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Abstract: In their recent work, Wang et al. proposed an interesting technique for
generating chaos in Chua’s circuit via time-delay feedback (Wang et al., 2001).
For this class of nonlinear dynamical systems, we provide in this note, a specific
solution to ensure synchronization. We show how to design an observer-based
synchronization scheme, with a global convergence. The designed observer is tested
on the example provided in (Wang et al., 2001) in the deterministic and uncertain

cases.
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1. INTRODUCTION AND PROBLEM
FORMULATION

Over the last decade, synchronization of chaotic
systems has become a wide field of research
activities. The pioneering papers (Pecora and
Carroll, 1990), (Carroll and Pecora, 1991) have
been the starting point of several synchronization
schemes. The main interest of synchronization
lies in its application to secure communications
(Kolumbén et al., 1997), (Kolumbén et al., 1998).
Indeed, once synchronization is achieved between
two chaotic systems, one can send a message from
the transmitter to the receiver, using for this pur-
pose one of the following schemes : chaotic shift
keying, chaotic modulation ... (see (Special Issue
on Chaos Synchronization and control : Theory
and Applications, 1997), (Special Issue on Control
of Chaos and Synchronization, 1997)).

Pecora and Carroll have shown that, in spite of an
extreme sensitivity in the initial conditions, which
was a major drawback of the chaotic systems
since then, two chaotic systems could synchro-
nize under some conditions detailed in (Pecora
and Carroll, 1990), (Carroll and Pecora, 1991).
They defined in these papers the drive-response
concept. It consists of two chaotic systems : the
first one, called the driving system, transmits a
signal (usually some of its state variables) to the
second one, called the response system. This driv-
ing signal enables the receiver to synchronize with
the transmitter. The response system is chosen
as a part of the drive system, and it is shown
that, under some assumptions on the conditional
Lyapunov exponents of these systems, synchro-
nization occurs.

Since the receiver has to be designed so as to
assure synchronization of its dynamics with that
of the transmitter, from the driving signal, the



response system can be seen as an observer of
the driving system. Morgiil and Nijmeijer have
shown respectively in (Morgul and Solak, 1997),
(Nijmeijer and Mareels, 1997) that the principle of
synchronization could be related to the observer
problem discussed in (non)linear control theory.
Some papers used this observer-based concept to
design synchronization schemes with well-known
chaotic systems (Grassi and Mascolo, 1993), (Feki,
2003b), (Liao and Huang, 1999), (Boutayeb et
al., 2002).

The aim of our paper is to build an observer-
based synchronization scheme for the modified
Chua’s circuit given in (Wang et al., 2001). In-
deed, Chua’s classical circuit has been widely used
to study chaos (Chua et al., 1993a), (Chua et al.,
1993b) and consequently to study several synchro-
nization schemes (see (Feki, 2003a), (Ogorzalek,
1993), (Liao and Huang, 1999), (Boutayeb et
al., 2002)). In (Yang et al., 1997), Chua’s cir-
cuit is used to design a secure communications
scheme, but it has been shown in (Parker and
Short, 2001) that it is not secure enough. In
(Wang et al., 2001), the authors have shown
that the behavior of the classical Chua’s circuit
could be made more complex by adding a small-
amplitude time-delay feedback. This method is
well-known to produce complex chaotic systems
(see references [2]-[9] in (Wang et al., 2001)). This
work is the starting point of a new secure com-
munication scheme, based on the modified Chua’s
circuit whose dynamic model is given by :

Xt)=AX(t)+ F(Xt)+H(X({t—-71)) (1)

where
X = (X1 Xy X3)T (2)
G G
o o
A= G 6 1 (3)
Coy Cy (O
1 R
0 -7 1
1
—Ff(X1(f))
F(X(t) = " (4)
0

with f the nonlinear (piecewise-linear) character-
istic of Chua’s diode :

f(X1) =G X1+ 3 (G —Gp)(| X1+ E|—|X1 - E)

(5)

0
HXt-m)=| | (6)
—Tw(Xi(t - 7))

with w the time-delay feedback

w(X1(t — 7)) =esin(c X1 (t — 7)) (7)

and Cy, Csy, G, Ry, L, G,, Gy, E, ¢, o, T are
defined in (Wang et al., 2001).

Remark 1. Note that the functions F' and H sat-
isfy the Lipschitz condition, with respective con-
stants kp = max{|G.|, |Gy|}/C1 and kg = /L.
We recall that a function ¢ satisfies the Lipschitz
condition with constant k if, given any x, y

[o(z) = oY)l < kllz -yl (®)

The aim of this work is therefore to design an
observer-based synchronization scheme for this
class of systems. We provide a general solution
for which we specify how to design the observer
matrices in order to ensure synchronization. Sim-
ulation results on the example provided in (Wang
et al., 2001) show the effectiveness of the proposed
approach.

The layout of this paper is as follows. Section 2
is concerned by the design of an observer for the
system (1), using the analytic solution of a Riccati
equation. Finally, Section 3 ends this work with
some numerical simulations.

Notations : Throughout the paper, I,, corresponds
to the identity matrix of dimension n, the symbol
()T denotes the transpose, and the symbol ||.||
stands for the Euclidian norm.

2. DESIGN OF A FULL-ORDER OBSERVER
IN THE CASE OF A KNOWN TIME-DELAY

In this part we deal with the design of a full order
observer synchronizing with Chua’s modified cir-
cuit (1), where the time-delay term 7 is assumed
to be known.

To this end, we recall the dynamic model to
synchronize :

{ (t) = AX(t)+ F(X(t)) + H(X(t — 7))
Y(t) = CX(t)

(9)
The standard form of an observer of the system
(9) is :

X(t) = AX(t) + F(X <>>)+H<X<t—f>>>

+L(Y (¢ ) X(1)
(10)



We deﬁneA the state estimation error vector as
e = X — X. The dynamic of the estimation error
is given by :
é(t) = (A— LO)e(t)

+F(X(t) — F(X(t))

+H(X(t—1))—H(X(t—7))

= (A= LC)e(?)
+F(X (1) — F(X(t) —e(?))
+HX(t—7)—H(X({t—7)—e(t—71))

The following theorem presents a sufficient condi-
tion for the synchronization of the observer (10)
with the system (9).

Theorem 2. If there exist two symmetric, positive-
definite matrices P and @ such that :

(A-LO)Y'P+P(A-LC)+ (1 +k%)P?
+(1+ kI, = —Q
(12)
then the system (10) is an asymptotic observer for
the system (9).

PROOF. For the time-delay systems, it is classi-

cal to define a Lyapunov-Krasovskii functional of

the form :

0
e(t+0)"

V(t,e) =e(t) Pe(t) + ¢

-7

e(t+6)do
(13)

where P is a symmetric, positive definite matrix,
and £ is a positive scalar. It is easy to show that
V' is positive definite and upper bounded.

We compute the derivative of V' along the trajec-
tories of (11) :

V(t,e) =e(t)'[ (A— LC)T'P + P(A - LC)
(t)

+E1 Je
+2e(t)" P[ F(X(t)) — F(X(t) — e(t)) ]
+2e(t)T P H(X (th)) H(X(t—7)
—e(t—7)) ] —&e(t —7)Te(t —7)

(14)

The Cauchy-Schwarz inequality and the Lipschitz
property of f give :
2e(t)T P(F(X(t)) — F(X(¢) — e(t)))
< 2/|e(t) PI[|F(X () — F(X(t) —e(t))l (15)
< 2kp|le(t)" Pllle(t)

Then the Young’s inequality leads to :
2kp|le(t)” Pllle(t)]| < kpe(t)” PPe(t) + [le(t)[|?
(16)
Proceeding in the same manner, it follows that :
2e() TPl H(X(t — 7)) — H(X(t—7) —e(t —7)) ]
< e(t)" PPe(t) + kille(t — 7)|?
(17)

By replacing (15), (16) and (17) in (14
to :

), this yields

V(t e)
e(t ) [(A—LC)TP+ P(A— LC) + £1,)e(t)
+kpe )" PPe(t) + [le(t)]?
+e(t)" PPe(t) + kille(t — 7)[1* — Elle(t — 7)||

<e®)T[(A-LC)'P+P(A-LO)
+(E+ 1)1, + (1 + kf)P?le(t)
+(kf — &) le(t — )|
(18)
¢ must be chosen so that : k%, — ¢ < 0. We choose

¢ = k%. Then (18) becomes :

V(t,e) < et)T[(A—LC)TP+ P(A—-LC)
+(1+ k) P? + (1 + ki) In]e(t)
(19)
Using equation (12), it implies
V(t,e) < —e(t)" Qe(t) (20)
O

Remark 3. Equation (12) implies that
(A-LO)Y'P+PA-LC)<0  (21)

so the matrix A— LC is stable, which is equivalent
to : the pair (A, C) is detectable.

The problem now is to solve the Riccati-like equa-
tion (12). This represents the main contribution of
this paper, since we give an analytical and simple
solution of (12).

To give a particular solution of the Riccati equa-
tion for the modified Chua’s circuit, and with a
view to simplify the search of this solution, we
take C' = (0 1 0) in the dynamic model (9), and
we assume that P is a positive diagonal matrix :

a00
P=(10b0
00c¢

with a, b, ¢ > 0.

The positive-definite matrix @ is chosen of the
form :
@1 ga 0
94 92 G5 (22)
0¢s5 g3
We note
h
L=11 (23)
l3

and vp = 1+ k%, yu = 1 + k%.

The Riccati-like equation (12) becomes then :

(A—LC)'P+ P(A—LC) +vpP?* = —-Q — vyl

(24)
We introduce the following notations for simplic-
ity of the presentation : a; = C% ag = C%, and
Cy = C%



—2a1a+’ypa2 asb + aa1 — aly 0
2 1
asb+aar —aly —2b(az+l2)+vrb bCQ—(Z—l—lg)C

1 R
0 beo — (E +13)c —ZTOC—FWFCQ

—YH —q1 —q4 0
= —q4  —YH -G  —G5 (25)
0 —q5 —YH — g3

Hence, using this notations in the Riccati equation
(12), we obtain the equation (25).
This relation leads to the conditions :

—2a;a + 'ypa2 =—vg —q1 (26a)
ash+aay —aly = —qu (26D)
—2b(ag + lz) +vrb® = =y — g2 (26¢)
1
bCQ — (E + lg)C = —(Q5 (26(1)
Ry 2
—2—cHypc" = -y — ¢ (26e)

L

We recall that the unknowns of this five-equation
system (26) are : Iy, I, I3, ¢; (i = 1,5) and the
positive scalars a, b, c.

The first condition (26a) is a second-degree equa-
tion, with unknown a :

'yFa2 —2a1a+vg+q1 =0 (27)
The discriminant A = 4a? — 4yp(yy + q1) is

superior or equal to zero if

2

g1 < ’Y_F —YH (28)

In this case, the solution is (@ must be positive) :

_ o+t Va2 —vr(vu + 1)
YF

(29)

The second condition (26b) leads to the equality :

b
o= ar+ “%q‘* (30)

The third equation (26¢) gives the relation :

byr VH + g2
= — 1
ly B az + % (31)
The fourth condition (26d) leads to :
1 bea+gs
ly=——4 215 32
PTTLT T (32)

The last equation (26e) is also a second-degree
equation, with unknown ¢, whose roots can be
found in the same way than for (27).

Hence we get :

R2
%—l-\/L—S —vr(vE + 3)
CcC =
YF

under the condition
2

0 _ YH (34)
F

q3 <

The procedure to construct P, L, @ can be sum-
marized as follows :

(1) We choose ¢;, ¢ = 1,5 such that @ > 0 and
(28), (34) hold.

(2) We can find a and c respectively using the
equations (29) and (33).

(3) We can arbitrarily choose b > 0 to determine
the diagonal, positive-definite matrix P.

(4) We compute I, l2, and I3 using the conditions
(30), (31), (32).

By applying the Theorem 2, the observer that will
synchronize with the modified Chua’s circuit (9)
is given by the dynamic equations :

2 G - G A 1
X = —X — 1) X — —f(X
1 c 1+(Cl 1) X2 c (X1)
+LY
: a . G )
Xo=—X1 — (= +1)X — X LY
2= 5 (C,2 +12)Xo + 3+l
S 1 A Ry ~ 1 N
X3 = —(Z +13)X2 — TOXg, — Zw(Xl(t—T))
+I3Y

(35)

Now, we will show the efficiency of this result on
numerical simulations.

3. NUMERICAL SIMULATIONS

3.1 Synchronization of the observer with Chua’s
modified circuit

We take the same values as in (Wang et al., 2001) :

R=1950, G=1/R, C; =10"%, C, =1077,
L =1868.10"3, Ry =16, E =1,

G, =—-0.75.10"3, Gy = —0.41.1073,
7=0.001, e=0.2, 0 =05

The following initial conditions are chosen :

1
Xo=|1 (36)
0



and
R 2
Xo=10 (37)
1

The Riccati equation (12) is verified with the
matrices (we give rounded values) :

14276 0 0
P=10"" 0 001 0 (38)
0 0 1.8871

and

—215.63 107 0
Q=1 10°% —100 107 (39)
0 1075 —315.63

and the observer gain is

0.051318
7.8137 (40)
0.052937

L =10°

The figure 1. shows the curves representing the
norm of the state estimation error.

150

o

0 0.0‘01 0.0‘02 0.0‘03 0.1;04 0.0‘05 O,l;OG 0.0‘07 O,l;OS 0.0‘09 0.01
Time (s)

Fig. 1. Plot of the norm of the state estimation

error vector

3.2 Robustness of the synchronization scheme

Synchronization takes an important place in some
processes of secure communication and it should
be avoided that anybody could decipher the mes-
sage sent by the transmitter. Even if we chose not
to deal with the problem of the robustness of the
designed synchronization scheme, we present some
numerical simulations by making variations on the
parameters G and C; in the observer (35).

The figure 2. shows that when the parameters G
and Cy have a 1% mismatch in the observer, there
is no more synchronization.

Hence, if the parameters of the observer syn-
chronizing with Chua’s modified circuit are not
perfectly known (mismatch above 1%), the syn-
chronization does not happen.

(] 0.0‘01 0.0‘02 0.0‘03 0.0‘04 0.0‘05 O.B‘DS 0.0‘07 D.D‘DS 0.0‘09 0.01
Time (s)

Fig. 2. Plot of the norm of the state estimation

error vector with a 1% error on G and C;

4. CONCLUSION

In this work, we addressed the problem of syn-
chronization of a modified Chua’s circuit, which
belongs to a class of non-linear systems with a
time delay. We have designed an observer-based
scheme for synchronization and we have given a
particular solution to a Riccati equation linked
with the design of the observer. The synchroniza-
tion of the observer with the modified Chua’s
circuit has been tested on numerical simulations
in the deterministic and uncertain cases.
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