of all
recorded regions are changed to «. This process is per-
formed over all possible disparities iteratively and stops
when the cost function can not be decreased anymore or
the maximum number of iterations has been reached.

The method is greedy and local in that it only checks
one region at a time and does not consider the interaction
of regions simultaneously, therefore it does not compute a
global solution. However, in practice, it computes a good
local solution, provided that the disparity function d is ap-
propriately initialized.

Implementation The algorithm focuses on the compu-
tation of energy decrease 0 E(d, R, o) for each (R, &) pair.
E(d) is computed only once for each . A straightfor-
ward way is to first compute E(d%) and then §E(d, R, a),
but this is too expensive. A more efficient but equivalent
method in [16] is generalized and simply described as fol-
lows: an image [ i is created by warping I to the view-
point of I; according to the current disparity function d.
This is done only once for each a.. Each position in I;
records the two top-most pixels and relevant information
such as the matching cost and region label. Since only one
region can have its disparity changed at a time, [ 1 records all
the information that are necessary to compute the visibility
change and energy decrease. § E(d, R, &) consists of three



terms, 5Edatas 5Esmoothness and 5Econsistency- 6Edata
and 0 Econsistency can be efficiently computed based on the
information stored in I 1, while 0 Fspo0thness 18 computed
in a brute-force way. Refer to [16] for more details.

Time complexity of the optimization algorithm is
O(nIDN), where n is the number of input images, I is the
number of iterations, D is the number of possible disparities
and N is the number of pixels in the reference image.

4. EXPERIMENTS

The algorithm is evaluated on the test bed proposed by
Scharstein and Szeliski[14, 1]. The evaluation measure
is the percentage of wrong disparities differing from the
true value more than 1 pixel. This measure is calculated
over three different areas in the image, classified as untex-
tured(untex), discontinuous(disc) and the entire image(all).
The ground truth disparity map and the stereo data sets used
in the experiments are available on the web[1].

Comparison with graph cut algorithms The graph cut
algorithms in [4, 9] are independently implemented for
comparison on the same platform, referred to as GC and
GCMulCam, respectively. The disparity(depth) map of the
Tsukuba data using either two or five input images are
shown in Figure 2. Each disparity(depth) map is obtained
using the best parameters. Corresponding quality measures
and running time are given in Table 1. One can verify the
correctness of our implementation, by either inspecting the
disparity map or comparing the quality metrics with those
of the original implementation provided in Table 2.

Our algorithm slightly outperforms GCMulCam with 2
input images and GC with 5 input images, and achieves
comparable results in other cases. It performs particularly
well on the long thin lamp pole, which benefits from the oc-
clusion handling and color segmentation. It is seen that GC
achieves better result using two input images than using five
input images, perhaps due to the lack of occlusion handling.

The greedy optimization algorithm is faster than GC-
MulCam and comparable with GC. If the preprocessing
time(about 1 minute) is taken into account, our algorithm
is comparable with GCMulCam and slower than GC. Note
that GCMulCam computes the depth maps of multiple in-
put images simultaneously and its running time increases
at least linearly with the number of input images, since the
number of nodes in its graph construction increases linearly.

Results on other data sets The algorithm is also com-
pared with other stereo algorithms. Results are given in Ta-
ble 2 and Figure 3.

For Tsukuba data, we obtain comparable results with the
best algorithms. For the other three data sets involved in
Table 2, Venus and Sawtooth data contain large slanted sur-
faces, and Map data is too textured to make a successful
color segmentation. However, quite good results are still

#img algo all  untex disc | time(sec)
Ours 1.77 036  8.66 | 2.7(0.1)
2 GC 1.73 086  8.85 7.9
GCMulCam | 2.16 1.27 11.27 18.5
Ours 136 061 792 | 10.3(0.3)
5 GC 286 252 15.80 8.2
GCMulCam | 245 392 5.79 82.9

Table 1. The quality measures of graph cut algorithms are
obtained from our implementation. The left most column is
the number of input images. The right most column is the
running time of optimization step. For our algorithm, the
value in the brackets is the running time of initialization.

obtained that are slightly poorer than the best global algo-
rithms but better than most local algorithms[14, 1]. Note
that those occluded and textureless regions in Sawtooth and
Venus are matched correctly and no obvious foreground fat-
tening is observed.

The two rightmost columns of Figure 3 show the results
on other two data sets, Cones and Teddy, which are only for
qualitative evaluation. The disparity discontinuities are suc-
cessfully identified in most areas and most fine structures
are recovered. The black areas in the left of the disparity
maps are due to the large disparity range of the two data
sets(55 and 52 pixels, respectively).

Parameter Setting In all the experiments, most param-
eters are fixed, including those in the pre-processing. How-
ever, since there are many different components involved
in the algorithm, three parameters are selected empirically,
ﬂamely Asmoothnessa )\consistency and )\local- The first two
appears in the energy function and the last one is used as
the smoothness factor in the region splitting done by a lo-
cal graph cut. Results shown above are obtained using best
parameters.

An undesirable property is that the parameter selection
is sensitive to the extent of texture and color segmentation
result. This is the main limitation of the algorithm. For ex-
ample, small A, 00thness 1S favorable for Tsukuba data be-
cause of the moderate texture and good segmentation, but
large Agmoothness 1S used for Map data, on the contrary.
One future work is to choose the parameters automatically
according to texture and segmentation information.

5. CONCLUSION

In this paper, a dense stereo algorithm is presented. It in-
tegrates several different components into an energy min-
imization framework. Color segmentation is used to im-
pose smoothness constraint and capture the disparity dis-
continuity. Quasi dense correspondences are used in ini-
tialization as well as in the energy function. The energy



Tsukuba Sawtooth Venus Map
algo all untex  disc all untex  disc all untex  disc all disc
Our algorithm 1.77 0.36 8.66 | 1.61 0.38 552 | 229 4.08 9.79 | 0.68 9.00
Layered[12] 1.58 1.06 8.82 | 0.34 0.00 335 | 152 296 2.62 | 037 524
Belief prop[15] 1.15 042 631 | 098 030 483 | 1.00 0.76 9.13 | 0.84 5.27
GCMulCam[9] 1.85 1.94 699 | 062 000 686 | 121 196 571 | 031 434
GC+occl[8] 1.27 043 690 | 036 0.00 3.65 | 279 539 254 | 1.79 10.08
GC[4] 1.86  1.00 935 | 042 0.14 376 | 1.69 230 540 | 239 935
Multi-cut[2] 8.08 6.53 2533 ]0.61 046 4.60 | 053 0.31 8.06 | 0.26 3.27
Var. win.[18] 235 1.65 12.17 | 1.28 0.23 709 | 123 1.16 1335|024 298
Comp. win.[17] | 3.36 3.54 1291 | 1.61 045 7.87 | 1.67 218 1324 | 033 394
Cooperative[20] | 3.49 3.65 1477 | 2.03 229 1341 | 257 352 2638 | 022 237
Max flow[13] 298 2.00 15.10 | 3.47 3.00 14.19 | 216 224 21.73 | 3.13 1598

Table 2. Comparison with other algorithms on four data sets. The evaluation is done on the web[1].

function differs from others in that it handles occlusion ex-
plicitly and includes a new consistency term. It is opti-
mized approximately by a fast greedy algorithm based on
segmentation. An additional region splitting step makes the
algorithm more robust. Experiment results show that the
proposed algorithm is comparable with best state-of-the-art
methods, both in accuracy and efficiency. The main limita-
tion is that several parameters need to be set empirically.
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Our algorithm

using five input images

Fig. 2. Comparison with graph-cut algorithms. The three columns from left to right show the disparity maps computed by
our algorithm, graph cut(GC)[4], graph cut for multiple cameras(GCMulCam)[9], respectively. The two rows show the result
computed from two and five input images(center, left, right, top, bottom), respectively.

Sawtooth Venus

Fig. 3. Our results on other five data sets. From top to bottom, the four rows show the reference image, initial color
segmentation, disparity map produced by our algorithm and the ground truth, respectively.



