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Abstract— In this paper, a complete system for outdoor robot
navigation is presented. It uses only monocular vision. The robot
is first guided on a path by a human. During this learning step,
the robot records a video sequence. From this sequence a three
dimensional map of the trajectory and the environment is built.
When this map has been computed, the robot is able to follow
the same trajectory by itself. Experimental results carried out
with an urban electric vehicle are shown and compared to the
ground truth.

Index Terms— robot navigation, monocular vision, map build-
ing, urban vehicles.

I. INTRODUCTION

In order to navigate autonomously, a robot needs to know
where it must go. It also needs some knowledge about
the environment so that it is able to compute its actual
localization. In our application, all these information are
given to the robot in a simple way : the user drives the
robot manually on a trajectory. After that the robot is able
to follow the same trajectory in autonomous navigation. The
only sensor we use is a camera and there is no artificial
landmark. In this paper we present the whole system : the
vision algorithms for learning the reference trajectory and
providing real time localization, and the control law used.

For outdoor robotic vehicles, a common way of providing
a localization to the robot is the use of a GPS sensor. A
1 cm accuracy, consistent with guidance applications, can
be obtained with Real-Time Kinematic (RTK) GPS (Dif-
ferential GPS can only provide with a 50 cm accuracy).
Nevertheless this sensor has also some limitations. First,
the accuracy depends on the position of the satellites. In
urban environments, especially in narrow streets called urban
canyons, buildings can occult the visibility of satellites. In
that case the accuracy drops considerably. To overcome these
occultations, the fusion with odometry must also be used,
see [2]. Secondly, a kinematic GPS is very expensive. Alter-
natively, accurate vehicle localization can also be supplied by
odometry, see [18], or by vision system. This latter device,
considered in this paper, is here quite attractive since in city
centers, there are a lot of visual features that can be used to
compute a satisfactory localization.

The problem of navigation with reference to a human
guided experience has already been studied. Two main ap-

proaches have been proposed. The first approach uses only
images. Key frames are extracted from the reference sequence
and the robot must go from one frame to the next. To do
that, the robot can compute its relative position compared
to the key frame and move accordingly, see [11]. However,
computing a relative position is not necessary since moving
from one key frame to the next can also be done by visual
servoing as in [12].

Another way to address the problem is to first build a
map of the trajectory and the environment. Building a map
is time consuming but it is done offline and the localization
is faster when a map has been computed beforehand. Having
a localization in a global coordinates system also allows
data fusion from different sensors (camera, GPS, odometry).
In [8], two cameras and odometry are used to build a map
of the environment, which is used to compute a global
localization of the robot. We have chosen the same approach
but with fewer constraints : we do not assume that the ground
is planar and we use only one camera and no odometry.
Simultaneous Localization And Mapping (SLAM) can be
compared to this work with a big difference. In our case, map
building is done off line, so a costly algorithm can be used
to build a good map. Very often, SLAM is done with more
complex sensors such as stereo vision, laser range finders, or
with artificial landmarks. An example using trinocular vision
and odometry can be found in [16]. Recently, SLAM using
only monocular vision has been achieved [3]. But, in order to
achieve real time performance, this approach assumes that the
landmark database is kept small (under about 100 landmarks).
This is well suited for computing localization in a room but
not in a street where landmarks can be observed for a few
meters and are replaced by new ones.

In section II we show how we process the reference video
sequence to build a map and we also detail the localization
algorithm. In section III we present the control law that is
used. Finally, experimental results carried out with an urban
electric vehicle are displayed in section IV.

II. LOCALIZATION WITH MONOCULAR VISION

A. Overview

The vision algorithm provides the localization and ori-
entation of the camera in real time. This is done in two



steps. First, we build a 3D reconstruction of the learning
video sequence. Because we use only one camera, this is a
structure from motion problem. The computation is done off
line. The second step is the real time localization process.
The algorithms are briefly presented here. More details can
be found in [13]

Every step in the reconstruction as well as the localization
relies on image matching. Interest points are detected in each
image with Harris corner detector [6]. For each interest point
in image 1, we select some candidate corresponding points
in a search region in image 2. Then a Zero Normalized Cross
Correlation score is computed between their neighborhood.
And the pairs with the best scores are kept to provide a list
of corresponding point pairs between the two images.

B. Map building

The goal of the reconstruction is to obtain the position of a
subset of the cameras in the reference sequence as well as a
set of landmarks and their 3D location in a global coordinate
system. The structure from motion problem has been studied
for several years and multiple algorithms have been proposed
depending on the assumptions we can make [7]. For our
experiments, the camera was calibrated using a planar cali-
bration pattern [9]. Camera calibration is important because
the wide angle lens we use has a strong radial distortion.
With a calibrated camera, the structure from motion algorithm
is more robust and the accuracy of the reconstruction is
increased. In the first step of the reconstruction, we extract
a set of key frames from the reference sequence. Then we
compute camera motion between key frames. Additionally,
the interest points are reconstructed in 3D. These points will
be the landmarks used for the localization process.

1) Key frame selection: If there is not enough camera
motion between two frames, the computation of the epipolar
geometry is an ill conditioned problem. So we select images
so that there is as much camera motion as possible between
key frames while still being able to match the images. The
first image of the sequence is always selected as the first key
frame 1. The second key frame /5 is chosen so that there are
at least M common interest points between /; and I2. When
key frames I; ... I, are chosen, we select I,,41 so that there
is at least M interest points in common between I, 1 and
I,, and at least N common points between I,,;; and I,_j.
In our experiments we detect 1500 interest points per frame
and we choose M = 400 and N = 300.

2) Camera motion computation: We compute an initial
solution for camera motion and a hierarchical bundle adjust-
ment is used to refine this initial estimation.

For the first image triplet, the computation of the camera
motion is done with the method described in [10] for three
views. It involves computing the essential matrix between the
first and last images of the triplet using a sample of 5 point
correspondences. This gives at most 40 solutions for camera

motion. The solutions for which at least one of the 5 points
is not reconstructed in front of both cameras are discarded.
Then the pose of the remaining camera is computed with 3
out of the 5 points in the sample. This process is done with
a RANSAC [4] approach : each 5 point sample produces
a number of hypothesis for the 3 cameras. The best one
is chosen by computing the reprojection error over the 3
views for all the matched interest points and keeping the one
with the higher number of inlier matches. With a calibrated
camera, three 3D points whose projections in the image are
known are enough to compute the pose of the second camera.
Several methods are compared in [5]. We chose Grunert’s
method with RANSAC.

For the next image triplets, we use a different method for
computing camera motion. Assume we know the location
of cameras C'; through Cjp, we can compute camera Cpn 1
by using the location of cameras C'y_; and C and point
correspondences over the image triplet (N — 1, N, N + 1).
We match a set of points P’ whose projections are known
in each image of the triplet. From the projections in images
N — 1 and N, we can compute the 3D coordinates of point
Pi. Then from the set of P’ and their projections in image
N +1, we use Grunert’s calibrated pose estimation algorithm
to compute the location of camera C'nyi. In addition the
3D locations of the reconstructed interest points are stored
because they will be the landmarks used for the localization
process. The advantage of this iterative pose estimation
process is that it can deal with virtually planar scenes. After
the pose computation, a second matching step is done with
the epipolar constraint based on the pose that had just been
computed. This second matching step allows to increase the
number of correctly reconstructed 3D points by about 20 %.

3) Hierarchical bundle adjustment: The computation of
camera C'y depends on the results of the previous cam-
eras and errors can build up over the sequence. In or-
der to correct this problem, we use a bundle adjustment
which provides a better solution. The bundle adjustment is
a Levenberg-Marquardt minimization of the cost function
f(cy,--- ,CY, Pt | PM) where C% are the external
parameters of camera ¢, and PJ are the world coordinates
of point j. The cost function is the sum of the reprojection
errors of all the inlier reprojections in all the images :
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where d?(p], K;P7) is the squared euclidian distance be-
tween K;P7 the projection of point P7 by camera i, and p?
is the corresponding detected point. K; is the 3 x4 projection
matrix built from the parameters values in C'%, and the known
internal parameters of the camera. And .J; is the set of points
whose reprojection error in image ¢ is less than 2 pixels at



the beginning of the minimization. After a few iteration steps,
J; is computed again and more minimization iterations are
done. This inlier selection process is repeated as long as the
number of inliers increases.

It is not a good idea to compute all the camera locations
and use the bundle adjustment only once on the whole
sequence. In that case, increasing errors could produce an
initial solution too far from the optimal one for the bundle
adjustment to converge. Thus it is necessary to use the bundle
adjustment throughout the reconstruction of the sequence.
The adjustment is done hierarchically as described in [7].
A large sequence is divided into two parts with an overlap of
two frames in order to be able to merge the sequence. Each
subsequence is recursively divided in the same way until each
final subsequence contains only three images. Each image
triplet is processed as described in sectionll-B.2 and we run
a bundle adjustment over its three frames.

In order to merge two sequences S* and S2, we use the last
2 cameras S§,_; and S}, of S and the first 2 cameras S7 and
S2 of S?. As the images are the same, the cameras associated
after merging must be the same. So we apply a rotation and a
translation to S? so that S}, and S5 have the same position
and orientation. Then the scale factor is computed so that
d(Sx_1,Sk) = d(S%,53), where d(S%, S7) is the euclidian
distance between the optical centers of the cameras associated
with S? and SJ,. This does not ensure that S%,_, and S? are
the same, so a bundle adjustment is used on the result of the
merging operation. Merging is done until the whole sequence
has been reconstructed. The reconstruction ends with a global
bundle adjustment. The number of points used in the bundle
adjustment is on the order of several thousands.

C. Real time localization

The output of the learning process is a 3D reconstruction of
the scene : we have the pose of the camera for each key frame
and a set of 3D points associated with their 2D positions in
the key frames. At the start of the localization process, we
have no assumption on the vehicle localization. So we need to
compare the current image to every key frame to find the best
match. This is done by matching interest points between the
two images and computing a camera pose with RANSAC.
The pose obtained with the higher number of inliers is a
good estimation of the camera pose for the first image. This
step requires a few seconds but is needed only at the start.
After this step, we always have an approximate pose for the
camera, so we only need to update the pose and this can be
done much faster.

The current image is noted [. First we assume that the
camera movement between two successive frames is small.
So an approximate camera pose (we note the associated
camera matrix Kj) for image [ is the same as the pose
computed for the preceding image. Based on K we select
the closest key frame Ij, in the sense of shortest euclidian

distance between the camera centers. I, gives us a set of
interest points I Py reconstructed in 3D. We detect interest
points in I and we match them with I P;,. To do that, for each
point in [P, we compute a correlation score with all the
interest points detected in / which are in the search region.
For each interest point in I P, we know a 3D position, so
with Ky we can compute an expected position of this point
in I. In the matching process the search region is centered
around the expected position and its size is small (20 x 12
pixels). After this matching is done, we have a set of 2D
points in image I matched with 2D points in image I;, which
are themselves linked to a 3D point obtained during the
reconstruction process. With these 3D/2D matches a better
pose is computed using Grunert’s method through RANSAC
to reject outliers. This gives us the camera matrix K; for I.
Then the pose is refined using the iterative method proposed
by Aratjo et al. [1] with some modifications in order to deal
with outliers. This is a minimization of the reprojection error
for all the points using Newton’s method. At each iteration we
solve the linear system JJ = e in order to compute a vector
of corrections § to be subtracted from the pose parameters.
e is the error vector formed with the reprojection error of
each point in x and y. J is the Jacobian matrix of the error.
In our implementation, the points used in the minimization
process are computed at each iteration. We keep only the
points whose reprojection error is less than 2 pixels. As
the pose converges towards the optimal pose, some inliers
can become outliers and conversely. Usually, less than five
iterations are enough.

At this point we have a real time algorithm that is able
to compute the pose of the camera. But since it is based on
vision alone the coordinate system has its center at the optical
center of the first camera, with the Z axis along the optical
axis. Moreover, there is no scale information. In order to
control the robot, we need to provide a position for the robot
in a metric coordinate system with a vertical axis. We achieve
that by entering manually the length of the path to set the
scale factor. The position of the camera on the robot has been
measured so we can enter directly the rigid transformation
between the camera and the robot. Even if the control law
works on a ground plane, we compute the camera pose with
6 degrees of freedom. It allows us to track interest points
even if the ground is irregular.

I1II. CONTROL LAW
A. Vehicle Modeling

Before designing a control law, the vehicle must be mod-
eled. Its working environments being urban areas covered at
low speed, slipping can be ignored (confirmed by extensive
tests). Therefore, a classical kinematic model can be consid-
ered. More precisely, the celebrated tricycle model, where
the two actual front wheels are merged as a unique virtual
wheel is here used, see Fig. 1. Vehicle configuration can be



Fig. 1. Model tricycle description.

described without ambiguity by a 3 dimensional state vector
composed of s, curvilinear coordinate along the reference
path of the projection of vehicle rear axle center, and of y
and 6, vehicle lateral and angular deviations with respect to
this path. On the other hand, the control vector is constituted
in the vehicle linear velocity and the front wheel steering
angle, denoted respectively v and 4. Vehicle model is then
given (see e.g. [15]) by:

s cos 6
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where [ is the vehicle wheelbase and c(s) denotes the
reference path curvature at coordinate s. It is assumed that:
y # $ (i.e. the vehicle is not on the reference path

curvature center) and 6 # 5[r]. In practical situations, if
the vehicle is well initialized, such difficulties never arise.

B. Control Law Design

Reference path following is now addressed. More pre-
cisely, the control objective is to bring and maintain state vari-
ables y and 6 to 0, relying uniquely on control variable d (v is
considered as a possibly varying free parameter). The whole
vehicle state vector (s,y, é) is available with a satisfactory
accuracy by comparing vehicle absolute position and heading,
provided by the vision algorithm, with the reference path. Via
invertible state and control transformations, nonlinear vehicle
model (1) can be converted, in an exact way, into the so-called
chained form, see [14]. (a1, as,as) = (s,y, (1—yc(s)) tan )
is the chained state vector and M = (my, m2)T = T(v,8)T
is the chained control vector. From this, a large part of linear
systems theory can be used (but, since the transformations are
exact, it is not required that the vehicle state is in a specific
configuration, contrarily to tangent linearization techniques).
More precisely, it can be noticed that path following (i.e.
control of as and ag) can be achieved by designing only ms
as a linear PD controller. The expression of the actual control
variable § can then be obtained by inverting the chained

Fig. 2. Experimental Vehicle : Cycab with its camera

control transformation. Computations, detailed in [17], lead
to (Kp, K4 > 0 are the PD gains):

5(%9) = y tan@
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IV. EXPERIMENTAL RESULTS

The experimental electric vehicle, called Cycab, can trans-
port simultaneously two passengers, see Fig. 2. Its small
dimensions (length: 1.90 m, width: 1.20 m) are advantages
for the urban traffic. This vehicle is entirely under computer
control, and can be driven either manually with a joystick, or
automatically. Its velocity can reach 18km/h. For experimen-
tations, only the front wheels are steered, so the mobility is
the same as a common car. A camera equipped with a fish
eye lens (130° field of view) is fixed on the vehicle. A wide
field is important because it reduces the risk of occultation
by pedestrians or moving vehicles. For our experiments the
image size is 640x480 pixels. Offline map building takes
about one hour and realtime localization takes 60 ms per
frame on a 3.4 GHz Pentium 4 processor.

To check the accuracy of our algorithm, we made the
following experiment. First, a reference video sequence was
recorded on a 127 m long trajectory. It was chosen so that
both straight lines and tight turns compose this trajectory, and
because the buildings are sometimes far (less visual features)
and sometimes closer. From this video sequence, a map was
computed. This map is used to localize the camera in real
time in autonomous navigation. From the camera position and
orientation, current value of vehicle state vector (s, v, é)T is
inferred and steering angle ¢ is computed from (2). Vehicle
speed was chosen constant and equal to 2km/h. Finally, in
order to record the ground truth, a kinematic GPS providing
position measurements with a 2cm accuracy at 10Hz has been
mounted on the Cycab.

The result of the structure from motion algorithm is
displayed on Fig. 3 as seen from the top. There were 182



20 m

Fig. 3. 3D reconstruction computed from the reference video sequence
(top view). Black squares are the position of the key frames. The landmarks
appear as dots. Letters indicate different parts of the trajectory.

key frames and 16295 points correctly reconstructed.

The reference video sequence was recorded on a cloudy
day. The first two navigation experiments were made a few
days later with a cloudy weather too. But the second set of
two was made on a clear day with the sun low in the sky and
sometimes in the field of view of the camera. A few images
from the video recorded during the last navigation experiment
as well as the corresponding key frame are displayed on
Fig. 4. The third image outlines the necessity of having a
wide field of view and local visual features all over the frame.
It shows in yellow the interest points present in the database
and those that are really used in the localization. The center
of the image is completely overexposed because the sun is
in front of the camera, but there are still some parts of the
image which can be used for computing the camera pose.

In order to investigate path following performances
achieved during the four above-mentioned experiments car-
ried out with the camera sensor, vehicle lateral deviations
have been recorded from the position measurements provided
by the RTK GPS sensor. For comparison purposes, a fifth
experiment has also been performed, relying on the RTK GPS
sensor (instead of the vision algorithms) to provide vehicle
state vector to control law (2). Lateral deviations recorded
during 3 of these experiments are displayed with the same
scale on Fig. 5. Letters enable to identify each part of the
trajectory, with respect to the letters shown on Fig. 3.

It can be observed, on one hand that the vision algorithms
detailed in this paper appear as a very attractive alternative
to RTK GPS sensor, since they can provide with roughly
the same guidance accuracy. On the other hand, it can be
noticed that these vision algorithms are reliable with respect

Fig. 4. 3 frames taken during the autonomous navigation on the right and
the corresponding key frames on the left

Sunny 1 Sunny 2 | Cloudy 1  Cloudy 2 GPS

B 3.5cm 4.8cm 3.4cm 2.8cm 2. 7cm

D 2.4cm 1.9cm 1.8cm 2.3cm 1.8cm
TABLE I

MEAN OF THE LATERAL DEVIATION IN STRAIGHT LINES

Sunny 1 Sunny 2 | Cloudy 1  Cloudy 2 GPS
C max 22.0cm 26.8cm 20.1cm 20.4cm 37.9cm
C min -20.2cm -25.4cm -22.2cm -21.1cm -14.3cm
E max 29.1cm 35.4cm 30.0cm 29.2cm 13.9cm
E min -16.5cm -19.7cm -16.5cm -16.1cm -16.3cm
TABLE 1II

MAXIMUM AND MINIMUM DEVIATION IN CURVES

to outdoor applications since they appear robust to weather
conditions: guidance accuracy is not significantly altered in as
harsh conditions as the sunny ones. More precisely, guidance
performances during straight lines and curves following are
investigated separately on Table I and II. Table I reports the
mean value of |y| during straight lines part of the trajectory,
denoted B and D. In the most favourable situation, i.e.
cloudy weather, vision algorithms meet the performances
obtained with the RTK GPS sensor, i.e. a very satisfactory
centimeter guidance accuracy. In the worst case, i.e. sunny
weather, performances are slightly damaged, but are still
very satisfactory. Table II displays the extremum values of y
recorded during curved parts of the trajectory, denoted C and
E. Once more, it can be observed that guidance performances
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Fig. 5. Lateral deviation from the reference trajectory

are similar. During E-part, where curves do not exceed 90°,
guidance obtained when relying on the RTK GPS sensor is
slightly more accurate. On the contrary, during C-part, where
a 150° curve is enclosed, vision algorithms enable to keep
the vehicle closer to the reference path. It is a consequence
of the way vehicle heading is evaluated. When relying on
the RTK GPS sensor, vehicle heading is inferred from ve-
locities measurements (obtained by differentiating successive
position data) under non-slipping assumptions, smoothed via
a Kalman filter. In sharp curves, non-slipping assumptions
are no longer completely valid, and the delay introduced by
the filter turns to be perceptible. In such situations, vehicle
heading delivered by vision algorithms appears to be more
accurate, and so are guidance performances.

V. CONCLUSION

We have presented a sensing device that enables a robotic
vehicle to follow a trajectory obtained from a human guided
experience, relying uniquely on monocular vision. Vision
algorithms achieve a guidance accuracy similar to the one
obtained when relying on a RTK GPS sensor, and are
robust to large changes in illumination. These two sensing
devices appear complementary: autonomous navigation in
urban environments cannot satisfactorily be addressed by
RTK GPS sensors since tall buildings can disturb satellite
receiving. These buildings however offer a lot of visual
features which can be used to feed vision algorithms. On the
contrary, autonomous navigation on agricultural fields cannot
satisfactorily be addressed by vision algorithms since they
are varying environments, with very few visual features. In

such applications, where no obstacle prevents from satellite
receiving , RTK GPS appears as the more suitable device.

The accuracy of the localization is satisfactory as long as
the robot stays on the reference trajectory. We plan to study
the case where the robot needs to deviate from the learnt
trajectory in order to avoid an obstacle. This could be done
by using techniques developed for the SLAM problem in
order to add landmarks to the database in real time.
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