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Observers based synchronization and input recovery for a class of nonlinear chaotic models

survey of the theory of conventional communications. Chaotic models can be used as noise-like carriers, and are extremely sensitive to initial conditions. Moreover, chaotic signals are not periodic, contrary to classical carriers (even if their period is very large): consequently, chaos-based communications can resist to attacks based on periodicity of signal carriers. Chaotic communication schemes rely on synchronization: the information signal is mixed at the transmitter, a chaotic signal is then generated and sent to the receiver, which enables synchronization. Once synchronization is achieved, the information signal is recovered by the receiver. An overview of the different chaotic synchronization schemes applied to digital and analog communications can be found in [START_REF] Kocarev | Experimental demonstration of secure communications via chaotic synchronization[END_REF], [START_REF] Cuomo | Synchronization of Lorenzbased chaotic circuits with applications to communications[END_REF], [START_REF] Kolumbán | The role of synchronization in digital communications using chaos -Part II : chaotic modulation and chaotic synchronization[END_REF] and [START_REF] Yang | A survey of chaotic secure communication systems[END_REF]. Many schemes have been designed to transmit a message in an efficient and secure way: the main difference lies in the method chosen to inject or hide the message at the transmitter, and then to recover it at the receiver. This variety of encoding methods can be seen as an additional advantage of chaotic encryption compared to classical encryption. The main chaotic message encoding methods are chaotic masking, chaotic shift keying, chaotic modulation, chaotic cryptosystems, relying on analog synchronization and impulsive methods, relying on impulsive synchronization. In chaotic masking [START_REF] Kocarev | Experimental demonstration of secure communications via chaotic synchronization[END_REF], [START_REF] Lian | Synchronization with message embedded for generalized lorenz chaotic circuits and its error analysis[END_REF], [START_REF] Li | Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communications[END_REF] the information signal is added to the chaotic signal sent by the transmitter. If the amplitude of the message is small enough (compared with the amplitude of the chaotic signal), the receiver is able to synchronize with the transmitter: the reconstructed chaotic signal is then simply subtracted from the transmitted signal to obtain the information signal. In chaotic shift keying [START_REF] Dedieu | Chaos Shift Keying : Modulation and Demodulation of a Chaotic Carrier Using Self-Synchronizing Chua's Circuits[END_REF] usually the information signal is supposed to be binary. A switch between two parameter sets of the chaotic transmitter is realized, depending on the value (there are two possible) of the signal at each time. The receiver consists of two possible chaotic systems, and the decision is taken according to the synchronization error: at each time, the transmitted signal enables the synchronization of only one of the receivers. In chaotic modulation [START_REF] Halle | Spread spectrum communication through modulation of chaos[END_REF], also called inverse system approach, the information signal modulates some parameter(s) of the chaotic encoder. Once the synchronization is achieved at the receiver, the reconstructed chaotic signal is applied to the inverse encoder to recover the message. These processes are the first chaotic communication schemes that have been designed. Some attacks [START_REF] Short | Steps towards Unmasking Secure Communications[END_REF], [START_REF] Yang | Breaking chaotic secure communication using a spectrogram[END_REF] have shown that they suffer from a lack of security. Recently, chaotic cryptosystems have been proposed, see [START_REF] Yang | Cryptography based on chaotic systems[END_REF], [START_REF] Jiang | A note on chaotic secure communication systems[END_REF], or [START_REF] Sobhy | Secure computer communication using chaotic algorithms[END_REF] to mention just a few. The theory of impulsive differential equations has led to a new generation of chaotic synchronization 1057-7122/$20.00 c 2006 IEEE schemes [START_REF] Yang | A survey of chaotic secure communication systems[END_REF], called impulsive methods. Other methods have been proposed, combining two (or more) of these techniques, or using tools from other fields (identification, optics). [START_REF] Carroll | Cascading synchronized chaotic systems[END_REF] presents a communication scheme based on the detection of a parameter mismatch. A modulation technique is proposed in [START_REF] Corron | A new approach to communications using chaotic signals[END_REF], where the receiver is designed as a nonlinear filter. In [START_REF] Bu | Improving the security of chaotic encryption by using a simple modulating method[END_REF], the chaotic carrier is modulated with an appropriately chosen scalar signal. The properties of optical systems are exploited to design communication schemes, as in [START_REF] Tang | Message encoding and decoding through chaos modulation in chaotic optical communications[END_REF]. Some observer-based communication schemes are designed in [START_REF] Liao | An observer-based approach for chaotic synchronization with applications to secure communications[END_REF], [START_REF] Millerioux | Global chaos synchronization and robust filtering in noisy context[END_REF], [START_REF] Boutayeb | Generalized state-space observers for chaotic synchronization and secure sommunication[END_REF], [START_REF] Ha | State and input simultaneous estimation for a class of nonlinear systems[END_REF] , [START_REF] Celikovský | Secure synchronization of a class of chaotic systems from a nonlinear observer approach[END_REF]. Regardless of the type of encryption used, when a new chaosbased communication scheme is designed, it is worth to analyze some security aspects. Besides, some attacks against new cryptosystems are developed in [START_REF] Alvarez | Breaking two secure communication systems based on chaotic masking[END_REF], [START_REF]Breaking a secure communication scheme based on the phase synchronization of chaotic systems[END_REF], [START_REF] Alvarez | Estimating short-time period to break different types of chaotic modulation based secure communications[END_REF], [START_REF] Alvarez | Cryptanalyzing an improved security modulated chaotic encryption scheme using ciphertext absolute value[END_REF]. [START_REF] Alvarez | Cryptographic requirements for chaotic secure communications[END_REF] gives an overview of the cryptanalysis methods. It details the points that are rarely verified to guarantee the security of the previous chaotic communication schemes.

In this note, we propose a simple and efficient method to transmit a message in a secure way, which can be seen as a new chaotic cryptosystem, to use the previous terminology. For this purpose, two chaotic signals are sent by the transmitter. On the one hand, a first signal is aimed at synchronizing the receiver, which is designed following a nonlinear observerbased approach: the full-order and reduced-order observer cases are addressed for a class of time-delayed systems, and sufficient conditions for asymptotic convergence are derived in terms of Linear Matrix Inequalities (i.e. convex problem) easily and numerically tractable. On the other hand, a second signal is used to encrypt the message: the information signal is injected in the second chaotic signal to create a variable delay. Thus, this process performs a kind of phase modulation of the original chaotic signal. The recovery of the message is realized at the receiver. An estimation of the delay is enabled by the comparison between the transmitted delayed signal, and the estimation of the same signal without delay. The transmitter is a new chaotic system, chosen for its noise-like trajectories, for its mathematical properties, and for its great sensitivity to a particular parameter, that will be seen as a possible secret key.

The first part of this note details the new cryptosystem. Section II gives some details about the chaotic transmitter, the observer-based synchronization is addressed in Section III, and Section IV is devoted to the encryption-decryption method. The efficiency of our cryptosystem is then tested in section V through the encryption, the transmission (through the Internet) and the recovery of a sound signal and a picture. Section VI ends this paper with a study of some security aspects of the proposed cryptosystem.

II. THE TRANSMITTER: A TIME-DELAYED CHAOTIC

SYSTEM

The field of "anticontrol" of chaos is quite new. It consists in generating chaos in a non-chaotic system, or in enhancing the chaotic behavior of a chaotic system. [START_REF] Wang | Anticontrol of chaos in continuous-time systems via time-delay feedback[END_REF] details the example of well-known systems which belong to the class of chaotic systems, such as the systems of Rössler, Lorenz, or Chua's circuit: their chaotic behavior becomes more complex if a time-delayed feedback is added in the third state component. In [START_REF] Wang | Generating chaos in Chua's circuit via time-delay feedback[END_REF] the case of Chua's circuit is detailed, and the modified Chua's circuit designed in that paper was chosen as the chaotic transmitter in the synchronization schemes that we proposed in [START_REF] Cherrier | Observer-based approach for synchronization of modified chua's circuit[END_REF] and [START_REF] Cherrier | Observer-based approach for synchronization of a time-delayed chua's circuit[END_REF]. A particularity of Chua's circuit is that its nonlinear part is a piecewise-linear function, which may be not desirable from a mathematical point of view. In fact, this nonlinearity can be replaced by any scalar nonlinearity, provided that it is an odd function: for example in [START_REF] Franz | Chua's equation with cubic nonlinearity[END_REF], the new nonlinearity is a polynomial of degree three. We have chosen to keep the structure of the chaotic transmitter of [START_REF] Cherrier | Observer-based approach for synchronization of modified chua's circuit[END_REF] to design a new chaotic system: its linear part is based on the structure of the dimensionless form of Chua's circuit, its nonlinear part is an hyperbolic tangent and a time-delayed feedback creates the chaos:

ẋ(t) = Ax(t) + F (x(t)) + H (x(t -τ )) (1) 
where

A = 0 @ -α α 0 1 -1 1 0 -β -γ 1 A
(2)

F (x(t)) = 0 @ -αδ tanh(x1(t)) 0 0 1 A (3) 
H(x(t -τ )) = 0 @ 0 0 ε sin(σx1(t -τ )) 1 A (4) 
The presence of the delayed feedback H(.) is necessary to observe a chaotic behavior: if ε equals zero, system (1) is not chaotic. We provide some representations of the chaotic behavior of this system on Fig. 1(a)-1(d), for the following fixed values of the parameters: α = 9, β = 14, γ = 5, τ = 1 (the values of ε, σ and δ are given under each figure). Farmer [START_REF] Farmer | Chaotic attractors of an infinite-dimensional dynamical system[END_REF] has shown that the complexity of the chaotic attractor is strongly linked with the presence of the time-delay feedback. Therefore changes in the parameters values (particularly the parameters of H(.)) lead to various shapes and complicated chaotic attractors. However, the study of the chaos in system (1) deserves further investigations. In practice, computation of the Lyapunov exponents (see [START_REF] Wiggins | Introduction to applied nonlinear dynamical systems and chaos[END_REF] for a complete definition) is the only available and tractable tool to show that a system is chaotic (only a necessary one). The Lyapunov exponents of (1) can be computed using the method detailed in [START_REF] Farmer | Chaotic attractors of an infinite-dimensional dynamical system[END_REF], since all the involved nonlinearities are smooth enough. For the lack of space, this question is not addressed here, and will be detailed in a future work.

Notations: Throughout this paper, the superscript T stands for matrix transposition. The matrix I n stands for identity matrix of dimension n. We recall that a function f (.) verifies the Lipschitz property if there exists a positive scalar k such that:

f (x) -f (y) ≤ k x -y ∀ x, y (5) 
k is called the Lipschitz constant of f (.). ( 3) and ( 4) show that the nonlinear functions F (.) and H(.) satisfy the Lipschitz condition with constants k F = |αδ| and k H = |εσ| respectively.

III. OBSERVER-BASED SYNCHRONIZATION: FULL-ORDER AND REDUCED-ORDER OBSERVER DESIGNS

In this section we are interested in the design of a receiver which ensures synchronization with the transmitter (1), by the means of a transmitted signal. Two important methods are available: the drive-response principle, and the observer-based synchronization. The first one was developed by Pecora and Carroll in 1990 [START_REF] Pecora | Synchronization in chaotic systems[END_REF]. In this scheme, the transmitter is a chaotic system, and the receiver is a duplicate of a subsystem of the transmitter, while the driving signal sent by the transmitter is some of its state variables. Under some conditions detailed in [START_REF] Pecora | Synchronization in chaotic systems[END_REF] (the conditional Lyapunov exponents [START_REF] Wiggins | Introduction to applied nonlinear dynamical systems and chaos[END_REF] of the response system driven by the transmitted signal must be all negative), they showed that synchronization occurs between the transmitter and the receiver, in spite of the extreme sensibility of chaotic systems to their initial conditions (indeed, the receiver has no information about the initial conditions of the transmitter). The only limitation of this concept remains the difficulty to find a "good" decomposition of the chaotic transmitter to obtain a drive signal and a receiver which synchronizes, since there is no systematic procedure available. The second method, detailed in [START_REF] Morgül | Observer based synchronization of chaotic systems[END_REF], [START_REF] Nijmeijer | An observer looks at synchronization[END_REF], is called observerbased synchronization since the problem of synchronization can benefit from the results of the estimation theory. If the transmitter is a chaotic system, and if the receiver is designed as an observer of the transmitter, the receiver actually synchronizes with the transmitter, provided that the receiver and the transmitted signal verify a detectability condition, with some additional conditions that will be detailed. We refer the reader to some observers based synchronization schemes [START_REF] Grassi | Nonlinear observer design to synchronize systems via a scalar signal[END_REF], [START_REF] Feki | Observer-based exact synchronization of ideal and mismatched chaotic systems[END_REF], [START_REF] Liao | An observer-based approach for chaotic synchronization with applications to secure communications[END_REF], [START_REF] Boutayeb | Generalized state-space observers for chaotic synchronization and secure sommunication[END_REF], [START_REF] Millerioux | Global chaos synchronization and robust filtering in noisy context[END_REF] and to the references inside. In this section, we develop two observer-based approaches, adapted from the results of [START_REF] Cherrier | Observer-based approach for synchronization of modified chua's circuit[END_REF], in which we detailed a fullorder-observer-based synchronization, and of [START_REF] Cherrier | Observer-based approach for synchronization of a time-delayed chua's circuit[END_REF], in which we designed a reduced-order observer.

A. Full-order observer-based synchronization

In this section we propose a full-order observer-based approach to ensure synchronization with the transmitter (1). The receiver estimates the three states of the transmitter, by means of the following transmitted signal:

y1(t) = Cx(t) (6) 
The chaotic behavior of system (1) depends on the values of ε and σ: the larger these parameters are, the more complex the chaos is (and the more secure the encryption is, see section VI). Consequently the Lipschitz constant of the function H defined by ( 4) is quite large (generally over 10 5 ), and we choose the matrix C of the form C = 1 ζ 0 :

y 1 (t) = x 1 (t) + ζx 2 (t) (7) 
The dynamic model of the transmitter (1) can be rewritten as:

8 < : ẋ(t) = Ãx(t) + By 1(t) + F (y1(t), x2(t)) + H(y1(t -τ ), x2(t -τ )) y 1(t) = Cx(t) (8) 
where

à = 0 @ 0 α(1 + ζ) 0 0 -(1 + ζ) 1 0 -β -γ 1 A (9) 
B = 0 @ -α 1 0 1 A (10) 
F (y 1 (t), x 2 (t)) = 0 @ αδ tanh(y 1(t) -ζx2(t)) 0 0 1 A (11) 
H(y1(t-τ ), x2(t-τ )) = 0 @ 0 0 ε sin (σ(y1(t -τ ) -ζx2(t -τ ))) 1 A (12)
The dynamic model of the full-order observer chosen as the receiver is the following:

ẋ(t) = Ãx(t) + By1(t) + F (y1(t), x2(t)) + H(y 1 (t -τ ), x2 (t -τ )) + K(y 1 (t) -C x(t)) ( 13 
)
where K is the observer gain, and will be determined in the following.

We define the synchronization error vector e(t) = x(t) -x(t), and its derivative is given by

ė = A K e + F -F + H -Ĥ (14) 
with the notations

A K = Ã -KC, F = F (y 1(t), x2(t)), F = F (y1(t), x2(t)), H = H(y1(t -τ ), x2(t -τ )), Ĥ = H(y1(t -τ ), x2(t -τ ))
The following theorem provides sufficient conditions for the synchronization of the full-order observer [START_REF] Yang | Breaking chaotic secure communication using a spectrogram[END_REF] with the transmitter [START_REF] Lian | Synchronization with message embedded for generalized lorenz chaotic circuits and its error analysis[END_REF].

Theorem 1: If the following conditions are verified: 1) the pair ( Ã, C) is detectable;

2) there exist k 1 , k 2 > 0, a matrix K and a symmetric, positive-definite matrix P (of appropriate dimensions) solution of the following LMI:

ζ 2 k 2 H -k1 + 1 < 0 (15) 
" A T K P + P A K + k 1 I 3 P P -1 k 2 I 3 « < 0 (16) 
then ( 13) is an observer for the transmitter (8):

x(t) → x(t) when t → ∞.
Proof: The transmitter is a time-delay system, so we consider a Lyapunov-Krasovskii functional

V = e T P e + ξ Z 0 -τ e(t + θ) T e(t + θ)dθ ( 17 
)
where P is a symmetric, positive-definite matrix, and ξ is a positive scalar. It is easy to show that V is positive and upper bounded.

We compute the derivative of V along the trajectories of ( 14):

V = e T `AT K P + P AK ´e + 2e T P ( F -F ) +2e T P ( H -Ĥ) + ξe T eξe T τ eτ [START_REF] Corron | A new approach to communications using chaotic signals[END_REF] with e τ (t) = e(tτ ).

The application of the Young inequality leads to:

2e T P ( F -F ) ≤ ζ 2 k 2 F e T P P e + e T e ( 19 
)
where k F denotes the Lipschitz constant of F . The same reasoning applied to the function H gives the following upper bound:

2e T P ( H -Ĥ) ≤ e T P P e + ζ 2 k 2 H e T τ eτ (20) 
With ( 19) and ( 20), ( 18) can be rewritten as:

V ≤ e T `AT

K P + P AK + (1 + ξ)I3 + (1 + ζ 2 k 2 F )P 2 ´e +(ζ 2 k 2 H -ξ) eτ 2 (21) 
We set

k 1 = 1 + ξ and k 2 = 1 + ζ 2 k 2 F . If we set ζ 2 k 2
Hξ < 0, then condition (15) holds, and (21) reduces to:

V ≤ e T " A T K P + P AK + k1I3 + k2P 2 " e (22) 
So the derivative of the Lyapunov-Krasovskii function V is negative-definite:

V ≤ -e T W e (23) 
with

W = -(A T K P + P AK + k1I3 + k2P 2 ) > 0 (24) 
The inequality W > 0 is transformed into a convex problem, easily and numerically tractable. Indeed, thanks to the Schur complement, we obtain:

W > 0 ⇔ A T K P + P A K + (1 + ξ)I 3 P P - 1 (1+ζ 2 k 2 F ) I 3 ! < 0 (25) 
This demonstrates the condition [START_REF] Sobhy | Secure computer communication using chaotic algorithms[END_REF], and guarantees that e converges towards zero. Thus the synchronization step is achieved. The LMI (25) can be solved numerically. If we note L = P K (which is equivalent to K = P -1 L since P is invertible), we obtain:

A T K P + P AK + (1 + ξ)I3 = ÃT P + P Ã -C T L T -P L + (1 + ξ)I3 (26) 
where we recall that A K = Ã -KC. The right-hand side term is linear in P and L, and thus the LMI (25) can be easily solved by standard convex optimization algorithms.

Remark 2: The detectability of the pair ( Ã, C) is guaranteed by the fact that the matrix W is negative-definite. Indeed, (25) implies (with k 1 > 0):

A T K P + P AK < 0 (27) 
which means that the matrix A K is stable.

Remark 3: In practice, to find a solution to the LMI ( 16), we set ξ ≤ 1. Consequently, to satisfy [START_REF] Jiang | A note on chaotic secure communication systems[END_REF], ζ is chosen such that -1 ≤ ζk H ≤ 1.

B. Reduced-order observer-based synchronization

In a second step, it seems that it is not necessary to design a full-order observer to estimate the three chaotic states of the transmitter [START_REF] Lian | Synchronization with message embedded for generalized lorenz chaotic circuits and its error analysis[END_REF], since the transmitted signal y 1 contains some information about the trajectories of the states. So we propose another observer, of reduced order, to ensure synchronization with the transmitter. Before we give the dynamics of this reduced-order observer, we make some transformations on the dynamical model [START_REF] Lian | Synchronization with message embedded for generalized lorenz chaotic circuits and its error analysis[END_REF]. We only consider the differential equations defining x 2 and x 3 : let E be a matrix orthogonal to

F (defined in (3)), such that E C is of full column rank.
From ( 8) we obtain the following singular equation:

E ẋ(t) = EAx(t) + EF (x(t)) + EH(x(t -τ )) (28) 
With the following notations:

à = EA H(x(t -τ )) = EH(Ex(t -τ ), y 1(t -τ )) (29) 
if we replace x 1 by y 1ζx 2 , according to ( 7), (28) becomes, using

:

 E ẋ(t) = Ãx(t) + H(Ex(t -τ ), y 1 (t -τ )), y 1(t) = Cx(t) (30) 
Since the matrix E C is of full column rank, there exist two matrices (of appropriate dimensions) P and Q such that:

`P Q ´" E C « = I 3 (31) 
Then:

`P Q ´= " E C « T " E C « ! -1 " E C « T (32) 
We set

z = T x = " z1 z2 
« ( 33 
)
where T is chosen such that the components of z are two independent linear combinations of x 2 and x 3 .

To ensure synchronization with the transmitter (8), we propose the following reduced-order observer:

 ż(t) = N z(t) + Ky 1(t) + r(z(t), y1(t), z(t -τ ), y1(t -τ )) ẑ(t) = z(t) + T Qy 1(t) (34) 
where N , K and the function r(.) should be be determined so that z(t) -ẑ(t) goes to zero.

The following theorem provides a sufficient condition for the synchronization of the reduced-order observer [START_REF] Cherrier | Observer-based approach for synchronization of a time-delayed chua's circuit[END_REF].

Theorem 4: If the following conditions are verified: 1)

rank

" sE - Ã C « = dim x, ∀s ≥ 0 (35) 
2) there exists a matrix N solution of the Sylvester equation:

N T P E -T P Ã + KC = 0 (36) 
3) the matrix T P E C is non singular;

4) there exist two symmetric, positive-definite matrices W and U such that:

N T U + U N = -W (37) 
and W -ρkH I2 > 0, with ρ = 2 U T P [START_REF] Morgül | Observer based synchronization of chaotic systems[END_REF] then the function r can be defined by:

r(z(t), y 1 (t), z(t -τ ), y 1 (t -τ )) = T P H(x(t -τ )) (39) 
with

x(t) = " T P E C « -1 " ẑ(t) y1(t) « (40) 
In this case, the reduced order-observer ( 34) is asymptotically convergent, and x(t) synchronizes with x(t).

Proof: The reduced state estimation error vector is given by:

e = ẑ -z (41) 
(30), ( 31) and [START_REF] Cherrier | Observer-based approach for synchronization of a time-delayed chua's circuit[END_REF] yield:

e = (z +T Qy1)-z = T QCx = T (I3 -P E)x = z -T P Ex (42)
By derivation of (42), the dynamics of the error is:

ė = N z + Ky1 + r(z, y1, zτ , y1τ ) -T P " Ãx + H(Ex τ , y 1τ ) " = N e + " N T P E + KC -T P Ã" x + r(z, y1, zτ , y1τ ) -T P H(Exτ , y1τ ) (43) 
By making use of the Sylvester equation ( 36) and the definition of r (39), (43) becomes:

ė = N e + T P " H(x τ ) -H(x τ ) " (44) 
The stability of the matrix N is guaranteed if we can find a symmetric, positive-definite matrix U and a positive-definite matrix W such that (37) holds.

Then the matrix U is used to design a Lyapunov function:

V = e T U e (45) 
The derivative of V along the trajectories of (44) is given by:

V = e T (N T U + U N )e + 2e T U T P " H(x τ ) -H(x τ ) " (46) 
We obtain the following upper bound for V :

V ≤ -e T W e + 2kH U T P e 2 (47) 
If [START_REF] Morgül | Observer based synchronization of chaotic systems[END_REF] holds, then V ≤ 0, so the reduced-order observer ( 34) is asymptotically convergent.

To show that x converges towards x, we compute the difference (using (40)):

" T P E C « (x -x) = " ẑ -T P Ex y1 -Cx « (48)
Besides, using (42), we can write ẑ → T P Ex. Consequently

" T P E C « (x -x) → 0 (49) 
Since the matrix T P E C is invertible by hypothesis 3)

of Theorem 1, (49) is equivalent to x → x.

Hereafter we provide a design procedure for N and K (see details in [START_REF] Cherrier | Observer-based approach for synchronization of a time-delayed chua's circuit[END_REF]) :

• choose a matrix R such that R C is invertible • compute L1 = " R C « -1 " I 2 0 « (50) 
• compute S such that N = RP ÃL 1 -SC ÃL 1 and N is stable (i.e. all eigenvalues have negative real part) and then deduce N

• compute T = R -SC and F = T Q -S • compute L 2 = " R C « -1 " F 1 « (51) 
and then

M = N T L 2 -T P ÃL 2 , K = N T Q -M
IV. THE ENCRYPTION METHOD In this section we describe the encryption/decryption approach, based on the synchronization step detailed above. The aim is to send a chaotic signal, with a message "mixed" or "hidden" in it, in such a way that no one can suspect that information has been transmitted. Some attacks showed that some schemes are not secure enough [START_REF] Short | Steps towards Unmasking Secure Communications[END_REF], [START_REF] Yang | Breaking chaotic secure communication using a spectrogram[END_REF], [START_REF] Alvarez | Cryptographic requirements for chaotic secure communications[END_REF], so we have designed a method for "injecting" the message which prevents it from altering the transmitted signal or its power spectral density. Since the chaotic signal y 1 is only sent for synchronization purpose, we introduce a second chaotic signal independent of y 1 (see security issues in section VI). We underline that y 2 is sent independently of y 1 , where the message is injected in the following manner:

y2(t) = x3(t -Tuu(t)) (52) 
The parameter T u will be discussed later. (52) shows that the signal y 2 (t) is obtained from the chaotic signal x 3 (t), by a phase modulation. Therefore, y 2 is also a noise-like signal (see Fig. 2 encryption/decryption process. Since all the functions involved in the design of the transmitter (8) are sufficiently smooth, the Taylor-Lagrange formula can be applied to x 3 (t), y 2 being defined in (52), and we obtain the following first-order approximation:

x 3 (t) -x 3 (t -T u u(t)) ≃ ẋ3 (t)T u u(t) (53) 
In practice, the information signal is normalized, i.e. u(t) ∈ [0, 1], that T u must be less than T e (the integration step) in order to apply the Taylor-Lagrange formula and by the way to ensure a good quality of signal reconstruction. Consequently, T u plays a major role in the encryption procedure. Indeed, T u introduces a flexibility in the choice of the integration step T e which is chosen with respect to dynamics of the chaotic model. Now we intend to give an estimation of u(t), from (53). First, we remark that our encryption method relies on the fact that chaotic signals vary very fast, so they are never constant. Otherwise, it would be impossible to recover the delay, since x 3 and y 2 would take the same value. That is why this encryption tool well fits to chaotic systems. So we may deduce u(t) from (53) (provided that ẋ3 (t) = 0):

u(t) ≃ x3(t) -y2(t) Tu ẋ3(t) (54)
Remark 5: If the case ẋ3 (t) = 0 happened, we would consider a second-order approximation, involving the secondorder derivative of x 3 and therefore it is possible to express u(t) as a function of ẍ3 (t).

Once the synchronization step is achieved at time t, it is possible to recover u(t), by the use of (54) (we note û the recovered message):

û(t) = x3(t) -y2(t) Tu ẋ3(t) (55) 
where ẋ3 (t) is replaced as a function of x(t) and y 1 (t), given by the dynamic model of the receiver, ( 13) or [START_REF] Cherrier | Observer-based approach for synchronization of a time-delayed chua's circuit[END_REF].

The efficiency of our encryption-decryption method mainly relies on the efficiency of the synchronization, which can be done in a completely separated step: the receiver synchronizes with the transmitter as fast as possible thanks to y 1 , and the estimated states are used to decrypt the message thanks to the signal y 2 . This will be illustrated in the next section through Internet transmission of two messages, whereas some security issues will be discussed in section VI.

V. SIMULATIONS OF THE CRYPTOSYSTEM

To test the theoretical results obtained in the previous parts, we will study the synchronization and the encryption/decryption of two messages (a sound wave, and a picture), both drive signals y 1 and y 2 being transmitted through the Internet. The proposed approach concerns continuous-time systems. However simulations have been performed at a first step on a computer, in the goal to evaluate its performances. We recall the dynamic model of the transmitter (8), and we precise the values of the parameters chosen in this section: 

< : ẋ1(t) = -αx1(t) + αx2(t) -αδ tanh(x1(t)) ẋ2(t) = x1(t) -x2(t) + x3(t) ẋ3(t) = -βx2(t) -γx3(t) + ε sin(σx1(t -τ )) (56) with α = 9, β = 14, γ = 5, δ = 0.5, ε = 10, σ = 10 4 , τ = 1.
The observation equation is:

y 1(t) = Cx(t) (57) 
with C = 1 ζ 0 , and ζ = 1 εσ = 10 -5 .

A. Synchronization

We first look at the performances of the full-order observer [START_REF] Yang | Breaking chaotic secure communication using a spectrogram[END_REF]. The hypotheses of theorem 1 are verified, with ξ = 1, so k 1 = 2, k 2 = 1.000000002025, and:

K = 0 @ 32.15612817030280 26.91023086940931 -28.44982242054409 1 A (58) 
The initial conditions for the transmitter and the receiver are respectively:

x0 = `1 1 1 ´T (59) 
and

x0 = `1 2 -1 ´T (60) 
The simulations are done with a time integration step T e = 0.01. We show the synchronizing signal y 1 (t) sent by the transmitter in Fig. 3 Now we analyze the efficiency of the reduced-order observer (34) chosen as the receiver. To apply Theorem 4, we take the following matrices:

E = T = " 0 1 0 0 0 1 « (61) 
We obtain by using (32):

P = 0 @ -ζ 0 1 0 0 1 1 A (62) Q = `1 0 0 ´T (63) 
The matrices involved in the reduced-order observer [START_REF] Cherrier | Observer-based approach for synchronization of a time-delayed chua's circuit[END_REF] are:

N = " -1 1 -β -γ « (64) K = `1 0 ´T (65) 
Equation ( 37) is checked, with W = I 2 and

U = " 1.05263157851685 -0.03947368425496 -0.03947368425496 0.09210526314901 « (66) 
Fig. 4 shows the efficiency of the reduced-order observerbased synchronization: it is quite similar to the efficiency of the full-order observer, synchronization is also achieved in about two seconds. However, since the number of states to estimate is reduced, the simulation time is reduced too. The notion of key will be discussed later (see Section VI), however, we can mention that the parameter σ may be considered as a possible key for the proposed encryption method. In Sections V-A and V-B, the aim is to show the effectiveness of the proposed scheme between the transmitter and an authorized receiver, so the value of σ is perfectly known by the receiver.

B. Encryption and decryption

We test the efficiency of our encryption method on two types of messages: a sound message, and a digital picture.

1) Example 1 -a sound message: the message u is generated from a sound signal, and is scaled to guarantee that u(t) ∈ [0, 1] ∀t > 0. Fig. 5 shows its plot. This vector is used to define y 2 (t), from x 3 (t) (see Fig. shows the good performances, after a transient time necessary to obtain a good synchronization. This can be avoided by systematically sending an empty message added before the information-bearing message u. In this manner, the synchronization step will be achieved when the signal begins to be decrypted. However, preamble duration devoted to synchronization is not discussed. In fact, this point depends in particular on the model parameter values. From a practical point of view, the user may easily estimate the preamble duration for a given set of parameters by experiments, a priori. Therefore, this drawback can easily be bypassed. In our examples, the synchronization time is about two seconds, after that the information signal may be injected.

2) Example 2 -a picture: The process of encryption is made more visual on this example. The tests are realized with the famous "Lenna picture", see Fig. 7. From this picture, a discrete signal is generated 

VI. SOME SECURITY ISSUES

Some recent works [START_REF] Alvarez | Cryptographic requirements for chaotic secure communications[END_REF] point out that the security issues are not always addressed when a new cryptosystem is designed. Therefore, this section is devoted to some security questions. For all the chaotic cryptosystems, the security relies on the parameters of the transmitter. It is often assumed that, without the exact knowledge of these parameters, it is impossible to recover the message. However, this is not always the case (see references in section I), and some specific attacks are regularly designed to break chaotic encryption schemes (mostly chaotic masking, or modulation). We would like to show here that our cryptosystem possesses a key, which is represented by the parameter σ. We already mentioned in section II that the presence of the time-delay feedback (4) influences the chaotic behavior of the transmitter [START_REF] Lian | Synchronization with message embedded for generalized lorenz chaotic circuits and its error analysis[END_REF]. The function H(.) only acts on the third state, under the form ε sin(σx 1 (tτ )). So the parameter σ defines how fast the chaotic signal x 1 is mixed into the sine function, and the Lipschitz constant of H(.) is equal to εσ. Fig. 10 shows two different attractors, for the values fixed at the beginning of section V. Therefore, the parameter σ can be used as a secret key. For a better visualization of the results, we use the picture in Fig. 7 as the message to be transmitted. The first test is quite simple: we suppose that an intruder obtains the structure of the receiver, and has access to the signals y 1 and y 2 , but does not know exactly the value of σ used in the transmitter. On Fig. 11 the deciphered message appears: for the simulation, σ = 10000 in the transmitter, and at the receiver the value 10001 is chosen (here ε has been set to 1000). Remark 6: We notice that the sensibility increases with the value of σ: if σ = 100000, then a 0.001%-mismatch produces the same result as Fig. 11. Another security test of the cryptosystem is done in the following simulation. If it happens that the same message has to be sent twice, then we must be sure that no information can be deduced from the subtraction of the successive encrypted signals. In fact, a simple change of the value of the key σ shows that our cryptosystem possesses the property of diffusion (required by [START_REF] Alvarez | Cryptographic requirements for chaotic secure communications[END_REF] for example): the image obtained by subtraction of two encryption of the same image, with two different keys is shown in Fig. 12 (the other remarkable property of confusion is more difficult to verify, and will be considered in further studies). To quantify the sensibility of the deciphering as a function Fig. 12. Image obtained by subtraction of two encrypted images of the mismatch on σ, we choose the value σ = 10000 at the transmitter. Then another value noted σ, very close to σ is chosen at the receiver, and the reconstruction of the secret message is then analyzed. The value of σ is increased of 10 -5 σ at each step, starting from 10000, with 100 steps, and decreased in a symmetric manner: the maximum error rate on σ is 100×10 -5 = 0.1%. The corresponding range of variation of σ is then 10000 ± 10. For each value of σ, the norm of the difference u -û divided by the total number of points in u is computed, and Fig. 13(a) shows this norm as a function of the mismatch on σ (to cope with the errors due to synchronization, we start the simulations with the same initial conditions for the transmitter and the receiver). Remark 7: Generally, concerning most of chaotic cryptosystems, there is an antinomy between the notions of security and robustness. It is often necessary to define a tradeoff which allows a certain robustness to the noise present in the transmission channel, and which also guarantees a sufficient level of security. Our cryptosystem follows this property: if less security is imposed, we can take ε = 10 and σ = 100. The deciphering remains correct with an uniform noise added on y 1 , corresponding to a Signal-to-Noise Ratio (SNR) of 70 dB (see Fig. 14(a)), whereas the result of the deciphering is strongly perturbed for an uniform noise corresponding to a SNR of 35 dB (see Fig. 14(b)). This shows that the synchronization is very sensitive to noise, and must be performed with a high accuracy to ensure a good deciphering. 

VII. CONCLUSION

In this paper, the problem of observer-based synchronization and secure communication was addressed. We use a timedelayed chaotic system as a transmitter. A first chaotic signal is sent to assure an observer-based synchronization. For this purpose, both full-order and reduced-order observers were successfully used as the receiver. Sufficient conditions for synchronization in terms of LMIs were established. Then we propose a new encryption method: a second chaotic signal is sent, modulated by a variable delay depending on the message. Some simulations illustrate the efficiency of our observerbased cryptosystem: a sound signal, and the famous "Lenna picture" are encrypted, transmitted, and decrypted. Finally, some security points are discussed, to show that the proposed cryptosystem possesses a key, and the property of diffusion. Future research works will be devoted to a thorough study of the chaotic transmitter.
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