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Observers based synchronization and input recovery for a class of chaotic systems. Application to image transmission

INTRODUCTION

Chaotic systems belong to a particular class of nonlinear systems, known for its high complexity. The American mathematician Edward Lorenz discovered in 1970 that some nonlinear phenomena are so sensible to initial conditions -even if they are governed by deterministic rules-that their behavior is simply unpredictable. Chaotic systems are characterized by some properties: they are deterministic systems ; they have an extreme sensibility to initial conditions (also known as the butterfly effect) ; their asymptotic behavior is aperiodic.

Besides, synchronization phenomena have been reported since the XVI th century, when the Dutch mathematician Huygens observed the synchronization of two pendulum clocks placed against the same wall. In spite of this intrinsic longterm unpredictability which seems a priori very far from the definition of synchronization, Pecora and Carroll addressed the synchronization of chaotic systems in their pioneering paper [START_REF] Pecora | Synchronization in chaotic systems[END_REF], and established the drive-response principle. Then the issue of synchronization has been linked to a standard nonlinear state estimation problem. For a global view on chaos synchronization, the reader is referred to [START_REF] Boccaletti | The synchronization of chaotic systems[END_REF]. Among the potential applications of chaotic synchronization, chaotic cryptosystems seem rather promising, and became an intensive research field. Chaotic cryptosystems, also called secure communication systems, take advantage of intrinsic properties of chaotic systems and their ability to synchronize. A chaotic communication scheme follows the principle below: at the transmitter side, random-like chaotic signals (i.e. the transmitter's states) can be used to drown information ; an encrypted signal is then sent to the receiver ; at the receiver side, synchronization is achieved, which means that the receiver has estimated the states of the transmitter ; the decryption process uses the estimated states to recover the clear message.

Several methods of encryption have been designed, such as chaotic additive masking, chaotic shift keying, chaotic modulation. . . . Some techniques also use classical cryptography to elaborate more complicated cryptosystems. For an overview on the different methods developed in the literature, see reference [START_REF] Yang | A survey of chaotic secure communication systems[END_REF]. We underline that chaos based encryption/decryption is a special issue belonging to unknown input recovery. In our previous paper [START_REF] Cherrier | Observers based synchronization and input recovery for a class of nonlinear systems[END_REF] we proposed a cryptosystem based on chaotic synchronization and on a new masking method, illustrated by Fig. 1. The layout of this paper is as follows. Section 2 is devoted to the description of the transmitter and the design of an observer allowing exponential synchronization. Section 3 details the encryption/decryption process, and section 4 illustrates the efficiency of the proposed cryptosystem through an image transmission.

SYNCHRONIZATION SCHEME

The chaotic transmitter

The transmitter is a chaotic system, whose dynamics involves a nonlinear delayed feedback:

   ẋ1 (t) = -αx 1 (t) + αx 2 (t) -αδ tanh(x 1 (t)) ẋ2 (t) = x 1 (t) -x 2 (t) + x 3 (t) ẋ3 (t) = -βx 2 (t) -γx 3 (t) + ε sin(σx 1τ (t)) (1) 
This model can be rewritten in a more compact form as

ẋ(t) = Ax(t) + F (x(t)) + H(x(t -τ ) (2) 
where

A =   -α α 0 1 -1 1 0 -β -γ   (3) 
F (x(t)) =   -αδ tanh(x 1 (t)) 0 0   (4) H(x τ (t)) =   0 0 ε sin(σx 1 (t -τ ))   (5) 
The presence of the time delay ensures a very complex chaotic behavior [START_REF] Farmer | Chaotic attractors of an infinite-dimensional dynamical system[END_REF], which is highly desirable from a security point of view. The figure 2 shows one particular attractor of system (1), corresponding to the parameters values given in table 1.

α β γ δ ε σ τ 9 14 5 -0.5 100 10 Once the transmitter has been chosen, the receiver has to be designed, so as to synchronize with it. We propose now an observer-based synchronization scheme, relying on nonlinear control theory. Before focusing on the observer synthesis, we need to transform the transmitter dynamic model. We precise that the transmitted signal is expressed as:

y(t) = Cx(t) (6)

Transmitter model transformation

Owing to the fact that both nonlinear functions F and H, respectively defined in eq. ( 4) and ( 5), satisfy the Lipschitz condition with respective constants k F and k H , we intend to manage big values of these constants. We propose to choose the following matrix C:

C = 1 ζ 0 (7) 
ζ being an arbitrary parameter. Then we deduce from (7):

x 1 (t) = y(t) -ζx 2 (t) (8) 
If we replace x 1 by its expression (8) in (??), we obtain the equivalent dynamic model of the transmitter:

ẋ(t) = Ãx(t) + By(t) + F (x(t), y(t)) + H(x τ (t), y τ (t)) y(t) = Cx(t) (9) 
where In the rest of the paper, we omit the time variable t when unnecessary.

à = 0 @ 0 α(1 + ζ) 0 0 -(1 + ζ) 1 0 -β -γ 1 A (10) B = 0 @ -α 1 0 1 A (11) 

Nonlinear observer design

We choose a type of high-gain observer, whose dynamics is given by:

ẋ = Ãx + By + F (x, y) + H(x τ , y τ ) + K(y -C x) (14)
It can be rewritten as:

ẋ = Ãx + By + F + Ĥ + K(y -C x) (15) 
where we have noted F = F -F and Ĥ = H -H. Now, it is aimed at finding a convenient gain K such that x converges towards x.

The synchronization error vector is defined by e = x -x. Using (9) and ( 15), its dynamics is expressed as:

ė = A K e + F -F + H -Ĥ (16) 
where

A K = Ã -KC (17) 
The following theorem gives a sufficient condition of exponential synchronization of receiver (14) with transmitter (9).

Theorem 2.1. If there exist two matrices P and Q, respectively symmetric positive-definite and positive definite, and a strictly positive real η such that the following BMI is feasible:

  R(P, Q, K) 0 P 0 -e -2ητ Q + ρI 0 P 0 -1 λ I 3   ≤ 0 (18) with R(P, Q, K) = (A-KC) T P +P (A-KC)+µI3+Q+2ηP (19) and µ = ζk F ρ = ζk H λ = µ + ρ (20)
then the synchronization error vector converges exponentially towards zero, according to the formula:

e(t) ≤ α 1 α 2 e -ηt max θ∈[-τ,0] e(θ) (21) 
with

α 1 = λ M (P ) + τ λ M (Q) α 2 = λ m (P ) (22) 
Proof. We consider the following Lyapunov-Krasovskii functional:

V (e, e τ ) = e T P e + 0 -τ e T (t + θ)e 2ηθ Qe(t + θ)dθ (23)

where we have chosen P symmetric, positive-definite, Q positivedefinite, and η > 0.

The synchronization error vector norm converges exponentially towards zero if there exists φ > 0 such that:

V (e, e τ ) 0

(24a) V (e, e τ ) ≤ e -φt max θ∈[-τ,0]
V (e(0), e(θ)) (24b) Since P and Q are positive-definite, condition (24a) is verified on account of the following inequalities:

λm(P ) e(t) 2 ≤ V (e, eτ ) ≤ (λM (P ) + τ λM (Q)) max θ∈[-τ,0] e(θ) 2 (25)
The derivative of the functional V is obtained from (23): V = ėT P e + e T P ė + e T Qe -e -2ητ e T τ Qe τ -2η 0 -τ e T (t + θ)e 2ηθ Qe(t + θ)dθ (26) Making use of (16), it yields to:

ėT P e + e T P ė = e T A T K P

+ P A K e +2e T P ( F -F ) + 2e T P ( H -Ĥ) (27) 
Cauchy-Schwarz' and Young's inequalities lead to the following majoration of V :

V ≤ " e eτ « T M " e eτ « -2η Z 0 -τ e T (t + θ)e 2ηθ Qe(t + θ)dθ (28) 
where

M = " A T K P + P AK + λP 2 + µI + Q 0 0 -e -2ητ Q + ρI « (29) 
and µ, ρ, λ are defined by eq. ( 20). Now, V is rewritten to reveal the same structure as in (28):

V = " e eτ « T N " e eτ « + Z 0 -τ
e T (t+θ)e 2ηθ Qe(t+θ)dθ (30)

where

N = " P 0 0 0 « (31) 
Then ( 28) and (30) lead to:

V + 2ηV ≤ e e τ T (M + 2ηN ) e e τ (32) 
Using the Schur complement, the inequality M+2ηN ≤ 0 is equivalent to: (18), with R(P, Q, K) defined by ( 19). ( 18) is a bilinear matrix inequality (we recall that A K = A -KC), owing to the presence of terms P K and K T P . If this BMI is verified, then we deduce from (32):

V ≤ -2ηV (33) 
By integration, it comes:

V (e, e τ ) ≤ e -2ηt max θ∈[-τ,0]

V (e(0), e(θ))

Consequently, condition (24b) is fulfilled, with φ = 2η.

Besides, the left-hand side of inequality (25) gives:

e(t) ≤ V (e, e τ ) λ m (P ) (35) 
Taking ( 25), (34) and ( 35) into account, we get:

e(t) ≤ α 1 α 2 e -ηt max θ∈[-τ,0] e(θ) (36) 
with α 1 , α 2 defined by ( 22), which ends the demonstration of formula (21) and that of theorem 2.1.

Now we give the observer gain synthesis procedure.

1. First, the parameter η must be chosen arbitrarily in R * + .

2. The BMI (18) cannot be solved numerically. We proceed to a variable change, by setting L = P K. Then using (19), R(P, Q, K) can be rewritten as:

R(P, Q, K) = R (P, Q, L) = A T P + P A -C T L T -LC + µI3 + Q + 2ηP (37)
3. If we replace R(P, Q, K) by this expression (which is linear in P , Q and L), the BMI (18) is equivalent to the following LMI:

0 @ R (P, Q, L) 0 P 0 -e -2ητ Q + ρI 0 P 0 -1 λ I3 1 A ≤ 0 (38)
4. Standard convex optimization algorithms [START_REF] Boyd | Linear matrix inequalities in systems and control theory[END_REF] can now be applied to find convenient matrices P , Q and L. If no solution appears, then η must be reduced, and the process goes back to step 1.

5. The observer gain is simply deduced from K = P -1 L.

ENCRYPTION/DECRYPTION METHOD

We propose a new way to hide the clear message inside a chaotic signal: the transmitter sends a second chaotic signal to the receiver, defined as:

y 2 (t) = x 3 (t -θ(u(t)))) (39) 
The message u(t) is used to modulate the phase of x 3 (t). The term θ(u(t)) is equivalent to a variable and unknown delay that must be estimated to recover the clear message. In this paper, we choose

θ(u(t)) = T u u(t) (40) 
where T u is an arbitrary constant, very small w.r.t. the time constant of system (1). After a first-order approximation of the Taylor formula, we obtain the following decryption formula (see [START_REF] Cherrier | Observers based synchronization and input recovery for a class of nonlinear systems[END_REF] for more details):

û(t) = x3 (t) -y 2 (t) T u ẋ3 (t) (41) 

APPLICATION TO IMAGE TRANSMISSION

The simulation consists of an image transmission through the proposed cryptosystem. The picture is the famous Lena photography shown in Fig. 3. The images corresponding to the encrypted and the decrypted signals are represented respectively in Fig. 4 and5. 
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