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Observers based synchronization and input recovery
for a class of nonlinear chaotic models

Estelle Cherrier, Mohamed Boutayeb and José Ragot

Abstract— In this note, we propose a simple and efficient
crypto-system based on a chaotic time delay model. It consists
of two steps: the first one assures the transmitter/receiver
synchronization while the second step focuses on the encryp-
tion/decryption procedure. The synchronization is performed
through a non linear state observer design, driven by the
transmitted signal. Both full order and reduced order state
estimation techniques are established. One of the main re-
sults is that sufficient conditions for asymptotic convergence,
to assure the synchronization, are derived in terms of Linear
Matrix Inequalities (i.e. convex problem) easily and numerically
tractable. Efficiency of the proposed approach is shown through
the transmission of two encrypted messages : a sound wave and
a digital picture. Finally, some security issues are discussed at
the end of this note.

Index Terms— Nonlinear observer, time-delayed chaotic sys-
tem, synchronization, cryptosystem

I. INTRODUCTION

THE field of synchronization of chaotic systems is quite

recent, and has been opened by the work of Pecora

and Carroll [1], [2]. They showed that two identical chaotic

systems, starting with different initial conditions, may syn-

chronize, provided that they are coupled according to the

drive-response principle. Among the applications induced by

this pioneering work, secure communication became a popular

research topic. A conventional communication scheme is based

on random carriers: an information signal is added to a random

signal at the transmitter, and then it is recovered at the receiver.

For this process to be performed, the receiver needs to know

perfectly the random carrier to allow its subtraction from

the transmitted signal, thus revealing the secret message. The

operation is quite simple and, in the case of a pseudo-random

generator, the receiver needs to know the initial conditions of

the transmitter. The broadband spectrum of the random signal

guarantees the security of the communication scheme, since

the secret message is drowned into the noise-like carrier. The

communication can rely on sinusoidal carriers, see [3] for a
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survey of the theory of conventional communications. Chaotic

models can be used as noise-like carriers, and are extremely

sensitive to initial conditions. Moreover, chaotic signals are

not periodic, contrary to classical carriers (even if their period

is very large): consequently, chaos-based communications can

resist to attacks based on periodicity of signal carriers. Chaotic

communication schemes rely on synchronization: the informa-

tion signal is mixed at the transmitter, a chaotic signal is then

generated and sent to the receiver, which enables synchroniza-

tion. Once synchronization is achieved, the information signal

is recovered by the receiver. An overview of the different

chaotic synchronization schemes applied to digital and analog

communications can be found in [4], [5], [6] and [7].

Many schemes have been designed to transmit a message in

an efficient and secure way: the main difference lies in the

method chosen to inject or hide the message at the transmitter,

and then to recover it at the receiver. This variety of encoding

methods can be seen as an additional advantage of chaotic

encryption compared to classical encryption. The main chaotic

message encoding methods are chaotic masking, chaotic shift

keying, chaotic modulation, chaotic cryptosystems, relying on

analog synchronization and impulsive methods, relying on

impulsive synchronization. In chaotic masking [4], [8], [9]

the information signal is added to the chaotic signal sent

by the transmitter. If the amplitude of the message is small

enough (compared with the amplitude of the chaotic signal),

the receiver is able to synchronize with the transmitter: the

reconstructed chaotic signal is then simply subtracted from the

transmitted signal to obtain the information signal. In chaotic

shift keying [10] usually the information signal is supposed

to be binary. A switch between two parameter sets of the

chaotic transmitter is realized, depending on the value (there

are two possible) of the signal at each time. The receiver

consists of two possible chaotic systems, and the decision is

taken according to the synchronization error: at each time, the

transmitted signal enables the synchronization of only one of

the receivers. In chaotic modulation [11], also called inverse

system approach, the information signal modulates some pa-

rameter(s) of the chaotic encoder. Once the synchronization

is achieved at the receiver, the reconstructed chaotic signal

is applied to the inverse encoder to recover the message.

These processes are the first chaotic communication schemes

that have been designed. Some attacks [12], [13] have shown

that they suffer from a lack of security. Recently, chaotic

cryptosystems have been proposed, see [14], [15], or [16] to

mention just a few. The theory of impulsive differential equa-

tions has led to a new generation of chaotic synchronization

1057-7122/$20.00 c© 2006 IEEE
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schemes [7], called impulsive methods. Other methods have

been proposed, combining two (or more) of these techniques,

or using tools from other fields (identification, optics). [17]

presents a communication scheme based on the detection of

a parameter mismatch. A modulation technique is proposed

in [18], where the receiver is designed as a nonlinear filter.

In [19], the chaotic carrier is modulated with an appropriately

chosen scalar signal. The properties of optical systems are

exploited to design communication schemes, as in [20]. Some

observer-based communication schemes are designed in [21],

[22], [23], [24] , [25].

Regardless of the type of encryption used, when a new chaos-

based communication scheme is designed, it is worth to

analyze some security aspects. Besides, some attacks against

new cryptosystems are developed in [26], [27], [28], [29]. [30]

gives an overview of the cryptanalysis methods. It details the

points that are rarely verified to guarantee the security of the

previous chaotic communication schemes.

In this note, we propose a simple and efficient method to

transmit a message in a secure way, which can be seen as a

new chaotic cryptosystem, to use the previous terminology. For

this purpose, two chaotic signals are sent by the transmitter.

On the one hand, a first signal is aimed at synchronizing the

receiver, which is designed following a nonlinear observer-

based approach: the full-order and reduced-order observer

cases are addressed for a class of time-delayed systems, and

sufficient conditions for asymptotic convergence are derived

in terms of Linear Matrix Inequalities (i.e. convex problem)

easily and numerically tractable. On the other hand, a second

signal is used to encrypt the message: the information signal is

injected in the second chaotic signal to create a variable delay.

Thus, this process performs a kind of phase modulation of the

original chaotic signal. The recovery of the message is realized

at the receiver. An estimation of the delay is enabled by the

comparison between the transmitted delayed signal, and the

estimation of the same signal without delay. The transmitter

is a new chaotic system, chosen for its noise-like trajectories,

for its mathematical properties, and for its great sensitivity to

a particular parameter, that will be seen as a possible secret

key.

The first part of this note details the new cryptosystem.

Section II gives some details about the chaotic transmitter,

the observer-based synchronization is addressed in Section

III, and Section IV is devoted to the encryption-decryption

method. The efficiency of our cryptosystem is then tested in

section V through the encryption, the transmission (through

the Internet) and the recovery of a sound signal and a picture.

Section VI ends this paper with a study of some security

aspects of the proposed cryptosystem.

II. THE TRANSMITTER: A TIME-DELAYED CHAOTIC

SYSTEM

The field of ”anticontrol” of chaos is quite new. It consists in
generating chaos in a non-chaotic system, or in enhancing the
chaotic behavior of a chaotic system. [31] details the example
of well-known systems which belong to the class of chaotic
systems, such as the systems of Rössler, Lorenz, or Chua’s

circuit: their chaotic behavior becomes more complex if a
time-delayed feedback is added in the third state component.
In [32] the case of Chua’s circuit is detailed, and the modified
Chua’s circuit designed in that paper was chosen as the chaotic
transmitter in the synchronization schemes that we proposed
in [33] and [34]. A particularity of Chua’s circuit is that
its nonlinear part is a piecewise-linear function, which may
be not desirable from a mathematical point of view. In fact,
this nonlinearity can be replaced by any scalar nonlinearity,
provided that it is an odd function: for example in [35], the
new nonlinearity is a polynomial of degree three. We have
chosen to keep the structure of the chaotic transmitter of [33]
to design a new chaotic system: its linear part is based on
the structure of the dimensionless form of Chua’s circuit, its
nonlinear part is an hyperbolic tangent and a time-delayed
feedback creates the chaos:

ẋ(t) = Ax(t) + F (x(t)) + H (x(t − τ)) (1)

where

A =

0

@

−α α 0
1 −1 1
0 −β −γ

1

A (2)

F (x(t)) =

0

@

−αδ tanh(x1(t))
0
0

1

A (3)

H(x(t − τ)) =

0

@

0
0

ε sin(σx1(t − τ))

1

A (4)

The presence of the delayed feedback H(.) is necessary
to observe a chaotic behavior: if ε equals zero, system
(1) is not chaotic. We provide some representations of the
chaotic behavior of this system on Fig. 1(a)-1(d), for the
following fixed values of the parameters: α = 9, β = 14,
γ = 5, τ = 1 (the values of ε, σ and δ are given under each
figure). Farmer [36] has shown that the complexity of the
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Fig. 1. Attractors for different values of ε, σ, δ

chaotic attractor is strongly linked with the presence of the
time-delay feedback. Therefore changes in the parameters
values (particularly the parameters of H(.)) lead to various
shapes and complicated chaotic attractors. However, the study
of the chaos in system (1) deserves further investigations. In
practice, computation of the Lyapunov exponents (see [37]
for a complete definition) is the only available and tractable
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tool to show that a system is chaotic (only a necessary one).
The Lyapunov exponents of (1) can be computed using the
method detailed in [36], since all the involved nonlinearities
are smooth enough. For the lack of space, this question is not
addressed here, and will be detailed in a future work.

Notations: Throughout this paper, the superscript T stands
for matrix transposition. The matrix In stands for identity
matrix of dimension n. We recall that a function f(.) verifies
the Lipschitz property if there exists a positive scalar k such
that:

‖f(x) − f(y)‖ ≤ k‖x − y‖ ∀ x, y (5)

k is called the Lipschitz constant of f(.). (3) and (4)

show that the nonlinear functions F (.) and H(.) satisfy the

Lipschitz condition with constants kF = |αδ| and kH = |εσ|
respectively.

III. OBSERVER-BASED SYNCHRONIZATION: FULL-ORDER

AND REDUCED-ORDER OBSERVER DESIGNS

In this section we are interested in the design of a receiver

which ensures synchronization with the transmitter (1), by the

means of a transmitted signal. Two important methods are

available: the drive-response principle, and the observer-based

synchronization. The first one was developed by Pecora and

Carroll in 1990 [1]. In this scheme, the transmitter is a chaotic

system, and the receiver is a duplicate of a subsystem of the

transmitter, while the driving signal sent by the transmitter is

some of its state variables. Under some conditions detailed in

[1] (the conditional Lyapunov exponents [37] of the response

system driven by the transmitted signal must be all negative),

they showed that synchronization occurs between the trans-

mitter and the receiver, in spite of the extreme sensibility

of chaotic systems to their initial conditions (indeed, the

receiver has no information about the initial conditions of

the transmitter). The only limitation of this concept remains

the difficulty to find a ”good” decomposition of the chaotic

transmitter to obtain a drive signal and a receiver which

synchronizes, since there is no systematic procedure available.

The second method, detailed in [38], [39], is called observer-

based synchronization since the problem of synchronization

can benefit from the results of the estimation theory. If

the transmitter is a chaotic system, and if the receiver is

designed as an observer of the transmitter, the receiver actually

synchronizes with the transmitter, provided that the receiver

and the transmitted signal verify a detectability condition, with

some additional conditions that will be detailed. We refer the

reader to some observers based synchronization schemes [40],

[41], [21], [23], [22] and to the references inside.

In this section, we develop two observer-based approaches,

adapted from the results of [33], in which we detailed a full-

order-observer-based synchronization, and of [34], in which

we designed a reduced-order observer.

A. Full-order observer-based synchronization

In this section we propose a full-order observer-based
approach to ensure synchronization with the transmitter (1).
The receiver estimates the three states of the transmitter, by
means of the following transmitted signal:

y1(t) = Cx(t) (6)

The chaotic behavior of system (1) depends on the values of
ε and σ: the larger these parameters are, the more complex the
chaos is (and the more secure the encryption is, see section
VI). Consequently the Lipschitz constant of the function H
defined by (4) is quite large (generally over 105), and we
choose the matrix C of the form C =

(

1 ζ 0
)

:

y1(t) = x1(t) + ζx2(t) (7)

The dynamic model of the transmitter (1) can be rewritten
as:

8

<

:

ẋ(t) = Ãx(t) + B̃y1(t) + F̃ (y1(t), x2(t))

+H̃(y1(t − τ), x2(t − τ))
y1(t) = Cx(t)

(8)

where

Ã =

0

@

0 α(1 + ζ) 0
0 −(1 + ζ) 1
0 −β −γ

1

A (9)

B̃ =

0

@

−α
1
0

1

A (10)

F̃ (y1(t), x2(t)) =

0

@

αδ tanh(y1(t) − ζx2(t))
0
0

1

A (11)

H̃(y1(t−τ), x2(t−τ)) =

0

@

0
0

ε sin (σ(y1(t − τ) − ζx2(t − τ)))

1

A

(12)
The dynamic model of the full-order observer chosen as the

receiver is the following:

˙̂x(t) = Ãx̂(t) + B̃y1(t) + F̃ (y1(t), x̂2(t))

+H̃(y1(t − τ), x̂2(t − τ)) + K(y1(t) − Cx̂(t))
(13)

where K is the observer gain, and will be determined in the
following.
We define the synchronization error vector e(t) = x(t)− x̂(t),
and its derivative is given by

ė = AKe + F̃ − ˆ̃
F + H̃ − ˆ̃

H (14)

with the notations

AK = Ã − KC,

F̃ = F̃ (y1(t), x2(t)),
ˆ̃
F = F̃ (y1(t), x̂2(t)),

H̃ = H̃(y1(t − τ), x2(t − τ)), ˆ̃
H = H̃(y1(t − τ), x̂2(t − τ))

The following theorem provides sufficient conditions for

the synchronization of the full-order observer (13) with the

transmitter (8).

Theorem 1: If the following conditions are verified:

1) the pair (Ã, C) is detectable;
2) there exist k1, k2 > 0, a matrix K and a symmetric,

positive-definite matrix P (of appropriate dimensions)
solution of the following LMI:

ζ
2
k

2
H − k1 + 1 < 0 (15)

„

AT
KP + PAK + k1I3 P

P − 1
k2

I3

«

< 0 (16)

then (13) is an observer for the transmitter (8): x̂(t) → x(t)
when t → ∞.
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Proof: The transmitter is a time-delay system, so we consider
a Lyapunov-Krasovskii functional

V = e
T
Pe + ξ

Z 0

−τ

e(t + θ)T
e(t + θ)dθ (17)

where P is a symmetric, positive-definite matrix, and ξ is a
positive scalar. It is easy to show that V is positive and upper
bounded.
We compute the derivative of V along the trajectories of (14):

V̇ = eT
`

AT
KP + PAK

´

e + 2eT P (F̃ − ˆ̃
F )

+2eT P (H̃ − ˆ̃
H) + ξeT e − ξeT

τ eτ

(18)

with eτ (t) = e(t − τ).
The application of the Young inequality leads to:

2e
T
P (F̃ − ˆ̃

F ) ≤ ζ
2
k

2
F e

T
PPe + e

T
e (19)

where kF denotes the Lipschitz constant of F .
The same reasoning applied to the function H gives the
following upper bound:

2e
T
P (H̃ − ˆ̃

H) ≤ e
T
PPe + ζ

2
k

2
He

T
τ eτ (20)

With (19) and (20), (18) can be rewritten as:

V̇ ≤ eT
`

AT
KP + PAK + (1 + ξ)I3 + (1 + ζ2k2

F )P 2
´

e

+(ζ2k2
H − ξ)‖eτ‖

2

(21)
We set k1 = 1 + ξ and k2 = 1 + ζ2k2

F
.

If we set ζ2k2

H
− ξ < 0, then condition (15) holds, and (21)

reduces to:

V̇ ≤ e
T
“

A
T
KP + PAK + k1I3 + k2P

2
”

e (22)

So the derivative of the Lyapunov-Krasovskii function V is
negative-definite:

V̇ ≤ −e
T
We (23)

with
W = −(AT

KP + PAK + k1I3 + k2P
2) > 0 (24)

The inequality W > 0 is transformed into a convex problem,
easily and numerically tractable. Indeed, thanks to the Schur
complement, we obtain:

W > 0 ⇔

 

AT
KP + PAK + (1 + ξ)I3 P

P − 1
(1+ζ2k2

F
)
I3

!

< 0

(25)

This demonstrates the condition (16), and guarantees that e

converges towards zero.
Thus the synchronization step is achieved.
The LMI (25) can be solved numerically. If we note L = PK
(which is equivalent to K = P−1L since P is invertible), we
obtain:

A
T
KP +PAK +(1+ξ)I3 = Ã

T
P +PÃ−C

T
L

T −PL+(1+ξ)I3

(26)

where we recall that AK = Ã − KC.

The right-hand side term is linear in P and L, and thus the

LMI (25) can be easily solved by standard convex optimization

algorithms.
Remark 2:

The detectability of the pair (Ã, C) is guaranteed by the fact
that the matrix W is negative-definite. Indeed, (25) implies
(with k1 > 0):

A
T
KP + PAK < 0 (27)

which means that the matrix AK is stable.

Remark 3: In practice, to find a solution to the LMI (16),

we set ξ ≤ 1. Consequently, to satisfy (15), ζ is chosen such

that −1 ≤ ζkH ≤ 1.

B. Reduced-order observer-based synchronization

In a second step, it seems that it is not necessary to design
a full-order observer to estimate the three chaotic states of the
transmitter (8), since the transmitted signal y1 contains some
information about the trajectories of the states. So we propose
another observer, of reduced order, to ensure synchronization
with the transmitter. Before we give the dynamics of this
reduced-order observer, we make some transformations on
the dynamical model (8). We only consider the differential
equations defining x2 and x3: let E be a matrix orthogonal to

F (defined in (3)), such that

(

E

C

)

is of full column rank.

From (8) we obtain the following singular equation:

Eẋ(t) = EAx(t) + EF (x(t)) + EH(x(t − τ)) (28)

With the following notations:

Ã = EA

H̃(x(t − τ)) = EH(Ex(t − τ), y1(t − τ))
(29)

if we replace x1 by y1−ζx2, according to (7), (28) becomes,
using (8):



Eẋ(t) = Ãx(t) + H̃(Ex(t − τ), y1(t − τ)),
y1(t) = Cx(t)

(30)

Since the matrix

(

E

C

)

is of full column rank, there exist

two matrices (of appropriate dimensions) P and Q such that:

`

P Q
´

„

E
C

«

= I3 (31)

Then:

`

P Q
´

=

 

„

E
C

«T „

E
C

«

!

−1
„

E
C

«T

(32)

We set

z = Tx =

„

z1

z2

«

(33)

where T is chosen such that the components of z are two
independent linear combinations of x2 and x3.
To ensure synchronization with the transmitter (8), we propose
the following reduced-order observer:


ż(t) = Nz(t) + Ky1(t) + r(z(t), y1(t), z(t − τ), y1(t − τ))
ẑ(t) = z(t) + TQy1(t)

(34)

where N , K and the function r(.) should be be determined

so that z(t) − ẑ(t) goes to zero.

The following theorem provides a sufficient condition for the

synchronization of the reduced-order observer (34).

Theorem 4: If the following conditions are verified:

1)

rank

„

sE − Ã
C

«

= dim x, ∀s ≥ 0 (35)

2) there exists a matrix N solution of the Sylvester equa-
tion:

NTPE − TPÃ + KC = 0 (36)

3) the matrix

(

TPE

C

)

is non singular;
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4) there exist two symmetric, positive-definite matrices W
and U such that:

N
T
U + UN = −W (37)

and
W − ρkHI2 > 0, with ρ = 2‖UTP‖ (38)

then the function r can be defined by:

r(z(t), y1(t), z(t − τ), y1(t − τ)) = TPH̃(x̂(t − τ)) (39)

with

x̂(t) =

„

TPE
C

«

−1„
ẑ(t)
y1(t)

«

(40)

In this case, the reduced order-observer (34) is asymptotically

convergent, and x̂(t) synchronizes with x(t).
Proof: The reduced state estimation error vector is given

by:
e = ẑ − z (41)

(30), (31) and (34) yield:

e = (z+TQy1)−z = TQCx = T (I3−PE)x = z−TPEx (42)

By derivation of (42), the dynamics of the error is:

ė = Nz + Ky1 + r(z, y1, zτ , y1τ )

−TP
“

Ãx + H̃(Exτ , y1τ )
”

= Ne +
“

NTPE + KC − TPÃ
”

x + r(z, y1, zτ , y1τ )

−TPH̃(Exτ , y1τ )
(43)

By making use of the Sylvester equation (36) and the
definition of r (39), (43) becomes:

ė = Ne + TP
“

H̃(x̂τ ) − H̃(xτ )
”

(44)

The stability of the matrix N is guaranteed if we can find a
symmetric, positive-definite matrix U and a positive-definite
matrix W such that (37) holds.
Then the matrix U is used to design a Lyapunov function:

V = e
T
Ue (45)

The derivative of V along the trajectories of (44) is given by:

V̇ = e
T (NT

U + UN)e + 2e
T
UTP

“

H̃(x̂τ ) − H̃(xτ )
”

(46)

We obtain the following upper bound for V̇ :

V̇ ≤ −e
T
We + 2kH‖UTP‖e‖2

(47)

If (38) holds, then V̇ ≤ 0, so the reduced-order observer (34)
is asymptotically convergent.
To show that x̂ converges towards x, we compute the differ-
ence (using (40)):

„

TPE
C

«

(x̂ − x) =

„

ẑ − TPEx
y1 − Cx

«

(48)

Besides, using (42), we can write ẑ → TPEx. Consequently
„

TPE
C

«

(x̂ − x) → 0 (49)

Since the matrix

(

TPE

C

)

is invertible by hypothesis 3)

of Theorem 1, (49) is equivalent to x̂ → x.

Hereafter we provide a design procedure for N and K (see

details in [34]) :

• choose a matrix R such that

(

R

C

)

is invertible

• compute

L1 =

„

R
C

«

−1 „
I2

0

«

(50)

• compute S such that N = RPÃL1 − SCÃL1 and N

is stable (i.e. all eigenvalues have negative real part) and

then deduce N

• compute T = R − SC and F = TQ − S
• compute

L2 =

„

R
C

«

−1 „
F
1

«

(51)

and then M = NTL2 − TPÃL2, K = NTQ − M

IV. THE ENCRYPTION METHOD

In this section we describe the encryption/decryption ap-
proach, based on the synchronization step detailed above. The
aim is to send a chaotic signal, with a message ”mixed” or
”hidden” in it, in such a way that no one can suspect that
information has been transmitted. Some attacks showed that
some schemes are not secure enough [12], [13], [30], so we
have designed a method for ”injecting” the message which
prevents it from altering the transmitted signal or its power
spectral density.
Since the chaotic signal y1 is only sent for synchronization
purpose, we introduce a second chaotic signal independent of
y1 (see security issues in section VI). We underline that y2 is
sent independently of y1, where the message is injected in the
following manner:

y2(t) = x3(t − Tuu(t)) (52)

The parameter Tu will be discussed later. (52) shows that
the signal y2(t) is obtained from the chaotic signal x3(t),
by a phase modulation. Therefore, y2 is also a noise-like
signal (see Fig. 2 with u(t) = |sin(t)|). Now we detail the
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(a) Plot of x3(t)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) Plot of y2(t)

Fig. 2. Comparison of x3(t) and y2(t)

encryption/decryption process. Since all the functions involved
in the design of the transmitter (8) are sufficiently smooth,
the Taylor-Lagrange formula can be applied to x3(t), y2

being defined in (52), and we obtain the following first-order
approximation:

x3(t) − x3(t − Tuu(t)) ≃ ẋ3(t)Tuu(t) (53)

In practice, the information signal is normalized, i.e. u(t) ∈
[0, 1], that Tu must be less than Te (the integration step) in
order to apply the Taylor-Lagrange formula and by the way to
ensure a good quality of signal reconstruction. Consequently,
Tu plays a major role in the encryption procedure. Indeed, Tu

introduces a flexibility in the choice of the integration step
Te which is chosen with respect to dynamics of the chaotic
model.
Now we intend to give an estimation of u(t), from (53).
First, we remark that our encryption method relies on the
fact that chaotic signals vary very fast, so they are never
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constant. Otherwise, it would be impossible to recover the
delay, since x3 and y2 would take the same value. That is
why this encryption tool well fits to chaotic systems. So we
may deduce u(t) from (53) (provided that ẋ3(t) 6= 0):

u(t) ≃
x3(t) − y2(t)

Tuẋ3(t)
(54)

Remark 5: If the case ẋ3(t) = 0 happened, we would

consider a second-order approximation, involving the second-

order derivative of x3 and therefore it is possible to express

u(t) as a function of ẍ3(t).
Once the synchronization step is achieved at time t, it is
possible to recover u(t), by the use of (54) (we note û the
recovered message):

û(t) =
x̂3(t) − y2(t)

Tu
˙̂x3(t)

(55)

where ˙̂x3(t) is replaced as a function of x̂(t) and y1(t), given

by the dynamic model of the receiver, (13) or (34).

The efficiency of our encryption-decryption method mainly

relies on the efficiency of the synchronization, which can be

done in a completely separated step: the receiver synchronizes

with the transmitter as fast as possible thanks to y1, and the

estimated states are used to decrypt the message thanks to the

signal y2. This will be illustrated in the next section through

Internet transmission of two messages, whereas some security

issues will be discussed in section VI.

V. SIMULATIONS OF THE CRYPTOSYSTEM

To test the theoretical results obtained in the previous
parts, we will study the synchronization and the encryp-
tion/decryption of two messages (a sound wave, and a picture),
both drive signals y1 and y2 being transmitted through the
Internet. The proposed approach concerns continuous-time
systems. However simulations have been performed at a first
step on a computer, in the goal to evaluate its performances.
We recall the dynamic model of the transmitter (8), and we
precise the values of the parameters chosen in this section:
8

<

:

ẋ1(t) = −αx1(t) + αx2(t) − αδ tanh(x1(t))
ẋ2(t) = x1(t) − x2(t) + x3(t)
ẋ3(t) = −βx2(t) − γx3(t) + ε sin(σx1(t − τ))

(56)

with α = 9, β = 14, γ = 5, δ = 0.5, ε = 10, σ = 104,
τ = 1.
The observation equation is:

y1(t) = Cx(t) (57)

with C =
(

1 ζ 0
)

, and ζ = 1

εσ
= 10−5.

A. Synchronization

We first look at the performances of the full-order observer
(13). The hypotheses of theorem 1 are verified, with ξ = 1,
so k1 = 2, k2 = 1.000000002025, and:

K =

0

@

32.15612817030280
26.91023086940931
−28.44982242054409

1

A (58)

The initial conditions for the transmitter and the receiver are
respectively:

x0 =
`

1 1 1
´T

(59)

and
x̂0 =

`

1 2 −1
´T

(60)

The simulations are done with a time integration step Te =
0.01. We show the synchronizing signal y1(t) sent by the

transmitter in Fig. 3(a). The results of the synchronization
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(a) The synchronizing signal y1
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(b) Plots of the synchronization er-
rors

Fig. 3. Full-order observer-based synchronization

step are plotted in Fig. 3(b), which shows the three state

reconstruction errors: the synchronization is achieved very fast,

after two seconds.
Now we analyze the efficiency of the reduced-order observer

(34) chosen as the receiver. To apply Theorem 4, we take the
following matrices:

E = T =

„

0 1 0
0 0 1

«

(61)

We obtain by using (32):

P =

0

@

−ζ 0
1 0
0 1

1

A (62)

Q =
`

1 0 0
´T

(63)

The matrices involved in the reduced-order observer (34) are:

N =

„

−1 1
−β −γ

«

(64)

K =
`

1 0
´T

(65)

Equation (37) is checked, with W = I2 and

U =

„

1.05263157851685 −0.03947368425496
−0.03947368425496 0.09210526314901

«

(66)

Fig. 4 shows the efficiency of the reduced-order observer-

based synchronization: it is quite similar to the efficiency of

the full-order observer, synchronization is also achieved in

about two seconds. However, since the number of states to

estimate is reduced, the simulation time is reduced too.
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Fig. 4. Plots of the three synchronization errors for the reduced-order
observer-based synchronization
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The notion of key will be discussed later (see Section

VI), however, we can mention that the parameter σ may

be considered as a possible key for the proposed encryption

method. In Sections V-A and V-B, the aim is to show the

effectiveness of the proposed scheme between the transmitter

and an authorized receiver, so the value of σ is perfectly known

by the receiver.

B. Encryption and decryption

We test the efficiency of our encryption method on two

types of messages: a sound message, and a digital picture.

1) Example 1 - a sound message:

the message u is generated from a sound signal, and is scaled

to guarantee that u(t) ∈ [0, 1] ∀t > 0. Fig. 5 shows its

plot. This vector is used to define y2(t), from x3(t) (see Fig.
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0.1
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Time

Fig. 5. A sound message

6(a)). The decryption step is performed using formula (55),
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(a) Encrypted signal
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(b) Recovery error of the sound
message

Fig. 6. Encrypted and decrypted sound messages

and Fig. 6(b) shows the good performances, after a transient

time necessary to obtain a good synchronization. This can be

avoided by systematically sending an empty message added

before the information-bearing message u. In this manner,

the synchronization step will be achieved when the signal

begins to be decrypted. However, preamble duration devoted

to synchronization is not discussed. In fact, this point depends

in particular on the model parameter values. From a practical

point of view, the user may easily estimate the preamble

duration for a given set of parameters by experiments, a

priori. Therefore, this drawback can easily be bypassed. In

our examples, the synchronization time is about two seconds,

after that the information signal may be injected.

2) Example 2 - a picture:

The process of encryption is made more visual on this exam-

ple. The tests are realized with the famous ”Lenna picture”,

see Fig. 7. From this picture, a discrete signal is generated

Fig. 7. Original Lenna picture

as a three-dimension array: each square matrix corresponds

to one basic color (red, green, blue). The process to obtain a

one-dimensional vector is quite standard: the rows of the first

matrix are concatenated, immediately followed by the rows of

the second, and the third matrices. Then the coefficients of

this vector are normalized to obtain the signal u belonging to

[0, 1]. The encrypted picture corresponding to the transmitted

signal y2 is shown in Fig. 8(a). The recovery of the signal

(a) Encrypted Lenna picture (b) Decrypted Lenna picture

Fig. 8. Encrypted and decrypted pictures

u is illustrated by the curve in Fig. 9, and the corresponding

picture in Fig. 8(b).
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Fig. 9. Recovery error of the message u

VI. SOME SECURITY ISSUES

Some recent works [30] point out that the security issues are

not always addressed when a new cryptosystem is designed.

Therefore, this section is devoted to some security questions.

For all the chaotic cryptosystems, the security relies on the

parameters of the transmitter. It is often assumed that, without

the exact knowledge of these parameters, it is impossible to

recover the message. However, this is not always the case (see

references in section I), and some specific attacks are regularly
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designed to break chaotic encryption schemes (mostly chaotic

masking, or modulation).

We would like to show here that our cryptosystem possesses

a key, which is represented by the parameter σ. We already

mentioned in section II that the presence of the time-delay

feedback (4) influences the chaotic behavior of the transmitter

(8). The function H(.) only acts on the third state, under the

form ε sin(σx1(t − τ)). So the parameter σ defines how fast

the chaotic signal x1 is mixed into the sine function, and the

Lipschitz constant of H(.) is equal to εσ. Fig. 10 shows two

different attractors, for the values fixed at the beginning of

section V.

Therefore, the parameter σ can be used as a secret key. For
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Fig. 10. Attractors for near values of σ

a better visualization of the results, we use the picture in Fig.

7 as the message to be transmitted. The first test is quite

simple: we suppose that an intruder obtains the structure of

the receiver, and has access to the signals y1 and y2, but does

not know exactly the value of σ used in the transmitter. On

Fig. 11 the deciphered message appears: for the simulation,

σ = 10000 in the transmitter, and at the receiver the value

10001 is chosen (here ε has been set to 1000).

Fig. 11. Deciphered image with a 0.01% mismatch on σ

Remark 6: We notice that the sensibility increases with the

value of σ: if σ = 100000, then a 0.001%-mismatch produces

the same result as Fig. 11.

Another security test of the cryptosystem is done in the

following simulation. If it happens that the same message has

to be sent twice, then we must be sure that no information can

be deduced from the subtraction of the successive encrypted

signals. In fact, a simple change of the value of the key

σ shows that our cryptosystem possesses the property of

diffusion (required by [30] for example): the image obtained

by subtraction of two encryption of the same image, with

two different keys is shown in Fig. 12 (the other remarkable

property of confusion is more difficult to verify, and will be

considered in further studies).

To quantify the sensibility of the deciphering as a function

Fig. 12. Image obtained by subtraction of two encrypted images

of the mismatch on σ, we choose the value σ = 10000 at the

transmitter. Then another value noted σ̃, very close to σ is

chosen at the receiver, and the reconstruction of the secret

message is then analyzed. The value of σ̃ is increased of

10−5σ at each step, starting from 10000, with 100 steps, and

decreased in a symmetric manner: the maximum error rate on

σ is 100×10−5 = 0.1%. The corresponding range of variation

of σ̃ is then 10000± 10. For each value of σ̃, the norm of the

difference u− û divided by the total number of points in u is

computed, and Fig. 13(a) shows this norm as a function of the

mismatch on σ (to cope with the errors due to synchronization,

we start the simulations with the same initial conditions for the

transmitter and the receiver). Fig. 13(b) shows a zoom on the
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(b) Zoom in Fig. 13(a)

Fig. 13. Error rate of the deciphering vs. error rate on σ

amplitude of Fig. 13(a): the deciphering is exact only when

the receiver exactly knows the value of σ, that is to say the

error rate on σ is equal to zero, or σ̃ = σ.

Remark 7: Generally, concerning most of chaotic cryp-

tosystems, there is an antinomy between the notions of security

and robustness. It is often necessary to define a tradeoff

which allows a certain robustness to the noise present in the

transmission channel, and which also guarantees a sufficient

level of security. Our cryptosystem follows this property: if

less security is imposed, we can take ε = 10 and σ = 100.

The deciphering remains correct with an uniform noise added

on y1, corresponding to a Signal-to-Noise Ratio (SNR) of 70
dB (see Fig. 14(a)), whereas the result of the deciphering is

strongly perturbed for an uniform noise corresponding to a

SNR of 35 dB (see Fig. 14(b)). This shows that the synchro-

nization is very sensitive to noise, and must be performed with

a high accuracy to ensure a good deciphering.
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(a) SNR of 70 dB (b) SNR of 35 dB

Fig. 14. Recovered picture with different SNR w.r.t. y1

VII. CONCLUSION

In this paper, the problem of observer-based synchronization

and secure communication was addressed. We use a time-

delayed chaotic system as a transmitter. A first chaotic signal

is sent to assure an observer-based synchronization. For this

purpose, both full-order and reduced-order observers were

successfully used as the receiver. Sufficient conditions for

synchronization in terms of LMIs were established. Then we

propose a new encryption method: a second chaotic signal is

sent, modulated by a variable delay depending on the message.

Some simulations illustrate the efficiency of our observer-

based cryptosystem: a sound signal, and the famous ”Lenna

picture” are encrypted, transmitted, and decrypted. Finally,

some security points are discussed, to show that the proposed

cryptosystem possesses a key, and the property of diffusion.

Future research works will be devoted to a thorough study of

the chaotic transmitter.
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