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Abstract

This paper presents a quasi-dense matching algorithm between images based on match
propagation principle. The algorithm starts from a set of sparse seed matches, then
propagates to the neighboring pixels by the best-first strategy, and produces a quasi-
dense disparity map. The quasi-dense matching aims at broad modeling and visualization
applications which rely heavily on matching information. Our algorithm is robust to
initial sparse match outliers due to the best-first strategy; It is efficient in time and space
as it is only output sensitive; It handles half-occluded areas because of the simultaneous
enforcement of newly introduced discrete 2D gradient disparity limit and the uniqueness
constraint. The properties of the algorithm are discussed and empirically demonstrated.

The quality of quasi-dense matching are validated through intensive real examples.

Key words: quasi-dense matching, stereo vision, image-based modeling and rendering.

1 Introduction

One natural approach to IBMR (Image-based modeling and rendering) is classical computer
vision based 3D reconstruction with rendering by texture mapping. Arbitrary views of the
scene can be synthesized by reprojecting the reconstructed 3D model. Typical examples of
this approach are [11, 33, 29, 18] among others. More recent work has shown that multi-image
matching constraints —the fundamental matrix for two views and the trifocal tensor for three
can be used to synthesize new views without explicit 3D reconstruction. Laveau and Faugeras
[20] use fundamental matrices [41, 42, 10, 16] and Avidan and Shashua [2] use trifocal tensors
or 3-view geometry [38, 15, 34]. These matching tensor methods are essentially equivalent to
implicit 3D reconstruction methods, and as the explicit reconstruction methods, they require
rigid 3D scenes. In computer graphics, image-based rendering is often viewed as a problem
of interpolation from a collection of images, inspired by techniques which generate smooth

transitions between reference images by simply interpolating each pixel from the first to the



second image value. Chen et al. [7] popularized the idea of direct pixel by pixel interpolation,
however they originally assumed that the pixel correspondences in the basis images were given,
as the basis images were computer rendered. Seitz and Dyer [37] investigate view interpolation,
but are mainly concerned with physically-valid view generation via rectification of a perspective
image pair following the linear combination method developed for object recognition of affine
images. Like the reconstruction-based methods, they also aim at rendering rigid scenes. A more
abstract formulation on which a large amount of work has been based [27, 21, 13] is light field
or plenoptic function. This models all sets of rays seen from all points, considering each image
as a set of rays. Image-based rendering is then about reconstructing this plenoptic function
from the available images. The major challenge is to establish pixel correspondences between
images particularly in sparse sampling cases.

In this paper we describe a new matching algorithm which produces a quasi-dense pixel
matching between images. Our algorithm is targeted for automatic image-based rendering
applications as the traditional sparse matching is insufficient and general dense stereo algorithms
are not sufficiently robust except for pre-calibrated cameras in pre-settled environment [29,
18]. The basic idea of the new matching algorithm is to start from a set of sparse matches
as seed points, then propagate the seed points to neighboring pixels using a region growing
technique. The result is a quasi-dense disparity map. Early versions of this work appeared
in the conference papers [22, 23, 25]. The paper is organized as follows. Section 2 describes
the motivation and rationale of quasi-dense matching. Section 3 develops the algorithm based
on match propagation. Section 4 discusses and empirically demonstrates the nice properties
of the propagation. Section 5 presents the related work. Application examples are shown in
Section 6. Finally, some concluding remarks and future directions are given in Section 7.

2 Motivation and rationale

Establishing correspondences is one of the fundamental problems of computer vision. There
has been a great amount of matching algorithms developed in different contexts. Traditionally,
abundant work has been devoted to dense matching techniques in carefully calibrated stereo case
(e.g. [32, 8, 31, 12,19, 30, 17, 9, 4]). Stereo matching algorithms reduce the search space to 1D
along epipolar lines, but mismatches are still frequent around occluding and texture-less areas.
Dense matching based on optical flow computation (e.g. [1, 3, 40, 35]) is restricted to closer
spaced images and assumes a smooth and well-behaved intensity function. Dense matching
is generally ill-posed due to the aperture problem and regularization based on smoothness
constraint is always necessary [3]. It is therefore practically very difficult to expect reliable
dense matching. Dense matching is also sometimes unnecessary for view synthesis as discussed
by [36] for computational efficiency: homogeneous areas are difficult to match, but usually do
not create visual artifacts if their boundaries are correctly matched.

Recently developed sparse matching of interest points [14] using robust techniques [10,

16, 41, 42] based on the geometric constraint encoded by the fundamental matrix has been



very successful. It is becoming a standard for camera geometry estimation, self-calibration for
both calibrated and uncalibrated images [42, 41]. However sparse matching is insufficient for
visualization purpose as it merely consists of a sparsely distributed cloud.

We propose an in between quasi-dense pixel matching approach in which dense matches are
computed where possible, i.e. in sufficiently textured areas. The key observation is that sparse
matching has been shown to be efficient due to its highly discriminant nature of the points of
interest [26, 14], which are by definition the local maxima of auto-correlation. Even though
they are not local maxima, the neighborhood around the points of interest still shows high auto-
correlation, i.e. high textureness. Therefore these areas could still be reliably matched as there
are sufficient discriminant information in the images. Match propagation takes advantage of
this observation to densify the matching by expanding the actual established sparse matching to
their immediate neighboring areas simultaneously in two images. This principle is similar to a
region-growing segmentation algorithm in an individual image, but with propagation operating
in two images. It is suitable for image-based rendering application as it densely matches the
textured areas for reducing rendering artifacts, but avoids computing unreliable uniform and
occluding areas. We believe that quasi-dense matching is the most appropriate choice for
broader modeling and visualization applications by filling the gap between sparse and dense
matching to overcome the insufficiency of sparse matching for visualization based application
and fragile dense matching. We will first develop our quasi-dense matching algorithm based on

match propagation, then discuss its interesting properties and related work.

3 Quasi-Dense Matching by Best-First Propagation

3.1 Seed selection and initial matching

We start with a traditional sparse matching algorithm between two images for the points of
interest detected in each image [41, 42]. Points of interest are naturally reliable two-dimensional
point features [14, 39], therefore they can handle cases of large disparity.

The Zero-mean Normalized Cross-Correlation (ZNCC) is used to match points of interest

in two images, as it is invariant to local linear radio-metric changes. The correlation at point
= (z,y)T with shift A = (A,, Ay)7T is defined to be

S (x+1) - Ix)(I'(x+ A+1) - I'(x + 4))
(T +1) = 1())? S (I'(x + A +1) = I'(x + A))?)1/?

where I(x) and I'(x) are the means of pixel luminances for the given windows centered at x.

ZNCCx(A) =

After the correlation step, a simple cross-consistency check [12] is used to retain a one-to-one
matching between two images. The cross-consistency check consists of correlating pixels of the
first to the second and inversely by correlating those of the second to the first image, only best
matches consistent in both directions are retained. From many examples, we have found that
a good compromise is to reject definitively a match if ZNCC < 0.8 using 11 x 11 windows.
The choice of the region of interest will be described in the experiment Section 6.
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3.2 Propagation

All initial cross-checked sparse matches are sorted by decreasing correlation score as seed points
for concurrent propagations. At each step, the match (x,x’) composed of two corresponding
pixels x and x” with the best ZNCC score is removed from the current set of seed matches. Then
we search for possible new matches in the immediate spatial neighborhood N (x,x’) precisely
defined below. The ZNCC is still used for match propagation as it is more conservative than
others such as sum of absolute or square differences in uniform regions, and is more tolerant
in textured areas where noise is important. We also simultaneously enforce a smoothness
matching constraint called “discrete 2D disparity gradient limit” precisely defined below, the
uniqueness constraint and a confidence measure defined below on these neighboring pixels to be
considered as potential new matches. The matching uniqueness and termination of the process

are guaranteed by choosing only new matches that have not yet been selected.

Discrete 2D disparity gradient limit The usual 1D disparity gradient limit along the
epipolar lines has been widely used in rectified stereo matching for disambiguation [32, 5]. We
propose here a 2D extension, the discrete 2D disparity gradient limit, to deal with uncalibrated
pair of images including rigid scenes with inaccurate epipolar constraint and non-rigid scenes.
This limit is said to be “discrete” because only integer values are allowed for disparities. This
allows us to impose directly the uniqueness constraint while propagating.

Let N(x) = {u,u—x € [-N, N]*}, N(x¥') = {u',u’ —x' € [-N, N]?} denote all (2N + 1) x
(2N + 1) neighboring pixels of pixels x and x’. The possible matches limited by the discrete

2D disparity gradient are given as
N(x,x') = {(u,u'),u e N(x),u’ e N(X'),||(u —u) — (X' — X)]||0c < €}

and are illustrated in Figure 1 for N = 2, e = 1. Our choice is to impose the most conservative
non-zero disparity gradient limit, i.e., ¢ = 1 for integer pixel coordinates u, u’,x,x’. In the case
of rectified images of a rigid scene, the usual 1D gradient disparity limit for two neighboring
pixels x and u = x + (1,0) in the same line is directly deduced from our 2D one: writing
disparities d(x) = x'—x and d(u) = u'—u of matches (x,x’) and (u, u’), we obtain |d(x)—d(x+
1)] < 1. The newly introduced discrete 2D disparity gradient limit therefore naturally extend
the usual 1D disparity gradient limit for uncalibrated image pairs with inaccurate epipolar
constraint and for non-rigid scenes.

A minimal size of neighborhood N should be used to limit bad matches at the occluding
contours. The smallest neighborhood size that makes sense of the definition of gradient limit
is therefore N = 2, i.e. the 5 x 5 neighborhood.

Confidence measure There is a wide variety of definitions of confidence measure in the lit-
erature and its choice depends on the applications. We use a simple difference-based confidence

measure as

s(x) = maz{|I(x+ A) — I(x)|,A € {(1,0),(-1,0),(0,1),(0,—1)}}.
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Figure 1: Possible matches (u,u’) and (v, v') around a seed match (x,x’) come from its 5 x 5-
neighbor N (x) and N (x') as the smallest size for discrete 2D disparity gradient limit. The
match candidates for u (resp. v') are within the 3 x 3 (black framed) centered at u’ (resp. v).

This is less restrictive than Moravec operator [28] and allows propagation to walk and match
along edges in spite of the aperture problem while avoiding matching uniform areas. We forbid
propagation in too uniform areas with s(u) < ¢,¢ = 0.01 assuming that 0 < I(u) < 1. More
conservatives measures such as those suggested in optical flow [3] are also possible.

3.3 Propagation algorithm

The propagation algorithm can be described as follows. The input of the algorithm is the set
Seed of the current seed matches. The set is implemented with a heap data structure for both
fast selection of the ZNCC-best match and incremental additions of seeds. The output is an

injective displacement mapping M ap.

Input: Seed

Output: Map

Map <+ 0

while Seed # § do
pull the ZNCC-best match (x,x’) from Seed
Local <+ ()

(Store in Local new candidate matches enforcing the disparity gradient limit)

for each (u,u’) in AN(x,x') do
if s(u)>t and s(u’)>t and ZNCC(u,u’)>z
then store (u,u’) in Local
end-if
end-for
(Store in Seed and Map final matches enforcing the uniqueness constraint)
while Local # ()
pull the ZNCC-best match (u,u’) from Local
if (u,*) and (*,u’) are not in Map
then store (u,u’) in Map and Seed
end-if
end-while



end-while

The parameter values by default of ¢ and € have been suggested when defined. The complex-
ity of this algorithm in time is O(nlog(n))) with n the final number of matched pixels, assuming
that the number of initial seeds is negligible. Our algorithm depends only on the number of
final matches and is independent of any disparity bound: it is therefore output sensitive. The
memory complexity is linear in the image size.

As the search space for potential correspondents for a given pixel reduces to a very small
region of 3 x 3 as shown in Figure 1, the matching criterion is relaxed to a smaller window and
weaker correlation score than the seed points. We found by experiments that a rejection takes
place for a match having ZNCC < z,z = 0.5 within a 5 X 5 window. There are two benefits for
smaller ZNCC window size: minor perspective distortions are accepted and matching artifacts

are limited around occluding contours.

4 Match propagation properties

The match propagation algorithm has many nice properties that we examine. For illustra-
tive purpose, we use the 1st and 20th frames of the public domain flower garden MPEG se-
quence. This image pair is difficult for many algorithms as there is a large occluding tree in
the foreground of the scene and disparities might be large. Many matching algorithms pro-
duce high rates of outliers in the half-occluded area and it is particularly difficult for Dynamic

Programming-like approaches as the ordering constraint is not observed.

Robustness w.r.t. false seed matches The robustness and stability of this algorithm
based on best-first propagation are considerably improved by the global best-first strategy
w.r.t. the sparse matching. Though the seed selection step seems very similar to many existing
methods [41, 42] for matching points of interest using correlation, the key difference is that the
propagation can rely on only a few most reliable ones rather than taking a maximum of them.
This makes the algorithm much less vulnerable to the presence of match outliers in the seed
selection stage. The risk of bad propagation is significantly diminished for two reasons: the
bad seed points have no chance to be developed if they are not ranked on top of the sorted
list; the propagation by bad seed points is stopped very quickly due to lack of consistency in
its neighborhood even if the bad seed points might occasionally ranked high in the list. In
some extreme cases, only one single good match of points of interest is sufficient to provoke an
avalanche of the whole textured images while keeping all other seeds points including bad ones
undeveloped.

Figure 2 shows the disparity maps obtained from different selections of seed points to il-
lustrate the stability of propagation. The first example on the left column is produced using
automatic seed points as sparse matching of points of interest described above. The set of auto-
matic seed points still contains match outliers marked as a square instead of a cross for a good



Figure 2: The disparity maps produced by propagation with different seed points and without
the epipolar constraint. Left column: automatic seed points with the match outliers marked
with a square instead of a cross. Middle column: four seed points manually selected. Right
column: four seed points manually selected plus 158 match outliers with strong correlation
score ZNCC > 0.9).

match. The second example in the middle is produced with four seed points, manually selected
from the set of automatic seed points. Each seed match is sufficient to provoke an avalanche of
correct matches in each of the four isolated and textured areas. The whole matched areas cover
roughly the same surface as that obtained with the automatic seeds and 78% of matched areas
are common between the two results. The third example on the right is produced with four seed
points as in the second example plus 158 more seed points which are all match outliers but still
have strong correlation score (ZNCC > 0.9). This very severely corrupted set of seed points
still gives 70% of the matched areas common to the automatic case. This robust scenario of
good seeds developing faster than bad ones is more dominant in matched areas than occluded
regions.

Further we notice from these examples that minor geometric distortion is well tolerated in
the flowers thanks to the small 5 x 5 ZNCC-window size during propagation. In the untex-
tured sky area, the propagation is stopped by the confidence measure. The near-periodic thin

unmatched gaps on the trunk illustrate the effect of the uniqueness constraint.

Stability in low textured scenes For low textured images such as typical polyhedric scenes,
one could have expected that the matched areas are to be reduced to a small neighborhood
of seeds due to poor textures, but very interestingly, the propagation grows nicely along the
gradient edges and we may show that the distance along edges covered by propagation in both
images is similar if the perspective distortion is moderate. Figure 3 illustrates an interesting
consequence of this property by using two views of a wooden house. A single manually se-
lected seed propagates globally to the whole images and covers the most part of the normally
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Figure 3: Examples of propagation for low textured images. From left to right: (1) two images
with low geometric distortion of a small wood house, (2) the disparity map automatically
produced with the epipolar constraint, (3) the disparity map produced by a single manual
seed on the bottom without the epipolar constraint, (4) the common matching areas in black

between the two maps in (2) and (3).

propagated results from many seeds distributed over the whole image. This global stability of

propagation for low textured images is very good for interpolation or morphing applications.

View 1 View 2
A A
bt bt

at at

Figure 4: Two views of a scene with background A, foreground B and half occluded areas C

and D. Assume that correct matches within A and B have better scores than bad ones within
C and D. A and B are first filled in by propagation from seed a and b before the algorithm
attempts to grow in C' or D. Once A and B are matched, the procedure is stopped by the
uniqueness constraint at the boundary of C' in the first view (resp. D in the second view)
because the corresponding boundary in the second view (resp. the first one) encloses an empty

area.

Handling half-occluded areas The algorithm provides satisfactory results in half-occluded
areas, mainly due to the simultaneous enforcement of the global best-first strategy and the
uniqueness constraint. The principle can be illustrated with the help of Figure 4 in which
we assume a foreground object B over a background A, and the half-occluded areas C and
D. The global best-first propagation strategy first accepts matches with the best correlation
scores before trying the majority of matches with mediocre scores. As the foreground A and
background B are both visible, it is expected that they are matched before bad matches for
pixels in half-occluded areas C and D are tried. Consequently, the propagation stops in the
half-occluded areas because it is always stopped by the uniqueness constraint.

We show in Figure 5 that with at least 4 seed points, the disparity maps obtained are
excellent in handling the occluded areas. When we remove one important seed point from the
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Figure 5: The disparity maps produced by propagation with different seed points and without
the epipolar constraint. Left and Middle columns: four manually selected seed points marked
by a cross between the 1st and the 20th frame of the flower garden. Right column: remove one

manual seed located on the front tree. It has more match outliers in the occluded regions.

front tree (which plays the role of region B in Figure 4), the tree is not matched at all as
expected, many match outliers have invaded into the background area.

Another example including half occluded areas for a thin object is shown in Figure 6: a 2-3
pixel width electric post and its disparity map by propagation with and without the epipolar
constraint. These fine details and their backgrounds have been successfully matched. As in the
previous case, the usual fattening artifact around the occluding contours is limited because of
the small 5 x 5 ZNCC-window and local propagation.

Figure 6: Left pair: two sub-images of an electric post. Middle and Right pairs: the disparity
maps without (middle) and with (right) the epipolar constraint.

5 Related work

Imposing simultaneous matching constraints Matching constraints [8, 19] such as unique-
ness, limit on disparity, disparity gradient and ordering constraints are always necessary to re-
duce matching ambiguity. These constraints are often implemented in stereo algorithms along
the corresponding epipolar lines.

Uniqueness constraint is often imposed by cross-consistency check i.e. by correlating pixels



of the first to the second image and inversely by correlating those of the second to the first image;
only the best matches consistent in two ways are retained. The error rate by cross-consistency
check is low [12], but the resulting disparity map is less dense [18] unless multiple resolutions
or additional images are used [12]. An alternative consists of evaluating a set of possible
correspondents in the second image for each pixel in the first image, final correspondences are
established using relaxation techniques like the PMF algorithm [32] or searching for disparity
components [4]. However, these methods sequentially impose limits on disparity gradients and
uniqueness constraint. In our approach we impose them simultaneously. This considerably
improves the matching results and allows the efficient handling of half-occluded areas. Unlike
stereo matching algorithms working along 1D epipolar lines, we extended the definition of 1D
disparity gradient limit to the discrete 2D disparity gradient limit which naturally handles
uncalibrated images including rigid scenes with inaccurate epipolar geometry and non-rigid
scenes.

Reducing search space by adding direct limit on disparity greatly improves the performance
of the majority of existing methods, but the result and complexities of our method are respec-

tively much less sensitive and independent to this constraint.

Using a best-first match-growing strategy A related region-growing algorithm was pre-
viously introduced in the photogrammetry domain by [31] with the “Gotcha” (Gruen-Otto-
Chau) ALSC—Adaptative Least Square Correlation, algorithm designed to match two SPOT
images. Deformable windows and patch-to-patch propagation are used instead of the disparity
constraints and pixel-to-pixel propagation strategy. The main advantage of this approach is
that the matching can reach sub-pixel accuracy from ALSC patch optimization. However, this
patch based optimization and propagation are the sources of two drawbacks: first, a uniqueness
constraint can no longer be defined for the overlapping patches and second, large window sizes
than ours is unavoidable for stable adaptive least squares, especially if gray level distortions
are considered.

Also, the patch propagation could not deal with fine texture details (like electric posts) un-
less optimization is done for each pixel. The optimization process suffers from over-parameterization
when gray level distortions are considered and is hardly workable for matching different scenes.
The most serious shortcoming is poor performance around occluding contour points due to lack
of a uniqueness constraint and the larger window size.

Independent to our paper [22, 23], another pixel-to-pixel propagation presented as volumet-
ric matching was proposed by [6]. However, this approach does not use the best-first strategy
and the uniqueness constraint. In addition, the occlusion problem is ignored and the seed
points are not localized in the highest texture areas. A progressive scheme for stereo matching
was also introduced more recently by [43]. It starts from robustly matched interest points [42],
then densifies the matching by using a growing principle. It considers simultaneously multiple
current matches and propagates in a larger area instead of one seed match in a very small

predefined area in our approach. This tends to produce smoother disparity map, but more
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outliers for half-occluded areas. It is also unknown of its performance for non-rigid scenes.

6 Application examples

We show in this section some applications of creating in-between views by interpolation based on
the quasi-dense matching algorithm presented above, with the setting of propagation parameters
proposed in Section 3.

Triangulating in image planes is always necessary not only to remedy matching sparseness,
but also primarily to approximate images for rendering efficiency. Traditional independent
Delaunay triangulation performed on each individual image gives a good approximation when
occluded areas are negligible in the rendering view-field, but becomes insufficient when the
occlusions are apparent as illustrated in the garden flower sequence. To overcome the shortage
of the independent triangulation, a Joint View Triangulation that triangulates simultaneously
two images while keeping matching information coherence in images has been introduced and
implemented [23, 24]. Tt is built on the re-sampled quasi-dense matches. Also a pseudo-painter’s
algorithm based on the joint view triangulation has also been described [23] to render novel
view. It first draws unmatched triangular patches before matched ones and an heuristic drawing
order based on triangle distortion for unmatched triangles and the disparity for matched ones
is also used. We show four examples of rigid scenes in Figure 7 and two examples of non-rigid
scene in Figure 8.

For all rigid scenes in Figure 7, the search area for seed matches is big, 40% left and right
and 20% top and bottom of image size. The fundamental matrix is estimated from a first and
epipolar unconstrained propagation using robust statistics to cope with sparse outliers [25, 41,
42], and a second and epipolar constrained propagation is finally applied. The rigid scenes
all contain quite important half-occluded areas. The rendering results are globally convincing
mainly due to the good behavior of the propagation at occlusions and the strength of the
disparity gradient limit, though there are still small visible artifacts due to finite approximation
of the joint triangulation around the occluding contours. The third example is the most difficult,
especially on the top left corner where the texture drastically changes for different layers of
branches. The computation time for each epipolar constrained propagation are respectively of
4.3, 8.1, 2.6 and 1.3 seconds with a Pentium IIT Mobile 500Mhz to obtain 177000, 168000, 61370
and 42835 matches for these examples of image size of 768 x 512, 768 x 512, 562 x 450, 352 x 240.
One example of creating novel views by extrapolation is given in the right column of Figure 7.
A circular trajectory centered at the middle of both camera positions and whose radius is the
half of the distance between two camera positions is defined for the garden flower images. We
can notice more geometric distortion on rendered images as the camera trajectory deviates
more from the in-between path.

For non rigid objects or scenes in Figure 8, the search space for seed matches is reduced to 5%
left, right, top and bottom of image size, instead of the fundamental matrix encoding the global

rigidity, a compensation 2D translation vector is robustly estimated from the first propagation
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Figure 7: Left: Four sequences from two images (first and last row) composed of three au-
tomatically generated images. Right: Some extrapolated views of the garden flower sequence

with a circular camera trajectory.
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with the big search space. We used Achermann’s image database of different faces taken under
similar lighting and pose conditions. The eyes, mouth and nose are usually correctly matched
for the morphing application, but artifacts appears at the hairs and the shoulders when the
changes are too abrupt. The last example is particularly difficult because of the big difference
between the two faces, and its main artifacts are localized at the shoulders and the eyebrows on
the left. For theses examples, many uniform areas inside the face silhouette are not matched,
but their borders are as the propagation tends to match edges by covering the same distance
in both images. The computation time for each unconstrained propagation is approximately
0.7 second for 512 x 342 image to obtain 29296 and 23796 matches.

Many other examples have been experimented, including both positive and negative results.
We have noticed that the most notable matching blunders for image based rendering are due to
periodic textures: if a seed match is shifted from some periods, then the resulting propagation
has the same shift. It is expected that these blunders are reduced using a more conservative
matching method for match seeds as the relaxation step proposed by [42] for the fundamental

matrix estimation.

Figure 8: Each row shows four images of an automatically generated sequence from two faces

of different persons, using our matching propagation algorithm.

7 Conclusion and future work

We developed a new quasi-dense matching algorithm based on the best-first match propaga-

tion strategy. The algorithm has many desirable properties: robustness to initial seed match
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outliers, efficiency in time and space, and possibility of handling occluded areas. We believe

that the quasi-dense matching is an intermediate solution between sparse and dense matching

appropriate for a broad range modeling and visualization based applications. These properties

have been empirically demonstrated over various modeling and view synthesis applications from

real images. We are continuing work in 3D modeling and rendering quasi-dense models based

on the algorithm presented in this paper.
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