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MICROMAGNETIC NUMERICAL SIMULATIONS

F. ALoucGgs!, S. LaBBE?, J.-C. TOUSSAINT? AND N. VUKADINOVIC?

Abstract. The modelization of ferromagnetic materials obeys the micromagnetic theory proposed
by W. F. Brown [4] for static configurations and the Landau-Lifchitz (or Landau-Lifchitz-Gilbert)
equations for the dynamics. In this paper, we briefly present these underlying models and focus
afterwards on three different possible applications in the next three papers. Difficulties including
physical relevance, numerical simulations and analytic properties of the equations that one wants to
keep at the discrete level are discussed.

Résumé. La modélisation de matériaux ferromagnétiques suit la théorie du micromagnétisme pro-
posée par Brown pour les configurations statiques (d’équilibre) et les équations de Landau-Lifchitz (ou
Landau-Lifchitz-Gilbert) pour la dynamique. Dans ce papier, nous décrivons rapidement les principaux
modeles utilisés et nous concentrons dans les trois papiers suivant sur trois applications distinctes. Les
difficultés incluant la pertinence physique, les simulations numériques ainsi que le respect au niveau
discret des propriétés analytiques du modele sont précisées.

Mathematics Subject Classification. 35Q60,65Z05.

INTRODUCTION

Ferromagnetic materials are nowadays in the heart of important and /or innovating technological applications.
Magnetic storage (hard disks, magnetic tapes, but also magnetic memories MRAMS) is still of considerable
interest but one sees also new applications for instance in mobile phones. The model commonly used by physicists
to describe the behavior of such material is called micromagnetism and has been proposed by Brown [4] in the
60’s. Static physical configurations are sought as minimizers of an energy functional which involves a few terms
while dynamical aspects are taken into account by a PDE called Landau-Lifchitz equations. In both cases the
unknown is the magnetization which is a vectorfield inside the magnetic domain. For an overview of the physical
“state-of-the-art” of this domain, we refer the reader to the excellent book by A. Hubert and R. Schéfer [7].

1. MICROMAGNETISM

A ferromagnetic material which occupies a domain €2 C R? is characterized by the presence of a spontaneous
magnetization m which is a vectorfield of constant magnitude M (T") throughout € which only depends on the
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temperature 7. After a suitable adimensioning?, it is not restrictive to assume
|m(z)| =1 a.e. in . (1)

The micromagnetic model consists in associating to m a free energy which usually takes the form

E(m):A/Q\Vm|2 dac—l—K/qu(m)dx—/QHe-mdx—i—%/Rs | Hy(m) 2 da. @)

Other terms reflecting for more accurate physics (e.g. magnetostriction) can be added to the energy but these
four terms already explain a very wide variety of phenomena [7].

Before explaining these four energy terms let us just note that relevant physical configurations of magneti-
zation are sought as solution to the minimization problem

E(m), 3)

min
meH!(,52)

where S? stands for the unit sphere of R®. The first term of the energy is usually called the exchange term, and
A the exchange constant. The second term reflects a possibly anisotropic behavior of the crystal composing
the ferromagnetic material. Namely, the function ¢ : S?> — R¥ is supposed to vanish in a few usually called
“prefered” directions m;. Due to this anisotropy term, configurations that are locally parallel to these directions
are favoured. Typical anisotropies are the uniaxial anisotropy where ¢(m) = (1—(m-u)?) with only one prefered
direction u (here |u| = 1) and the cubic anisotropy for which ¢ vanishes on three mutually orthogonal directions.
This term is balanced by the anisotropy constant K. The last two terms stand for magnetic effects. The first
is the exterior energy which accounts for the possible presence of an exterior magnetic field H,. applied to the
sample (in which case the magnetization tends to align along H,). The last term of (2) is the so-called “stray-
field” energy, and reflects the energy of the stray-field Hg(m) induced by the distribution m through Maxwell
equations. Namely, H;(m) is obtained by solving the following equations

curlHy(m) = 0 in R3,
div(Hg(m) +m) = 0 in R3, (4)

Both equations are understood in the sense of distributions in R3, and m is trivially extended in R® by 0
outside Q. A direct consequence of (4) is that the stray-field energy vanishes whenever m is divergence-free in
distributional sense in the whole space R3, that is to say

div m = 0 in R3, (5)
m-n =0 on 0L,

where n stands for the unit outward normal of €. In particular solving (5) for bidimensional domains and
magnetizations m = (m1,mz) of unit magnitude leads to write m = V-4 where 1 is constant on 9, and 1)
satisfies the eikonal equation

V| =1 on Q. (6)
The explicit construction of the viscosity solution of (6) in terms of the characteristics’ method is termed in
the physics literature by the van den Berg’s construction [10]. The complete justification of the van den Berg’s
construction from the three-dimensional model is not fully understood although it has been thoroughly studied
(see [6] for a recent review of this subject among others). This construction is one of the key arguments of [9].
Moreover, the numerical computation of the stray field infduced by a magnetization distribution is by no means

lof course, Ms(T) plays a crucial role, in particular for the values of characteristic lengths which appear naturally in the
model [3,9]
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obvious. It involves a non-local operator which after discretization usually leads to a dense matrix. We refer
the reader to [8] where this issue is discussed and a fast and precise method is given.

Existence of solutions to (3) is classical and does not pose any difficulty. Uniqueness of such solutions is likely
wrong (due to the constraint (1) the problem is not convex), although the energy can be quadratic for uniaxial
anisotropy for instance). Nonetheless, finding algorithms suitable for the numerical computations of equilibrium
configurations solutions of (3) is difficult. In [9] is given one of the possible methods while the reader is refered
to [1] for the description of a finite element method on this problem.

One of the main mathematical and physical questions is to understand the variety of minimizers and their
characteristics when the parameters which balance the energy terms vary. Indeed, if A and K are small
compared to 1 then the main part of the energy comes from the magnetic terms and it is expected in that
regime that solutions tend to recover a behavior close to the one described by the eikonal equation. Conversely,
when A is very big compared to K and 1, then the solutions should not vary in space and such regime is called
the macrospin approximation. As we see, there are a lot of possibilities which can be analyzed in terms of
I'—convergence techniques (see [6] and references therein) since this is the good framework for analyzing the
convergence of minimization problems.

2. LANDAU-LIFCHITZ EQUATIONS

As far as the dynamics is concerned, the most commonly used model to describe the evolution (in time) of
the magnetization is the Landau-Lifchitz equation

%T = m x H(m) + a(H(m) — (H(m) - m)m). (7)

Here, a > 0 is a damping parameter and the total magnetic field H (also called the effective field) is given by

oE

- Om
2AAM — KV (m) + Hy(m) + H,. (8)

H(m) =

It is easily seen that (7) formally preserves the constraint (1) and that it can (still formally) also be written
under the Gilbert form (or Landau-Lifchitz-Gilbert)

om om 9
E—&—amxg—(l—i—a)mxfl(m). 9)

Moreover, multiplying (7) by H(m) and integrating in time leads to the dissipation of energy

D — o [ H(m) = (#(m) - mmP (10)

which reflects the fact that only the second term in the right-hand side of (7) dissipates the energy. The first
term, however, makes the magnetization turn around the (local) total field H(m) and is termed as the Larmor
precession. Moreover, stationary solution of (7) satisfy (also in view of (10))

H(m)xm=0in Q, (11)

which is precisely the Euler-Lagrange equations of the minimization problem (3). Therefore, minimizers of
E(m) under the constraint (1) are stationary solutions of (7).

Landau-Lifchitz equations are a nonlinear system of partial differential equations for which existence of
solutions - when initial and boundary copnditions are supplied - is far from being obvious. In that direction,
the classical references are [2,11] for the existence of global weak solutions to (7) and [5] for the existence of
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strong solutions locally in time or globally for bidimensional domains and initial data of sufficiently small energy.
Counterexamples to the uniqueness of weak solutions are also given in [2] in the case where the energy only
contains the exchange term.

The linearization of (7) around a minimizer of E(m) leads to a linear behavior of the magnetization distribu-
tion in terms of the applied exterior magnetic field H,. This linear behavior? is called the magnetic susceptibility
and is the subject studied in [3,8] with the help of numerical simulations.

3. CONCLUSION

This paper is an introduction to the topics presented in [3,8,9]. We have described the models used for analysis
and numerical simulations of ferromagnetic materials. Both static configurations and dynamic evolutions of
solutions are adressed and we refer the reader to [9], [8] and [3] for more precise applications respectively for
static equilibrium configurations, numerical computations issues and the computation of susceptibility response
of 3-dimensional magnetic object.
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2More precisely the matrix S : He — Jom.



