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NUMERICAL SIMULATIONS OF FERROMAGNETIC MATERIALS

Stéphane Labbé1

Abstract. In this article, we give a glimpse on our last works in simulation of ferromagnetism phe-

nomena. The main problems encountered in this type of computation are the demagnetization field and

the microwave susceptibility computations. Difficulties for the demagnetization field come principally

form the fact that the operator is nonlocal and the discretized operator gives a full matrix, we will

focus here on the periodic case ; the microwave susceptibility computation requests the resolution of

many ill-conditionned linear systems.

Résumé. Dans cet article, nous présentons des travaux récents concernant la simulation de phéno-

mènes ferromagnétiques. Les principaux problèmes rencontrés sont le calcul du champ démagnétisant

et de la susceptibilité. En ce qui concerne le calcul du champ démagnétisant, il s’agit de discrétiser un

opérateur non-local. Nous nous concentrerons sur le cas périodique. Quant à la susceptibilité, il s’agit

ici de résoudre plusieurs systèmes linéaires mal conditionn és.

Mathematics Subject Classification. 35Q60,65Z05.

Introduction

Ferromagnetic materials are of high importance for applications, they are used, for example, in nano elec-
tronic, telephony or magnetic data recording. All these applications needs the creation of expensive samples
whose have long time processes f built. Then, in order to optimize these objects, if becomes necessary to be
able to simulate the behavior of magnetic objects before their effective conception. When simulations of static
and dynamic sates are acquired, the comparison with experiments is a crucial point. It is solved by computing
the microwave susceptibility the magnetic objects. In this article, we will remind quickly the notion microwave
susceptibility.

The model used in this article for ferromagnetism is the micromagnetism, introduced by W.-F. Brown in
60’. This model, based upon a thermodynamic analysis of the ferromagnetism phenomena, can be modelized
using a static approach or a dynamic approach. In fact, at least formally, the time asymptotic solutions of the
dynamical approach are local minimizers of the energy used in the static approach.

In a first part we will give a quick reminder of the micromagnetism problem (see also [2,4,5]). In a second part
we will recall the principles of the dynamic simulation [6, 9] and of the magnetostatic computation in the non-
periodic and periodic case [3,7]. The last part will be dedicated to the microwave susceptibility computations [8]
and particularly to the strategy adopted to treat the ill-conditionning of the systems to solve for each frequence.
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1. A model for ferromagnetism: the micromagnetism

Let Ω be an open bounded set of R
3, we designate by m in H1(Ω, S2) the magnetization (here, S

2 = {x ∈
R

3 | |x| = 1}). The energy functional is given by:

E(m) = A

∫
Ω

|∇m|2 dx +

∫
R

|∇ϕ(m)|2 dx +

∫
Ω

φ(m) dx − 2

∫
Ω

hext · m dx,

the first integral is called the exchange contribution and modelizes the microscopic spin-spin interaction on the
crystal net, ϕ(m) is the potential of the demagnetization contribution and verifies △ϕ(m) = −div(m̃) (m̃ is
the padding to zero of m in the whole space), the third integral modelizes the anisotropy effects of the crystal.
Minimizers of this energy are called equilibrium states of the system. There exists also local equilibrium states,
these states are those most commonly observed and can be obtained as time-limits of a dynamical system. This
system, introduced by Landau and Lifchitz, is the following:

∂m

∂t
= −m ∧ htot(m) − αm ∧ (m ∧ htot(m)) + hext, (1)

where htot(m) = A△m + hd(m) + ∂ϕ
∂m

(m), the differential in m of the concentration of energy. This dynamical
system preserves the magnitude of the magnetization m and ensures, if the external field is not dependent of
time, the decreasing of the energy. Formally, this properties leads to conclude that time limits of the solution
of (1) are local minimizers of the energy E(m).
The tool used in order to compare the three dimensional simulations and experimental results is the microwave
susceptibility. The main idea is to light a sample with a monochromatic light, in the three direction of space,
and retrieve the energy emitted by the sample. Mathematically, the problem is written as follows: given an
equilibrium state meq, (h1, h2, h3) an orthogonal basis of R

3, for each ω in R
+
∗ , a pulsation, mj in L2(Ω, R3),

for j in {1, ..., 3} is such that meq + mje
iω t is the solution of the linearised system (1) (first order in hj , mj)

for hext = hje
iω t,

iωmj − (D1(meq) ◦ htot + D2(meq))mj = D1(meq)hj , (2)

where, for every w in R
3

D1(meq)w = −meq ∧ w − αmeq ∧ (meq ∧ w),

D2(meq)w = htot(meq) ∧ w − αmeq ∧ (w ∧ htot(meq)).

2. Dynamical simulations

The dynamical simulation of solution of system (1) is obtained by a finite difference discretization in time
and a finite volumes discretization in space. The main difficulty of the space discretization is to dicretize the
demagnetization field. The demagnetization contribution is given by the following representation formula:

hd(m) = grad div △−1m̃.

In order to discretize this formula, we use a finite volumes like scheme. Let u be an element of L2(Ω) and
(ωi)i∈{1,...,N} a regular cubic mesh of Ω, we define

P (u) =
∑

i∈{1,...,N}

χi

1

|ωi|

∫
ωi

u(x)dx,
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where χi is the characteristic function of ωi, and P ∗ is the canonical injection of the piecewise functions into
L2(Ω). Then, the discrete demagnetizing field hd,h is defined by

hd,h = P ◦ hd ◦ P∗,

this approximation is convergent and the spectrum of the discrete operator preserves the properties of positivity
and contraction. Using the regular mesh structure, we prove that the demagnetization matrix associated to the
discrete operator is a block-Toeplitz matrix, then we can develop a fast computation algorithm such that the
complexity of the demagnetization evaluation is reduced to O(N log(N)) and the storage is in O(N) [7]. It is
possible to also compute the demagnetization field for a domain periodic in one or two directions of space. In
order compute this contribution, we choose to mesh the whole space with a dyadic mesh built on the central
mesh (see fig. 1). In fact, using the scale independence of the demagnetization field, we see that the computation
of the demagnetization contribution on each level is the same, then, we can use the fast algorithm developed
for one domain. The algorithm accuracy is good (see fig. 2). For details see [3].
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Figure 1. Dyadic mesh for a periodic domain in two direction (8 × 8 × 8 mesh of the core domain).

The exchange contribution and anisotropy contribution discretization are classical. In time, we use an explicit
finite difference scheme with a time step optimization in order to ensure the convergence of the scheme. The
time step optimization is automatic and ensure the optimal decreasing of the energy [6, 9].

3. The microwave susceptibility

In order to compute the discretized microwave susceptibility, we replace in equation 2 the continuous version
of operators by the discretized one. The equilibrium states, meq,h are obtain by computing time limits of
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Figure 2. Accuracy of the multilevels algorithm.

dynamical solutions. The problem to solve is, for a given set of values of the pulsation ω, to solve:

(iωId − M)m = h, (3)

where h and m are vectors of R
3N , Id is the identity on R

3N and M is a square matrix of order 3N . M is
defined by

M = D1(meq,h) ◦ htot,h + D2(meq,h).

The system 3 is very ill-conditionned, then the built of a preconditioner is crucial. A proposal of preconditioning
strategy is proposed in [8]. The main idea is to prove that the matrix M can preconditioned by (htot,h)

−1. The

cost of the inversion of the complete htot,h is to high, then, we use an approximation h̃tot,h of this operator
computed as the projection of htot,h on skew matrices in the sense of the Froebenius norm. The results obtained
are good, the implementation for the exchange has been already tested (see fig. 3), the adjunction of the
demagnetization term is in tested now.
The computation time obtained using the fast computation algorithms for the demagnetization field simulation

and the preconditioning of the susceptibility system allow simulation of huge systems of almost on million degrees
of freedom (see [1]).
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[7] S. Labbé. Fast computation for large magnetostatic systems adapted for micromagnetism. SISC SIAM Journal on Scientific

Computing, 26(6):2160–2175, 2005.
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Figure 3. Example of convergence curves for non preconditioned system, preconditioned sys-
tem and approached preconditioned system.
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