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Abstract

The creation of novel views using pre-stored images or image-based rendering has
many potential applications, such as visual simulation, virtual reality and telepresence,
for which traditional computer graphics based on geometric modeling would be unsatis-
factory particularly with very complex 3D scenes. This paper presents a new image-based
rendering system that tackles the two most difficult problems of image-based modeling:
pixel matching and visibility handling. We first introduce the joint view triangulation
(JVT), a novel representation for pairs of images that handles the visibility and occlusion
problems created by the parallaxes between the images. The joint view triangulation is
built from matched planar patches regularized by local smooth constraints encoded by
plane homographies. Then, we introduce an incremental edge-constrained construction
algorithm. Finally, we present a pseudo-painter’s rendering algorithm for the joint view

triangulation and demonstrate the performance of these methods experimentally.
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1 Introduction

Recently, there has been much interest in computer vision and graphics in image-based ren-
dering (IBR) methods [28], which generate new views of scenes from novel viewpoints, using a
collection of images as the underlying scene representation. Compared with classical rendering
[47] based on explicit geometric and photometric models, the images produced by image-based
rendering systems are often more realistic, and both on-line rendering and off-line processing
are independent of the geometric and photometric complexity of the underlying scenes. This
paper describes an approach to image-based rendering that we have developed over the past

few years.



Reconstruction-based methods One natural approach to IBR is classical computer vision
based 3D reconstruction with rendering by texture mapping. Arbitrary views of the scene
can be synthesized by re-projecting the reconstructed 3D model. Typical examples of this
approach are [30, 15, 42] among others. More recent work has shown that multi-image matching
constraints —the fundamental matrix for two views and the trifocal tensor for three can be
used to synthesize new views without explicit 3D reconstruction. Laveau and Faugeras [17]
use fundamental matrices and Avidan and Shashua [1] use trifocal tensors. These matching
tensor methods are essentially equivalent to implicit 3D reconstruction methods, and as explicit

reconstruction methods, they require rigid 3D scenes.

Interpolation-based methods In computer graphics, image-based rendering is often viewed
as a problem of interpolation from a collection of images, inspired by techniques that generate
smooth transitions between reference images by simply interpolating each pixel from the first
to the second image value. For instance, Beier and Neely’s morphing [5] uses line segments
specified and matched by an animator. Lee et al. [19] study different warping strategies.
Chen et al. [7, 6] and the QuickTimeVR products popularized the idea of direct pixel-by-
pixel interpolation, however both originally assumed that the pixel correspondences in the
basis images were given, as the basis images were computer rendered. Seitz and Dyer [34, 35]
investigate view interpolation, but are mainly concerned with physically valid view generation
via rectification of a perspective image pair following the linear combination method developed
for object recognition of affine images. Like in the reconstruction-based methods, they also
aim at rendering rigid scenes. A more abstract formulation on which a large amount of work
has been based [28, 21, 13] is the light field or plenoptic function. This models all sets of rays
seen from all points, considering each image as a set of rays. Image-based rendering is then
about reconstructing this plenoptic function from the available images. The major challenge
is the very high dimensionality of such plenoptic functions. Many simplifying assumptions
that limit the underlying viewing space have been introduced: 5D plenoptic modeling [28], 4D
Lightfield /Lumigraph [21, 13], 3D concentric mosaics [38] and 2D panorama [31, 6, 41].

All of these image-based rendering methods can be viewed as different sampling methods of
the plenoptic function. Explicit and implicit reconstruction-based methods use sparse sampling
while interpolation-based ones use dense sampling. Dense sampling requires huge numbers of
pre-stored images to render new views. Sparse sampling needs fewer images, but it must face
two difficult problems: pixel correspondence to recover depth information and occlusion analy-
sis to handle the parallax between images. In the computer graphics community, these problems
are usually avoided by using either a human animator [5] or computer-generated range data [7].
In computer vision, most of the currently available systems are based on the classical stereo

algorithms [30, 15]. In this paper, we describe an image-based rendering approach that explic-



itly tackles the correspondence and occlusion problems. The first step is a reliable automatic
matching algorithm called quasi-dense matching, which starts by selecting reliable seed matches
and propagates these to neighboring pixels using a region-growing technique [25]. The result
is a quasi-dense disparity map. The second step applies a homographic piece-wise smoothness
constraint to construct robustly matched planar patches between pairs of images. To represent
pair-image visibility and occlusion constraints, we propose a new representation called the joint
view triangulation (JVT). This is constructed using a robust algorithm to separate matched
areas from unmatched ones and to handle the partially occluded areas. Finally, we develop a
pseudo-painter rendering algorithm from the joint view triangulation to synthesize new images.
The paper therefore contributes to almost all aspects of image-based rendering systems: match-
ing, pair-view representation and rendering. Early versions of this work appeared in conference
papers [22, 23].

The paper is organized as follows. Section 2 reviews the quasi-dense matching algorithm
based on propagation although it is not the subject of this paper. Section 3 and 4 describe,
respectively, how to build a joint view triangulation and the pseudo-painter’s rendering algo-
rithm. Section 5 demonstrates the system with intensive examples and Section 6 gives some

concluding remarks and suggestions for future research directions.

2 Review of quasi-dense disparity map construction

In different images, matching either high-level image primitives such as feature points and
line segments or just pixels is probably the most difficult problem. This problem has been
particularly studied for a stereo rig in which the relative orientation reduces the search space
from the 2D image plane to 1D along epipolar lines [16, 10]. Meanwhile, the state of the art
on matching does not yet give very satisfactory general results. In fact, almost all matching
algorithms have trouble with either occlusion or untextured areas. This is not surprising as
there is not enough information available in these areas for rendering decisions to be made.
This has motivated the development of quasi-dense matching [25]. The key remark is that the
disparity map could never be dense everywhere. The best we can hope is that only a set of
sparsely distributed dense regions. This quasi-dense disparity map defined as such is therefore

a more realistic goal.

The construction of the quasi-dense disparity map starts from matching some points of
interest that have the highest textureness as seed points to bootstrap a region-growing type
algorithm to propagate the matches in its neighborhood from the most textured (therefore the
most reliable) pixels to the less textured ones. The algorithm could therefore be described in
two steps: Seed selection and propagation, which are illustrated in Figure 1 between the first

and the twentieth images of the flower garden sequence.



Figure 1: Top: initial seed matches between the first and twentieth image of the flower garden
image sequence (two false matches are marked by a box instead of a cross for the correct ones).

Bottom: movement after propagation without enforcing the epipolar constraint.

Seed selection Points of interest [26, 14, 37] are naturally good seed point candidates, as
points of interest are by their very definition image points that have the highest textureness,

i.e., the local maxima of the auto-correlation function of the signal.

We first extract points of interest from two original images, then a correlation method is
used to match the points of interest across the two images, followed by a cross validation for
the pair of images. This gives the initial list of correspondences sorted by the correlation score.
We use the Zero-mean Normalized Cross-Correlation (ZNCC) defined at point x = (z,y)” with
shift A = (A,,A,)T by

I(x)(I'(x + A +1) — I'(x + A))
23 (I(x + A +i) — I'(x+ A))2)1/2

ST +i) -
(SilGe+1) — 100

where I(x) and I’(x) are the means of pixel luminances for the given windows centered at x.

ZNCCx(A) =

Propagation From the current seed list, which is initialized by the first step, at each step,
we pull the best match from the list of seeds. Then we look for additional matches in the
neighborhood of the best seed. The neighbors of a seed point are taken to be all pixels within
the 5 x 5 window centered on the seed point. For each neighboring pixel of the first image, we

first construct in the second image a list of tentative match candidates that consist of all pixels



of a 3 x 3 window in the neighborhood of its corresponding location in the second image (see

Figure 2).

Neighborhood of x inimagel Neighborhood of X’ inimage 2

u u

Figure 2: Possible matches (u,u’) and (v, v') around a seed match (x,x’) come from its 5 x 5-
neighbor N (x) and N (x') as the smallest size for discrete 2D disparity gradient limit. The

match candidates for u (resp. v') are within the 3 x 3 (black framed) centered at u’ (resp. v).

Such a match neighborhood enforces the continuity constraint and a disparity gradient limit
of one pixel for the matching result. The matching criterion is still the ZNCC correlation score
but within a smaller by half 5 x 5 window, therefore the “fattening” artifacts at the occluding

contours are limited.

Finally, additional matches in the neighborhood of the current seed pair are added simul-
taneously in the match list and the seed list such that the match list is a one-to-one matching.

The algorithm terminates when the seed list becomes empty.

This algorithm is efficiently implemented with a heap data structure for the seed list. Notice
that as each time only the best match is selected, this drastically limits the possibility of bad
matches. For instance, the seed selection step seems very similar to many existing methods
[48, 44] for matching points of interest using correlation, but the crucial difference is that we
need only to choose the most reliable ones rather than trying to match a maximum of them.
In some extreme cases, only one good match of points of interest is sufficient to provoke an
avalanche of the whole textured images. This makes our algorithm much less vulnerable. The
same is true for propagation, the risk of bad propagation is considerably diminished by the best

first strategy over all matched boundary points.

Rigid scenes and the aperture problem When the examples are rigid scenes, the epipo-
lar geometry encoded by the fundamental matrix is integrated easily in the propagation step
by the epipolar constrained propagation. This matrix is first estimated robustly from the
unconstrained propagation result [24], or from the seed selection result [49].

More details about these matching steps are given in [25], including details on both rigid and
non-rigid scenes. It is proposed in [25] that propagation walk and matching along edges in spite
of the aperture problem be allowed. When the perspective distortion is moderate, the distance

along the edges covered by the propagation is similar in both images, and we have found that
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this behavior is very interesting for interpolation and morphing applications. Another choice

would be to forbid propagation using one of the optical flow confidence measures [4].

3 Joint view triangulation—JVT

Triangulation is always necessary not only to remedy the sparseness of the disparity map,
but also primarily to approximate images for rendering efficiency. The traditional independent
triangulation operated on each individual image gives a good approximation when the occluded
areas are negligible in the rendering view-field, but it becomes insufficient when the occlusions
are apparent as illustrated in the garden flower sequence. In this section, we propose an original
pairwise image description structure that we call joint view triangulation, which triangulates
different images simultaneously and consistently (the term consistency will be precisely defined

later). It can handle the most difficult occlusion problems between different images.

This new pair-image representation has been inspired by range view mesh integration ap-
proach in [45, 40], impostors for rendering graphics views [39] and layers [3, 46, 20, 2]. The
layers representation is a very interesting one, but not all scenes can be approximated by layers
and very often layers are created interactively. The JVT representation gives a much richer
description than layers do and could be easily converted into appropriate layers depending on
the underlying scenarios. Finally, another work about triangulation for rendering [29] does not
include edge constraints and explicit modeling for artificial rectilinear objects contrary to our
method described below.

We will first describe an intermediate step, match re-sampling, then define JV'T and finally

give an incremental algorithm for its implementation.

3.1 Match re-sampling

As quasi-dense matching gives an irregular distribution of matches, the matched pixels between
two images have to be re-sampled. This re-sampling could equally be motivated by the neces-
sity of post-match regularization to improve the match reliability by taking into account the
local geometric constraints. We assume that the scene surface is at least piece-wise smooth.
Therefore, instead of using global geometric constraints encoded by a fundamental matrix or
a trifocal tensor, we could use local geometric constraints encoded by planar homography.
The quasi-dense matching is thus regularized by locally fitting these plane homographies. As a

by-product, this match re-sampling constructs also all regularized visible patches in two images.

The first image plane is initially divided into a regular grid of 8 x 8 pixel squares. The scale

is a trade-off between the sampling resolution and the regularization stability. To increase the



resolution, a super-sampling grid is introduced by shifting the first grid by a half-size of the
grid cell width as illustrated in Figure 3.
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Figure 3: Two overlapping regular grids to subdivide the first image into square patches.

From each square patch, all matched points inside it from the disparity map are obtained.
A plane transformation is tentatively fitted to these matched points. The most general linear
plane transformation is a homography represented by a homogeneous 3 x 3 non-singular matrix.
Four matched points, no three of them collinear, are sufficient to estimate a plane homography.
Notice that an affine transformation encoded by 6 d.o.f. rather than a homography could also

be used if the perspective distortion is mild between images.

Because a textured patch is rarely a perfect planar facet except for manufactured objects,
the putative transformation for a patch cannot be estimated by standard least squares estima-
tors. Robust methods have to be adopted. They provide a reliable estimate of the homography
even if some of the matched points of the square patch are not actually lying on the common
plane on which the majority lies. The Random Sample Consensus (RANSAC) method origi-
nally introduced by Fischler and Bolles [11] is used for robust estimation of the homography.
RANSAC has been successfully used for robust computation of the geometric matching tensors
in [43, 48]. If the consensus for the transformation reaches 75%, the square patch is considered
as a valid planar patch. The location of the corresponding planar patch in the second image is
defined by mapping the four corners of the grid in the first image with the estimated homog-
raphy. This process of fitting the square patch to a homography is first repeated for all square
patches of the first image for the two sampling grids. It turns out all matched planar patches
at the end. Notice that the planar patches so constructed may overlap in the second image. To
reduce the number of the overlapped planar patches, but not solve the problem, the corners of
the adjacent planar patches are forced to coincide at an average point if they are sufficiently

close. This is illustrated in Figure 4.

Each valid planar patch will be divided into 2 triangles along one of its diagonals for further
processing. From now on, the meaning of a matched patch is more exactly a matched planar

patch, as we will only consider the matched patches which succeed in fitting a homography.



first image second image first image second image
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Figure 4: The patches A’, B',C" and D’ recomputed by the homographies in the second image
correspond to the regular patches A, B,C and D in the first image. Because the corners a,b
and c of different patches are very close, they are made to coincide in one common and averaged
point. Note that this only improves but does not solve the overlapping problem of the patches,
e.g., the patch C' and D' remain overlapped after this procedure.

3.2 Definition of the joint view triangulation (JVT)

The joint view triangulation is a “consistent” and constrained triangulation built on the re-

sampled matched points. The “consistency” for joint view triangulation is defined as follows.

1. There is one-to-one correspondence between the matched image points;

2. There is one-to-one constrained Delaunay edge correspondence in two images. There are

three types of Delaunay edge constraints:

e Boundary edges of matched areas The matched areas from the quasi-dense dis-
parity map represent the common visible visual events of the scenes. Their bound-
aries should not be crossed by any other triangles for later rendering. They should
be preserved as the most natural constraints.

However, if only boundary edges of matched areas were used, though it simplifies
the implementation, it may give a poor approximation for the visual events. Natural
outdoor scenes could be nicely handled, but the algorithm often produces undesirable
artifacts for artificial objects. Two most typical rendering artifacts are the “broken
line” artifact illustrated in Figure 5 and the “ghosting” artifact (double image) for
thin structures like electric posts. To tackle these problems, two more constraints

are introduced.

e Line segments The most direct remedial measure for the broken line artifact is to
integrate image contour points as constraints. The line segments are taken to be a

polygonal approximation of linked contour points.

e Artificial rectilinear objects Artificial rectilinear objects such as electric posts,

trunk of trees, etc. are very frequent in outdoor scenes. They are often mishandled
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Figure 5: The “broken line” artifact: the original image of a gray box on a white background

is broken on the border during the rendering step due to non-appropriate triangulation.

due to the size of the sampling grid, which is limited by stability considerations

of the fitting procedure. When their detection and matching is possible, they are

also integrated into Delaunay constraints. An explicit modeling of these objects is

presented below.

3. The triangulation in each image is a constrained Delaunay triangulation.

Delaunay triangulation is a good choice because of its minimal roughness property [33].

Recall that a constrained Delaunay triangulation [32] is a Delaunay triangulation in which

the circum-circle of each triangle does not contain in its interior any other “visible points”.

Two points are said to be visible if they are not separated by a constraint edge.

3.3 Algorithm implementation

Putting all these constraints together, an edge-constrained JV'T is implemented as an incremen-

tal insertion algorithm in both images simultaneously, consisting of five major steps. Figure 6

illustrates the evolution of the construction algorithm.

INITIALIZATION INSERT RECTILINEAR OBJECTS  INSERT LINE SEGMENTS

INSERT VISIBLE PATCHES

COMPLETE USING THE 2nd GRID

Figure 6: Illustration of the different steps of the edge-constrained joint view triangulation.

1. Initialization

The initial empty images are triangulated by the diagonal from the top left corner to the

bottom right one as illustrated in Figure 6.

2. Detection of visible patches

This is the by-product provided by the match re-sampling section.



3. Detection and insertion of rectilinear structures
The vertical rectilinear structures are modeled as sets of connected visible patches. First,
all vertical and connected triplets of patches are detected; then, all overlapping triplets
are merged into connecting groups. Finally, each group is completed by the adjacent and
vertical square containing a line segment. The whole procedure is illustrated in Figure 7.
Image 1 Image 2 Image 1 Image 2 Image 1 Image 2
% (B) al vertical and connected
triplets of patches are detected.
) ) with
I : visible patch
: non visible patch or
not connected to: .
@ (C) merge and complete
(A) (B) (C)

Figure 7: Illustration of detection of a (gray) rectilinear object whose width is about the size of

the actual sampling grid. Middle: All corresponding vertical triplets of visible patches without

left and right patch neighbors are first detected. Right: All overlapping triplets of patches

form a connecting group. The vertical squares, which share a line segment with the group, are

attached to the group.

These groups of connected patches are inserted into the current joint triangulation.

A real example for detecting a small wood post on the foreground and the consequent

triangulation is shown in Figure 8.

Detection and insertion of line segments

The contour points as local maxima of gradient edge points are first detected by a Canny-
like detector [9]; then, the connected contour points are linked and approximated by line
segments. This procedure is performed only on the first image. We do not wish to match
directly the line segments in two images as such a procedure is hardly stable. A deduction
method illustrated in Figure 9 is implemented. This method deduces the corresponding

line segment in the second image from the disparity map.

For any line segment detected in the first image, all corresponding points in the neigh-
borhood of the end-points of the line segment are obtained from the disparity map. A

tentative 1D transformation on the line segment in two images is estimated. This 1D
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Figure 8: Left: Two views of a small wood post. Middle: The disparity map after the con-
strained propagation. Right: The modeling of the small post and the final JVT in which

constraint edges are drawn in black.

transformation might be projectively encoded by a 2 x 2 homography by taking two end-
points and one midpoint obtained from the epipolar geometry. If the epipolar geometry

is not available, an affine transformation defined by two end-points is estimated instead.

The second stage of the algorithm re-samples the line segment by regularly dividing it
into smaller parts. Each part is validated by taking into account the number of the match
points around it from the disparity map. The final line segment is selected as the one

that maximizes the number of matched segment parts.

The corresponding line segment is inserted in the current joint triangulation while not
violating the existing constraints. If it crosses any existing constraint edge, the line

segment, is further split for inserting only its non-intersecting parts.

One example of the flower garden images is given in Figure 10.

5. Insertion of visible patches from first sampling grid

All visible patches from the first sampling grid which do not intersect with any existing

constraint edges are inserted into the current joint view triangulation.

6. Boundary refinement from the super-sampling grid

The goal of this step is to refine and complete the polygonal boundaries of visible areas
using the additional half-size-shifted sampling grid. First, all vertices of the visible patches
from the shifted grid are inserted if they are outside the current visible patches in the
current JVT. Each triangle touching the current boundaries is retained in the JVT if its
surface is not too big and if an affine transformation can be fitted to the matched pixels

within it. This step is illustrated in Figure 11.
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Figure 9: Illustrative figure for the deduction of corresponding line segments. AE is a line
segment detected in the first image. A tentative corresponding line segment, f(A)f(E), is defined
by the neighboring points of A and E such that a 1D homography f is fitted to all contour points
along the segment. The segment AE is regularly divided into smaller parts, AB,BC,CD,DE, and
each one is validated by counting the number of matches that satisfy f in their neighborhood.
For instance, matches 1 and 2 satisfy the homography while 3 and 4 do not. The segment
f(A)f(E), which maximizes the number of accepted smaller parts, is accepted to define the
validated parts, for instance BC and f(B)f(C).

Figure 10: Detection of line segments as edge constraints by deduction from the disparity map.

The corresponding line segments are displayed in black.
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Figure 11: A: The current JVT with only the first grid. B: All vertices of visible patches from
the second grid are inserted into the current JVT if they are outside the matched areas. C:
Each triangle touching the current boundaries is tested. The triangle with vertex 1 is rejected
as it fails fitting. The triangle with vertex 2 is also rejected as the triangular surface is too big

in the second image. Finally, vertex 1 and 2 are removed from the JVT.

Results on the garden flower images (Figure 10) are shown in Figure 12. For the JVT
without edge constraints, we can notice three broken line artifacts: one on the upper part of
the tree; one on the middle of the tree; and one on the white oblique post. Most of these
artifacts are removed with the edge-constrained JVT except the one in the middle of the tree,

as there is no contour point detected in the first image.

It is also expected that this result is improved by using more than two shifted sampling grids
and by combining the matched edges by the deduction method from the first to the second and

from the second to the first image.

4 Rendering from JVT

This section describes how we use JVT to render novel views. If the depth information were
available, rendering could be carried out by eliminating the hidden surfaces by using the Z-buffer
or the painter’s algorithm [12]. In the absence of depth information for the actual image-based
approach, we develop a pseudo-painter’s algorithm, in reference to how a painter draws final

details over initial uncertain layers.

While the painter’s algorithm with depth information is almost straightforward, the pseudo-
painter’s algorithm is much less straightforward as it lacks the critical depth information. The
reliable and accurate depth information is difficult even with carefully lab-calibrated cameras.
For image synthesis purpose, however, only a relative and qualitative depth order in the image
space is sufficient. This order will be heuristically deduced from the JVT, as it approximates the
images in triangular meshes while keeping the consistent correspondence information between

the images.
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Figure 12: Top: The JVT without constrained edges of the flower garden image pair. The edges
in black are the constrained edges and those in white are Delaunay ones. As only the borders
of the matched areas are constrained, broken line artifacts appear on the upper and middle
part of the front tree and in the middle of the white oblique post on the background. Bottom:
The JVT with edge constraint. Two of the three above mentioned artifacts are removed, only

the artifact on the middle part of the front tree persists.

4.1 Rendering order for matched pixels

It is relatively easy to deduce a depth order for pixels within matched triangles with JVT
to deal with overlapping patches in the newly synthesized image. As the depth is related to
the disparity, the depth order could be deduced from the epipolar geometry encoded by the
fundamental matrix [18, 27, 8] on the assumption that the relative orientation between the
virtual camera and the original camera is topologically known. For instance, it is sufficient to
know that the virtual camera is located on the right, left, in front of or behind the original
camera. In absence of any information, we apply the heuristic that an increasing disparity norm

implies decreasing depth. This is what happens in a dominant lateral translational motion.

4.2 Rendering order for unmatched triangles

It is much more difficult to deduce a rendering order for pixels within unmatched triangles.
Without any matching information, the missing disparity has to be somehow interpolated by

relying on the approximating JVT.

When a pixel is unmatched, it usually comes from either an untextured area or an occluded

area. For pixels from untextured areas, their disparities could simply be interpolated from those
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of the surrounding boundaries. For pixels from half-occluded areas, two common cases should be
distinguished as illustrated in Figure 13. The first one describes a big foreground motion, which
produces a complete obstructed hole on the background in the other image. Once again, the
disparities for the obstructed pixels could be interpolated from those of the surrounding matched
pixels. The second case describes a relatively smaller foreground motion, which creates half-
occluded areas between the fast-moving foreground object and the slowly moving background.
The simple interpolation strategy would have created a undesirable quickly shrinking artifact,
which is particularly undesirable for dynamic rendering. It is more appropriate to extrapolate

background disparities to these half-occluded areas. This extrapolation is implemented via the

1

Figure 13: A scene is composed of a small vertical rectangle (as a trunk) in front of an infinite

virtual vertices.

vertical plane. The left (resp. right) two columns show two views of the scene with a big (resp.

small) camera translation and the corresponding half occluded areas in gray.
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