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Abstract

Changes in gene expression occurring during differentiation of human monocytes into dendritic cells

were studied at the RNA and protein levels. These studies showed the induction of several gene classes

corresponding to various biological functions. These functions encompass of course antigen processing

and presentation, cytoskeleton, cell signalling and signal transduction, but also an increase of

mitochondrial function and of the protein synthesis machinery, including some, but not all, chaperones.

These changes put in perspective the events occurring during this differentiation process. On a more

technical point, it appears that the studies carried out at the RNA and protein levels are highly

complementary.

Introduction

Dendritic cells (DCs) are essential in the development of the immune responses. These cells reside in non

lymphoid tissues where they capture, process and present antigens to circulating memory T cells. Upon

danger signals, DCs leave the non lymphoid tissues to reach lymphoid organs where they stimulate naïve

T cells. Dendritic cells can be differentiated in vitro from different precursors. One type of human DC

precursors is represented by blood CD34+ progenitor cells. These cells, cultured in presence of GM-CSF

and TNFα, differentiate within two weeks in DCs following two pathways. Indeed, after 7 days of

differentiation, two populations of precursor cells, either CD1a- CD14+ or CD1a+CD14-, are observed.

The CD1a+ population give rise to Langerhans cells, the epidermal DCs characterized by the presence of

Birbeck granules, while the CD14+ generate DCs devoid of such organelles. These two types of DC

populations are also functionally different since only the DCs derived from CD14+ precursors are

involved in the stimulation of B lymphocytes. Due to the relatively low numbers of DCs that can be

derived from CD34+ cells, the differentiation of DCs from blood monocytes represent an convenient

alternative. Blood monocytes can be easily differentiated into DCs in presence of GM-CSF and IL-4. For

this reason, most of the studies on DCs are performed using this type of DCs.



In this latter system, the differentiation into DC can be seen even at the morphological level. While the

monocytes are rather round cells, the dendritic cells, as their name implies, are covered of dendrites and

are therefore more amoebic in shape. These dendrites are highly dynamic in nature, so that the cell shape

varies (Cella et al. 1997).

However, little is known about the changes in gene expression occurring during this monocyte to DC

transition. In order to understand the main features of this differentiation, two approaches can be

developed. One has been used by several laboratories, and consists in the study of the modulation of the

amounts of different mRNA species during the differentiation. This technique was proved to be powerful

in the characterization of new genes. Another technique consist to compare the levels of proteins

expressed by DCs and monocyte precursors. The present study was dedicated to the use of the proteomic

approach in the study of DCs, and to compare the results with those obtained using the genetic analysis

of differentially expressed genes.

Material and Methods

Cell differentiation

DCs were derived from elutriated human blood monocytes. Monocytes were isolated by continuous flow

centrifugation leukapheresis and counterflow centrifugation elutriation (Faradji et al. 1994) and cultured

in RPMI 1640 medium containing Glutamax-I, 10% heat inactivated FCS, 1% sodium pyruvate and 50

U/ml penicillin and streptomycin (all from Life Technologies, Paisley, UK) supplemented with 50 ng/ml

recombinant human GM-CSF and 40 ng/ml recombinant human IL-4 (PeproTech, Rocky Hill, NJ).

Differentiated DCs were used at day 7 and the differentiation of monocytes was checked by flow

cytometric analysis of surface markers (Saudrais et al. 1998). The resulting population was devoid of

CD14 positive cells (monocytes) and contained over 80% CD11+, MHC I and II + cells (dendritic cells

markers). The remaining lymphocytes and natural killer cells were removed by magnetic beads coated

with anti CD3 (lymphocytes) and CD 16 (NK) antibodies.



RNA preparation

Total RNA from DCs and monocytes (107 cells) were isolated according to the method of Chomczynski

and Sacchi (Chomczynski and Sacchi 1986) and mRNA were purified using oligo d(T)2 5 Dynabeads

(Dynal, Oslo, Norway).

cDNA differential gene bank

The DC cDNA library was made using the CapFinderTM PCR cDNA Library Construction Kit (Clontech,

Palo Alto, CA, USA). The kit utilizes a CapSwitchTM oligonucleotide in the first-strand synthesis, followed

by a long-distance (LD) PCR amplification to generate high yields of full-length, double-stranded cDNA.

The monocytes cDNA library was made using cDNA Synthesis Kit (Boehringer, Mannhein, Germany)

and further digested with Rsa I for ligation with biotinylated adaptors. PCR using the corresponding

biotinylated primers were done to generate large amounts of this library.

The differential DC gene bank  was obtained by repetitive cycles of denaturation at 90°C for 5 min,

hybridization overnight at 42°C in an formamide containing buffer (Tris-HCl pH 7,7 100 mM, EDTA 2

mM, NaCl 500 mM and 50% formamide) and substraction by streptavidine/ phenol-chloroform

extraction using at each cycle ten time more cDNA from the monocyte biotinylated library than the initial

DC cDNA.

Screening of the differential gene bank

The resulting DC differential gene bank was cloned in a derivative of pCDM8 (Invitrogen, Groningen,

The Netherlands). Nucleotidic sequence of the clones was determined using the ABI PRISMR 377 DNA

Sequencer, and analyzed using Blast search program at NCBI library.

RT-PCR

Total RNA from monocytes and DCs was obtained with an RNeasy extraction kit (Qiagen, Les Ulis,

France). RNA was reverse transcribed with AMV reverse transcriptase (Eurogentec, Seraing, Belgium)

using random hexanucleotides (Roche Diagnostics, Meylan, France) as primers. cDNAs were then



amplified using different sets of specific oligonucleotides (Eurogentec) and different amounts of cDNA

(reverse transcribed from 7 ng, 20 ng or 100 ng total RNA). Amplification was performed in an

OmniGene Hybaid (Ashford, UK) thermocycler under the following conditions: 94°C 30”, 56°C 30”

and 72°C 30” for 20 cycles (actin), 94°C 30”, 56°C 30” and 72°C 1 min for 35 cycles (CD63) or  30

cycles (other). Amplification products were run on 2% agarose gels in parallel with molecular weight

standard (marker VI, Roche-Diagnostics). Length of these molecular standards, in the range of the PCR

products, are 653, 517, 453, 394, 298 base pairs.

Proteomics

Total protein extracts were prepared from 107 cells by making first a concentrated cell suspension in

isotonic Tris-EDTA-sucrose and diluting in a concentrated (1.25x) lysis solution to end up in 7M urea,

2M thiourea, 4% CHAPS, 20 mM spermine base and 40 mM DTT (Rabilloud et al. 1997). After clearing

by ultracentrifugation (200,000 g 30 min) the protein concentration of the extract was determined by a

dye-binding assay. 150 µg of the extracts were applied to the first dimension gel (immobilized pH

gradient, pH 4 to 8)  by in-gel rehydration in 7M urea, 2M thiourea, 4% CHAPS, 0.4% carrier

ampholytes (3-10) and 40 mM DTT (Rabilloud et al. 1997). Protein-loaded IPG strips were focused for

a total of 60,000 Vh, equilibrated 2x 10 min in Tris buffer containing urea and glycerol and supplemented

with 60 mM DTT (first equilibration) or 150 mM iodoacetamide (second equilibration) (Görg et al.

1987). The second dimension was a 10% acrylamide gel. After migration, the gels were stained with silver

(Rabilloud et al. 1994). The gels were then analyzed with the Melanie software. The induction factor is

defined as the ratio between the abundance of the spot (in ppm of the total) in dendritic cells over

monocytes. The spots of interest (i.e., induced more than 2-fold in 3 different experiments) were then

excised and destained with ferricyanide-thiosulfate (Gharahdaghi et al. 1999). After gel washes in

acetonitrile ammonium bicarbonate, the proteins were digested in-gel with trypsin (18 h). The resulting

peptides were extracted with TFA/acetonitrile/water and the peptide mixture was analyzed by MALDI

TOF using sinapinic acid as a matrix on a Bruker Biflex instrument with delayed extraction. Identification

of the proteins using these mass fingerprinting data was carried out using the Mascot software.



Alternatively, the identification of Prx III was carried out by comigration of a total DC extract with semi

purified PrxIII from human placental mitochondria (Rabilloud et al. 1998).

Results

General framework

In order to find differentiation markers for DCs, a differential RNA approach was first undertaken.

Numerous differentially-expressed clones were found and about 150 were analyzed. These clones were

found to fall into 4 main classes, as shown in Table 1. Apart from “miscellaneous classes”, such as

nuclear proteins, these classes corresponded to biological functions relevant either directly to the role of

DCs (e.g., antigen presentation) or, more indirectly, to functions implied in antigen processing and

presentation (e.g., vesicular transport and cytoskeleton). The differential expression of these RNAs in

monocytes and monocyte-derived DCs was analyzed by RT-PCR, and typical results are shown on

Figure 1. A relative quantification of the RT-PCR products was carried out by densitometry ans is shown

as relative abundance ratios (DC/monocytes).

To complement these data at the protein level, a proteomics-based differential approach was also

undertaken on the same cells, i.e., monocytes and DCs derived thereof. Classical proteomics using high-

resolution two-dimensional electrophoresis as a protein display was used. Typical  2D gel results are

shown on Figure 2. Differentially-expressed proteins (at least two-fold) are shown on these gels by

arrows. These proteins were then identified by MALDI-TOF mass spectrometry, leading to the

identifications shown on Figure 2. Here again, the differentially-expressed proteins (summarized in Table

2) pointed to several biological functions, as discussed below.

Antigen presentation genes are induced during dendritic cell differentiation

The expression of various genes implied or presumed to have a fonction in antigen presentation (HLA-

DRa, CD1E) is clearly increased during DC differentiation. These data are however obtained only at the

RNA level, probably because of classical problems associated with the analysis of membrane proteins by

2D electrophoresis (Wilkins et al. 1998). However, the RNA data are quite consistent with the antigen



presentation function of the DCs. Among those genes, CD1E has been studied in more detail (Angénieux

et al. 2000).

Antigen processing machinery is induced during dendritic cell differentiation

In addition to antigen presentation per se, the antigen processing machinery is also induced during DC

differentiation. This can be detected either at the RNA level (CD26 or peptidyl dipeptidase and CD63

lysosomal protein) or at the protein level (grp78 and grp94 chaperones). It must be noted that these

chaperones are expressed mainly in the ER and are very likely to contribute to the folding of the

numerous secreted and membrane proteins of the DCs, including of course the antigen presentation

proteins.

In addition to these proteins, genes and proteins involved in antigen uptake are also found. Adaptor

protein 2 beta, involved in the formation of coated pits, and annexin II, involved in vesicular transport,

belong to this class, as well as the IgG receptor (FcgRII, CD32) and the b2 subunit of the complement

receptor (CD11b/CD18).

Major cytoskeleton changes occur during dendritic cells differentiation

Changes in cytoskeleton-associated proteins were among the major changes detected either at the RNA or

protein levels. These changes occurred either directly on cytoskeletal proteins (e.g., vimentin) or on

proteins involved in cytoskeleton remodelling (e.g., ARP 2/3 complex subunit, gelsolin). As DCs draw

their name from the numerous membrane extensions they display on their surface, it is not surprising that

the underlying cytoskeleton shaping these blobs is modified compared to the situation of the monocyte

precursor. It must be noted that these changes in cytoskeleton-associated proteins can be found at both

the RNA and protein level, increasing thereby the confidence in the reality of cytoskeleton remodelling in

DCs.

Mitochondrion function is increased in dendritic cells differentiation

This is a more surprising result observed during DC differentiation. Mitochondrion function increase is

supported mainly at the protein level (EFTu, MnSOD, glutamate dehydrogenase). The increase of EFTu



(mitochondrial translation factor) is probably indicative of an increase in the production of the proteins

encoded by the mitochondrial genome. As this genome only encodes respiratory complexes subunits, and

mainly highly hydrophobic ones, it can be inferred that the increase of EFTu indicates an increase in the

respiratory complexes and therefore in energy production. This trend is further confirmed by the

induction of Krebs cycle-related proteins e.g. glutamate dehydrogenase.

The case of MnSOD appears somewhat more complicated. This protein is involved in the destruction of

superoxide, which is produced by the respiratory complexes during their functioning. Thus, MnSOD

overexpression can be seen as a further indirect evidence of respiratory increase. This hypothesis is

supported by the induction of PRX III, which is another mitochondrial protein playing a role in anti-

oxidative stress defense (Araki et al. 1999). However, MnSOD increase is also observed during the

response to pro-apoptotic signals (Asoh et al. 1989) and is thought to participate to the defense against

these signals. Thus, MnSOD overexpression can also be seen as a protection against the apoptotic signals

which occur during the life of the DCs.

Cell communication and signalling

Several RNAs and proteins involved in these processes are also found induced in DCs. Ionic regulators

(calmodulin), as well as extracellular signalling proteins (MCP4), or proteins involved in signal

transduction (GBI-2) are found in this class. This variety indicates deep changes in the signalling activity

of DCs compared to their precursors, a well-known phenomenon at the cytokines level (Cella et al. 1997).

Other genes

Two other genes (DRP-2 and cytochrome b561) have been found to be overexpressed at the mRNA level

in DCs compared to the monocyte precursors. DRP-2 is acting as a signal transducer involved in the

development of nervous system (Kitamura et al. 1999) and cytochrom b561 (Srivastava 1995) as a pure

electron channel playing a role in the biosynthesis of peptide neurotransmitters. Since a bi-directional

communication between the epidermal DCs, Langerhans cells, and nerves has been described (Torii et al.



1997, 1998), these two proteins could be involved in the communication between immunological and

neurologic system.

A transporter of the Multidrug Resistance-associated Protein (MRP) family, named MRP-4, was also

shown to be mainly overexpress at the mRNA level in DCs compared to monocytes. A contribution of

MRP-4 to the physiology and function of DCs can be hypothetised since MDR1, an other member of the

family, has been involved in the migration capacity of DCs (Randolph et al. 1998). An interresting

property of MRP4 is to extrude nucleoside analogues. The cell line CEM-R1 which over-express MRP4

can support the grow of HIV even in presence of nucleoside based anti-HIV drugs (Schuetz et al. 1999).

Whether the expression of MRP4 in DCs contributes to the keeping of a HIV reservoir is provocative

and should be investigated.

Discussion

In order to study the genes which expression is increased during differentiation of monocytes into DCs,

two differential approaches were carried out  at the mRNA and protein level. These two approaches

proved complementary and pointed  mainly to the same biological functions. However, it seems

interesting to underline that there was no intersection between the genes evidenced by the two approaches.

In other words, none of the induced genes was found both at the RNA and protein level, and we would

like to try to find out the reasons for this kind of discrepancy.

Why does proteomics miss the genes detected by differential RNA analysis ?

Theoretically, proteomics should be the ultimate tool to detect variations in gene expression, as it analyzes

the end product of gene expression, i.e., proteins. However, careful analysis of the possibilities of the

technique points out to important limitations, which are evidenced by this work.



The first limitation lies in the analysis window displayed by the proteomics experiments which we have

carried out. For example, the pH window in the first dimension is 4 to 8. Therefore, basic proteins (e.g.,

calmodulin, MCP4), which mRNAs are found induced, are completely missed by the proteomics analysis.

The second important limitation is in the type of proteins which can be analyzed by proteomics. It is now

well evidenced that proteomics performs poorly in the analysis of membrane proteins (Adessi et al. 1997,

Wilkins et al. 1998). Thus, it is not surprising that induction of membrane proteins (e.g., HLA-DR,

CD1E, CD18, CD32 and CD63, cytochrome b561) can be seen at the RNA level but not at the protein

level. The same trend of poor visualization also applies to high molecular weight proteins (AP2, CREB

binding protein).

The third and important limitation lies in the visualization of low abundance proteins (Wilkins et al.

1998). When total cell extracts are analyzed, the minimal abundance of proteins which can be detected in

silver-stained gels with reasonable crowding is 104 protein molecules per cell (by comparison, actin is

present at ca.108 molecules per cell). This figure represents an absolute detection minimum. Correct

quantitative analysis requires to be at least 3 fold over this minimum. This implies in turn that low

abundance proteins such as transcription factors or proteins involved in signal transduction are below the

analysis threshold of the technique.

These technical limitations point out to the weaknesses of proteomics. However, it must be pointed out

that many of these limitations can now be tried to be overcome, both for basic proteins (Görg et al. 1998),

for membrane proteins (Santoni et al. 2000), and to a lesser extent for low abundance proteins by the

analysis of cell fractions enriched in the proteins of interest  (e.g., nuclei, membrane preparations) and not

of total cell extracts. Such work, however, needs the use of non-standard techniques or reagents and is

therefore much more difficult to carry out.

Why does differential RNA analysis miss the genes detected by proteomics  ?



From the previous paragraphs, it appears that differential RNA analysis does not show any of the

limitations shown by proteomics. Thus, the induced proteins evidenced by proteomics should also be

found induced at the RNA level, which is obviously not the case from our results. In order to get more

insights into this phenomenon, we performed a semi-quantitative RT-PCR analysis on some RNAs which

proteins were found induced by proteomics. The results are shown on Figure 3, and exemplify several

situations. In some cases, such as GP96 (grp94), an induction can be seen at the RNA level, but it can be

noticed that the basal level in monocytes is much higher than what is generally observed with the genes

detected as differentially expressed directly at the RNA level (compare with Figure 1). In other case, such

as MnSOD, no induction can be seen at the RNA level, while a major induction is seen at the protein

level. In other cases (EF-Tu, GBI-2) the RT-PCR results are difficult to interpret and a weak  induction

can be detecteed at the RNA level.

Our explanation for this situation is the importance of translational and post-translational controls, as

previously evidenced from the correlation analysis between RNA and proteins (Anderson and Seilhamer

1997), (Gygi et al. 1999). A good example is the case of mitochondrial proteins (Anderson and Seilhamer

1997). Nuclear-encoded mitochondrial proteins show a very bad correlation between RNA and protein

levels, as exemplified in the liver for carbamoyl phosphate synthase (Anderson and Seilhamer 1997). This

has been attributed to the fact that mature mitochondrial proteins are protected from proteolytic

degradation by their localization and are therefore more readily accumulated at the protein level from

rather low mRNA levels. Thus, during long processes such as the differentiation process studied here,

large increase in the concentration of mitochondrial proteins can occur from marginal increase in the

corresponding mRNA levels. It is therefore not surprising that we find again a poor correlation between

RNA and protein increases for the mitochondrial proteins we have identified, such as EF-Tu, or even

worse MnSOD. In the latter case, there is a strong induction at the protein level, while the RNA level

decreases.

The case of vimentin is also typical of translational control. In the case of  stimulation of fibroblasts by

serum, it has been shown that although vimentin mRNA is present at high levels in quiescent cells it



remains weakly translated, while it is highly translated in growing cells (Thomas and Thomas 1986). The

same situation probably also applies in our differentiation system for vimentin and the other cytoskeleton-

associated proteins detected by proteomics.

These data clearly show that important protein variation can occur even with modest mRNA variations,

and therefore that differential RNA display misses some important variations. It would be very interesting

to check whether large variations in mRNA levels always lead to large variations in protein amounts, or if

translational control can completely dampen the variations observed at the RNA level, leading to “false

positive” obtained by RNA analysis. Unfortunately, this will be very difficult to find out in our system, as

most, if not all, of the genes found induced at the RNA level will not show their protein products in our

2D gels.

It must ne noted that  in some examples (ARP2/3, Grp94) there is a good correlation between the

variations observed at the RNA and protein levels. However, even in those cases, the variation in RNA

levels is rather weak and is not easily detected by differential display analysis. It is very likely that other

techniques, such as SAGE or array hybridization, will be more suited to this type of analysis. However,

the strong decorrelation observed for some classes of proteins (e.g. mitochondrial proteins) is completely

independent from the measurement methods is a real biological fact.

What is the relevance of induced genes and proteins found to the biological process ?

Taken together, the RNA and protein data point out to several classes of induced genes. They  represent

various biological functions which are obviously induced during DC differentiation from monocytes. The

increase in proteins involved in antigen processing and presentation is almost trivial in regard to HLA-DR

owing to the role of DCs as professional antigen-presenting cells. In contrast, CD1e, which at the first

glance belongs to the family of the CD1 antigen presenting molecules, was found to be quite different of

other CD1 molecules in terms of biochemical properties and cellular location (Angénieux et al.),

suggesting a new function in CDs. Among the other classes, the changes in cytoskeleton-associated

proteins is also rather obvious due to the strong morphological changes occurring during DC



differentiation. However, the increase in metabolism (mitochondrial function) is more unexpected. Owing

to the relevance of the other classes, and to the self-consistency of the changes observed in our study, it is

very likely that the changes observed point to a true increase of metabolism, which remain however to be

explained. The hypothesis we would like to put forward for this metabolism increase is related to the

major changes in cellular shape and intracellular trafficking occurring in DCs as compared to monocytes.

The constant cytoskeleton remodelling occurring in DCs by their dendrites is probably highly energy-

consuming, as is the intense intracellular trafficking related to massive antigen processing and

presentation. These phenomena could explain why the mitochondrial energy production system is

induced in DCs, with a correlative induction of mitochondrial anti-oxidant proteins (MnSOD and PRX

III). It is well known that the respiratory chain is a major producer of reactive oxygen species (Raha and

Robinson, 2000), so that an increase in respiration also results in an increase in reactive oxygen species

production. The latter phenomena is counteracted by the increase in antioxidant proteins observed in

DCs.

In conclusion, it appears that these differential analyses made at both the RNA and protein level are highly

complementary in their results and offer indeed good cross-validation. This cross-validation leads to good

confidence in the results, which seem also quite relevant to the biological question under study and give

new insights to the biochemical phenomena occurring during differentiation of monocytes into DCs.



Table 1: Genes induced during DC differentiation, as detected by differential RNA analysis

(numbers in parentheses refer to EMBL accession numbers)

Description EMBL

accession number

Antigen presenting genes :

CD1e X14975

HLA-DR M60333

Antigen processing genes :

CD18 M15395

CD26 M74777

CD32 J03619

CD63 M58485

AP-50 D63475

Cytoskeleton genes :

gelsolin I11562

Cell communication and signalling genes :

calmodulin 

U16850

MCP-4 U46767



Other genes  (examples):

dihydropyriminidase related-protein 2 (DRP-2) D78013

cytochrome b561 U29463

MRP-4 U83660



Table 2: Genes induced during DC differentiation, as detected by proteomics

(numbers in Parentheses refer to Swiss-Prot accession numbers)

Protein name Induction factor

(dendritic cells/monocytes)

Antigen processing proteins:

grp78 (P11021) 3.3

grp94-gp96 (P14625) 3.5

Cytoskeleton proteins :

vimentin (P08670) 20

ARP2/3 34 kDa (O15144) 4.1

Mitochondrial proteins:

Mn SOD (P04179) 11.1

Prx III (P30048) 2.65

EF-Tu (P49411) 2.7

Glutamate dehydrogenase (P00367) 4.8

Cell communication and signalling proteins :

GBI-2 (P04899) 3.47

Annexin II (P07355) 2.06





Legend to figures

Figure 1:

Semi-quantitative analysis of the expression of some genes isolated from the differential DC gene bank.

RNA was extracted from monocytes and monocyte-derived DCs. RNA was reverse transcribed and

cDNAs, corresponding to 7 ng and 20 ng (actin, CD18, AP-50, gelsolin, calmodulin, dihydropyriminidase

related-protein 2), or 20 ng and 100 ng (CD1E, CD26, CD32, CD63, MCP-4, cytochrom b561, MRP-4)

were amplified with gene specific oligonucleotides. PCR products were analyzed on 2% agarose gels. For

each gene, the abundance ratio (DC/monocyte) was calculated by densitometry of the RT-PCR products.



Figure 2:

Comparison of 2D maps obtained with total cellular proteins from monocytes (A) and dendritic cells (B).

120 µg of proteins were loaded on each gel. PH gradient in the first dimension: linear 4-8. Mass range in

the second dimension: 15-200 kDa. Detection by silver staining.

Proteins  induced in DCs  and identified are shown with an arrow. The identification is shown on the DC

panel. Except for Prx III, identified by comigration, the proteins were identified by mass spectrometry

(peptide mass fingerprinting method).



Figure 3:

Semi-quantitative analysis of the expression of some genes coding for proteins detected by proteomics.

RNA was extracted from monocytes and monocyte-derived DCs. RNA was reverse transcribed and

cDNAs, corresponding to 7 ng, 20 ng and 100 ng  (MnSOD, EFTu, ARP2-3 GP96, GBI-2), were

amplified with gene specific oligonucleotides. PCR products were analyzed on 2% agarose gels. For each

gene, the abundance ratio (DC/monocyte) was calculated by densitometry of the RT-PCR products.
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