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1 Introduction

The purpose of this article is to explore some simple relations between loop
measures, spanning trees, determinants, and Gaussian Markov fields. These
relations are related to Dynkin’s isomorphism (cf [[], [T, [{]) . Their poten-
tial interest could be suggested by noting that loop measures were defined
in [f] for planar Brownian motion and are related to SLE processes (see also
[[7)). It is also the case for the free field as shown in [[J]. We present the
results in the elementary framework of symmetric Markov chains on a finite
space, and then indicate how they can be extended to more general Markov
processes such as the two dimensional Brownian motion.

2 Symmetric Markov processes on finite spaces

Notations: Functions on finite (or countable) spaces are often denoted as
vectors and measures as covectors in coordinates with respect to the canonical
bases associated with points (the dual base being given by Dirac measures
0z)-

The multiplication operators defined by a function, f acting on functions
or on measures are in general simply denoted by f, but sometimes multipli-
cation operators by a function f or a measure Awill be denoted M or M.
The function obtained as the density of a measure p with respect to some
other measure v is simply denoted £.



2.1 Energy and Markovian semigroups

Let us first consider for simplicity the case of a symmetric irreducible Markov
chain with exponential holding times on a finite space X, with generator
Ly = ¢*(P; = d5), A, ¥ € X being a positive measure and P a \-symmetric
stochastic transition matrix: A\, P/ = A, P/ with Py =0 for all z in X.

We denote P; the semigroup exp(Lt) = > %Lk and by m, the measure
;\—;. L and P, are m-symmetric.

Recall that for any complex function z*,z € X, the "energy”

e(z) = (-Lz,7),, = »_ —(Lz)"Z"m,

zeX

is nonnegative as it can be written

e(2) = % D Coy(Z = )EF =)+ Rt =) AT =Y Cp 27
z,y = - oy

with Cpy = Oy = A\, Py and £, = A\p(1 — Zy Pr),ie. Ay = Ky + Zy Coy =
()

We say (z,y) is a link iff C,, > 0. An important exemple is the case of
a graph: Conductances are equal to zero or one and the conductance matrix
is the incidence matrix of the graph.

The (complex) Dirichlet space H is the space of complex functions
equipped with the energy scalar product defined by polarisation of e. Note
that the non negative symmetric ” conductance matrix” C' and the non nega-
tive equilibrium or "killing” measure x are the free parameters of the model.
(so is ¢ but we will see it is irrelevant for our purpose and we will mostly
take it equal to 1). The lowest eigenvector of —L is nonnegative by the well
known argument which shows that the modulus contraction z — |z| lowers
the energy. We will assume (although it is not always necessary) the corre-
sponding eigenvalue is positive which means there is a "mass gap”: For some
positive ¢, the energy e(z) dominates € (2,%),, for all z.

We denote by V' the associated potential operator (—L)™1 = fooo Pdt.
They can be expressed in terms of the spectral resolution of L.
We denote by G the Green function defined on X? as G*Y = W

(I = P)2ie. G = (My—C)L It verifies e(f,Gu) = (f, u) fygi all

Ay y
function f and measure p. In particular Gk = 1.



Different Markov chains associated to the same energy are equivalent un-
der time change. If g is a positive function on X, in the new time scale
fot ge,ds, we obtain a Markov chain with gm-symmetric generator éL. Ob-
jects invariant under time change are called intrinsic. The energy e, P and
the Green function G are obviously intrinsic but L, V and P, are not. We
will be interested only in intrinsic objects. In this elementary framework, it
is possible to define a natural canonical time scale by taking ¢ = 1, but it

will not be true on continuous spaces.

2.2 Recurrent chain

Assume for simplicity that ¢ = 1. It will be convenient to add a cemetery
point A to X, and extend C, X and G to X2 = { X UA}by setting C, o = K,
cAA =D cx ke and G™2 = 0. Note that A(X2) =3y  Coy + 23 ¢ Ky)

One can consider the recurrent "resurrected” Markov chain defined by the
extensions the conductances to X2. An energy e” is defined by the formula

(z) = 5 3 Oy — ) ~ )

We denote by P the transition kernel on X* defined by

ef(z) = (z — PRz,§>A

or equivalently by
Cay _ Cay

>yexaCoy Ao

Note that P®1 = 1 so that ) is now an invariant measure. Let A~ be the space
of functions on X of zero A measure and by V' the inverse of the restriction
of I — P® to A1t vanishes on constants and has a mass gap on A*. Setting
for any signed measure v of total charge zero G¥v = VR§. we have for any
function f, (v, f) = ef'(Gv, f) and in particular f*—f¥ = e®(G%(6,—4,), f).

Note that for g € A\ and carried by X, for allx € X, p, = e®(GFu,1,) =
Mo((I = P)GTp)(x) — k,GRu(A). Hence, applying G , it follows that on
X, Gy = GRu(A)Gr + Gu = GEu(A) + Gu. Moreover, as GRu is in AL,
GEu(ANXD) + 3 ex Ae(Gr)s = 0.

Therefore, Gu(A) = S5 and G = S} + G

[P1]y =




2.3 Transfer matrix

We can define a scalar product on the space A of antisymmetric functions
on X2 x X2 as follows

(w,m) = >, , Coyw™n™. Denoting as in [B] df*" = f* — f*, we note
that (df,dg) = ef'(f, g) In particular

<df, dGR((Sx — 5y)> — Jfmy

As the antisymmetric functions df span the space of antisymmetric functions,
it follows that the scalar product is positive definite.
The symmetric transfer matrix K, indexed by pairs of oriented links, is

defined to be
K(x,y),(u,v) _ GR<(5I . 5y)u . GR(éx . 5y)v —< dGR<(5m _ 5y)’dGR(5u . 51}) >

for z,y,u,v € X®, with = # y,u # v.

We see that for z and y in X, G(5, — d,)* — GF(6, — §,)" = G(6, —
)" — G0, — 8,)"

We can see also that G(d, — da) = G6, — _/\<€‘)’(GA6;‘>. So the same identity
holds in X2.

Therefore, as G®* = 0, in all cases,

K(m,y),(u,v) — GFU L QYU — PV — QY

For every oriented link ¢ = (z,y) in X%gset K¢ = dGR(§® — §Y) =
dG (6™ — oY).

We have <K5, K"> = K%". K will be viewed as a linear operator on A,
self adjoint with respect to (-,-). (It can also be viewed as symmetric with
respect to the euclidean scalar product if we wish to use it Then it appears
as the inverse of the operator defined by (-, -)).

3 Loop measures

3.1 Definitions

For any integer k, let us define a based loop with p points in X as a couple
(67) = (Gn1 < m < p), (7,1 <m < p+1),) in XP x RE™ and set
& = &py1. p will be denoted p(§).



Based loops have a natural time parametrisation £(¢) and a time period
T(€) = Effl)ﬂ 7. If we denote Y ;" 7 by T, &(t) = &y on [Tn—1, Ton)
(with by convention Ty = 0 and & = &,).

A o-finite measure i is defined on based loops by

Oo]‘ Z,T
w=3 [

zeX

where P;"* denotes the (non normalized) "law” of a path from z to x of

duration ¢ : If S0, = ¢,

Pyo(E(t) = @1, ., §(tn) = o) = [Py )7, [Po—t|an -+ [Pty 2"
Note also that

]P)tx’x(p = k7£2 = T2, 7§k = xkuTl S dth 7Tk € dtk)
= [PJ2,[P]22. [P]% L octr <.t <ty €T 1. qye et emar (=t gy qp,

o P2 ..
A loop is defined as an equivalence class of based loops for the R-shift that
acts naturally. g is shift invariant, It induces a measure p on loops.

Tqgy
foT Ge(s)ds

Note also that the measure djy = dpg which is not shift invariant

also induces p on loops.
It writes

ﬁo(p(g) = k’,gl =, ,fk =, 11 € dtl, LTy € dtk,T c dt)

1 <
PP AP O
0 4(s)aS

for k > 2 and

—qazt1

/jo{])(&) = 1,51 =T, T c dtl} = dtl

1

It is clear, in that form, that a time change transforms the fig’s of Markov
chains associated with the same energy one into each other, and therefore
the same holds for u: this is analogous to conformal invariance. Hence the
restriction p; of p to the o-field of sets of loops invariant by time change (i.e.
intrinsic sets) is intrinsic. It depends only on e. As we are interested in the
restriction py of p to intrinsic sets, from now on we will denote simply u; by
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Intrinsic sets are defined by the discrete loop &; (in circular order, up to
translation) and the associated intrinsic times = = 7. Conditionally to the

discrete loop, these are independent exponentiall variables with parameters

i

p=>y e‘“”% +y > II Cecoieomar; (1)

zeX p=2 (& i€Z/PL)EXP €L /P

Sets of discrete loop are the most important intrinsic sets, though we
will see that to establish a connection with Gaussian fields it is important to
consider occupation times. The simplest intrinsic variables are

N:v,y = #{Z : fz = x7§i+1 = y}

N, =Y N,y
Y

Note that N, = #{i > 1: ¢, = x} except for trivial one point loops.
A bridge measure p™Y can be defined on paths 7 from z to y: p*¥(dy) =
m%/ fooo PyY (dvy)dt with

and

PtLy(fy(tl) = X1y ey fY(th> = xh) - Ptl (.T, x1>Pt27t1 (.Tl, .TQ)...Pt,th(Th, y)

Note that the mass of p*¥ is ;—i = G™Y. We also have, with similar notations
as the one defined for loops

w(p(y) = kyve = @2, ooy Vi1 = -1, Ty € dty, ..., Ty € dly—y, T € dt)
B Co,20Ca0.25---C.

TkoLY 1{0<t1<___<tk<t}e’qzt1e’qw(trtl) ...e’qy(t’tk)qmdtl...qufldtqudt

Aoy Ay

so that the restriction of p™¥ to intrinsic sets of paths is intrinsic.
Finally, we denote P* the family of probability laws on paths defined by
P.

Pm<"}/<t1) = T1y ey ’y(th) = .I‘h) = Pt1 (.T, x:[)Pthtl (.Tl, x2)---Pth7th,1<xh717 SL’h)



Po(p(y) = k,v2 = @2, ooy Yo = @, Th € diy, .., T) € diy,)
(G N O

Ky _ _ _
= k1{0<t1<...<tk}€ qztl---e 9o (b tkil)qmdth:vkdtk

Nedag- e,

3.2 First properties

If D is a subset of X, the restriction of p to loops contained in D, denoted
1P is clearly the loop measure induced by the Markov chain killed at the exit
of D. This can be called the restriction property.

Let us recall that this killed Markov chain is defined by the restriction of
A to D and the restriction PP of P to D? (or equivalently by the restriction
ep of the Dirichlet norm e to functions vanishing outside D) and (for the
time scale), by the restriction of ¢ to D.

From now on in this section, we will take ¢, = 1 for all z. Then p, takes
a simpler form:

po(p(&) =k, & =1, .., & = ap, Ty € dty, ..., T, € dty,, T € dt)

1
- Fﬁ?.“Z%ff—igfilifffﬁfile‘tdtl“.dtkdt

for k> 1 and po{p(&) = 1,& = a1, 1 €dty1} = e;l dt,
It follows that for k > 0,

1 T T 1 Nz,y — Nz
Ho(p(§) = k& = wn, o & = 1) = TPL Pl =+ Qc;,yv 11>

xT

as [ tkk_!le*tdt = % and conditionally to p(§) = k,& = 21, ...,& = 1, T 1s a
tk—l

gamma variable of density me*t on R, and (%1 < i < k) an independent

ordered k—sample of the uniform distribution on (0, 1).
In particular, we obtain that, for £ > 2

M@z@z%@z@z%WWW

and therefore, as Tr(P) = 0,

p(p > 0) = —log(det(I — P)) = — log(




det(My—C)

as denoting M) the diagonal matrix with entries \,, det(/—P) = TN

Moreover

/ p(Du(dl) = Tr((I — P)~'P)

Similarly, for any x # y in X and s € [0, 1], setting P = P if (u,v) #
(x,y) and P;,ESJ = sP;, we have:

(V¥ 1 ys0y) = — log(det(I — P))
Differentiating in s = 1, it comes that

N(Nx y) [([ P) ]yP; = GwﬂCx,ZJ

and pu(Nz) = D7, u(Ney) = AGP* — 1 (as (M — C)G = Id).

4 Poisson process of loops and occupation
field

4.1 Occupation field

To each loop [ we associate an occupation field {l/;, x € X} defined by

p(l)

~ (D)
I* = Tie(a1—e ds =Y 1l —s lie —y
[ s z{&l o = 2 v

for any representative (£, 7) of I. It is independent of the time scale (i.e.” intrinsic”).
For a path v, 7 is defined in the same way.
From now on we will take q = 1.
Note that

T o o dt Az
p((1 = e )gp=y) = / (e GaDr — €7t)7 = log(
0

In particular, ,u(l Lip=1}) =
From formula [I], we get easﬂy that for any function ® of the discrete loop
and k£ > 1,

(Y1 oy @) = p((Ny + k= 1)..(Ny + 1) N, ®)

8



In particular, ,u(ﬁ) = i[u(]\fm) + 1] = G**.

Note that functions of I are not the only intrinsic functions. Other in-
trinsic Varlables of 1nterest are, for k > 2
=% Z f0<t1< <tp<T Lie(t)=a1sj e b(thg)=ap,o £ (ti) =2, } H oy

=1 ijo Zl§i1<._<ik§p(1) H1:1 l{fil—1:$l+j/}’\ . and one can check that ,u(lrl ..... k) =
GGt G Note that in general [*'~*F cannot be expressed in
terms of [ for k > 3. R

For z1 = zy = ... = 3, we obtain self intersection local times [®F =

k *

Zl§i1<..<ik§p(l) Hz=1 1{£il_1:x}7'¢l R

For any function P of the discrete loop, u(I*2®) = u( since
/\:B l *
22 = 1) =X L= (77)%) and (@ 20 1ie, =y (77)2)) = 2u(@N,)

More generally one proves in a similar way that ,u(lA”C’k(I)) = u( NZ(NFI)&(N’*R“) D)

Nz (Ng—
(2 1)@)

From the Feynman-Kac formula, it comes easily that, denoting M§ the
diagonal matrix with coefficients =

Pt x(efa’x) —1) =exp(t(P—1—M,))ss—exp(t(P—1)),,. Integrating in
’ X
t after expanding, we get from the definition of u (first for y small enough):

/(e (ix) _ i%

k=1

M )*) = Tr((P)")]

>/\><

Hence
/(e<ﬁx> — 1)dp(l) = log[det(—L(—L + My»)™")] = —log det(I + V My)

which now holds for all non negative x. Set V, = (=L + M, )~' and G,
ViMy. It is an intrinsic symmetric nonnegative function onAX x X. Gy is
the dreen function G, and G, can be viewed as the Green function of the
energy form e, = e + ||| 12(y)- Note that e, has the same conductances C
as e, but y is added to the killing measure. We have also the "resolvent”
equation V-V, = VMxV, = Vi MxV. Then, G -G, = GM,G, = G, M,G.
Also:

det(Gy)

det(I + GM,) ' = det(I — G, M,) = (G (3)

Finally we have the



Proposition 1 i)u(e("Y) —1) = —log(det(I+GM,)) = log(det(I—G\ M, )) =
log(det(G,G™1))

Note that in this calculation, the trace and the determinant are applied to
matrices indexed by X. Note also that det(/ +GM,) = det(I + M xGM /)
and det(l — GyM,) = det(I — M G, M /), so we can deal with symmetric
matrices..

In view of generalizing them to continuous spaces in an intrinsic form (i.e.
in a form invariant under time change), , G and G, will be interpreted as
symmetric elements of H ® H, or as linear operators from H' into H. G is a

canonical bijection. d(f;é(GG’B) can be viewed as the determinant of the operator

G,G™! acting on H.

4.2 Poisson process of loops

Still following the idea of [{], define, for all positive a, the Poisson process
of loops L, with intensity au. We denote by P or P, its distribution. Note
that by the restriction property, LZ = {l € L£,,] C D} is a Poisson process
of loops with intensity p?, and that £ is independent of £,\LZ.

We denote by L2 the set of non trivial discrete loops in £,. Then,

e o e N
P(LL = {li, Iy, ..y }) = emone>0qhulidanle) — [S@a T Co TT, AT
with Ni% =0, N,(1) and NS = 3., N, (D).

Remark 2 [t follows that the probability of a discrete loop configuration de-
pends only on the variables Ny, + Ny ., i.e. the total number of traversals
of non oriented links. In particular, it does not depend on the orientation of
the loops It should be noted that under loop or path measures, the conditional
distributions of discrete loops or paths given the values of all N, + Ny, ’s
is uniform. The Ny, + N, . (Ny,) configuration can be called the associated
random (oriented) graph. Note however that any configuration of Ny, + N, ,
does not correspond to a loop configuration.

We can associate to L, the o-finite measure

)
leLn

Then, for any non-negative measure y on X
Ble~(E) = expla [ (¢~ 1)aut)

10



and

E(e(Eax)) = [det(—L(~L + My,)™)]* = det(I + VMx) ™
Finally we have the
Proposition 3 E(e (%)) = det(I+GM,)~® = det(I—G, M,)* = det(G,,G—)°

Many calculations follow from proposition [.

It follows that E(Z;m) = aG,, and we recover that ,u(i;) =Gy

On loops and paths, we define the restricted intrinsic o-field Z; as gener-
ated the variables IV, , with y. possibly equal to A in the case of paths, with
N;a=0or 1. from (),

The distribution of {N;,SO‘), x € X} follows easily, in terms of generating
functions:

k@ (1 — e\ (] — s
E(H(Sivxz +1) — det((sld—'— \/)\$z>\](]‘ s’l)(l Sj)Gxi,xj)fa

i=1 SiSj
Note also that

(NS + k)(NEY + &k — 1) (NS + 1)
kINE

E((Lo )"Zr) =

and if sglf intersection local times are defined as
= Zm D A 211;&12 ALt H , we get easily that

xT

ok ]' [e% « «
E(L, ~|Zr) = F(N( ) —k+1)..(N® - 1)N@®

Note also that since G, M, is a contraction, from determinant expansions
given in [[J] and [I{], we have

E(<Z;,X>k) = ZXil"-XikPGTa(Gil,ima 1<l,m<k)

11



Here the a-permanent Per, is defined as EUGS a™m@ G’Zl o) Gikvia(k)
with m(o) denoting the number of cycles in o.

Let [HY]® be the hitting dlstrlbutlon of F' by the Markov chain starting
at F. Set D = F° and denote e”, VP = [(I — P)|pxp]~! and GP = [(M,, —
C)|pxp|~" the Dirichlet norm, the potential and the Green function of the
process killed at the hitting of F'. Recall that V = VP + H'V and G =
GP + HFG.

Taking x = alp with F' finite, and letting a increase to infinity, we get

limg oo (GyM,) = HY which is I on F. Therefore by proposition [, one
checks that P(EG(F) = 0) = det(I — H') = 0 and u(l/ZF) > 0) = co. But
this is clearly due to trivial loops as it can be seen directly from the definition
of p that in this simple framework they cover the whole space X.

Note however that u(l/ZF) >0,p>0)=pu(p>0)— u(l/ZF) =0,p>0)

de det(GP
=u(p>0)— /LD(p >0)=— lOg(detDtX(;([P p)) =lo g(erFt)Ex de)t(G’))

It follows that the probability no non trivial loop (i.e.a loop which is not

reduced to a point) in L, intersects F' equals (71T djticfe)t(g))“
T z

Recall that for any (n-+p, n+p) invertible matrix A, det(A™1) det(A;;1 <
i,j <n)=det(A ") det(Aey, ... Aen, €ni1, --Enip)

= det(eq, ...tn, A epi1, A ensy) = det(Ags,n < kL <n+p).

In particular, det(GP) = % so we have the

Corollary 4 The probability that no non trivial loop in L, intersects F
equals (I ],cp Ao detpxp(G)™

In particular, it follows that the probability a non trivial loop in L, visits

z equals 1 — (5 )

Also, if Fy and F; are disjoint, M(Hl( ) >0)=pp>0)+ > lA(FZ) =
0,p > 0) — u(I(Fy) = 0,p > 0) — u(I(Fy) = 0,p > 0)

—lo (det(G) det(GD1”D2

= 108" get(@P1) det (G P2)
sets.

) and this formula is easily generalized to n disjoint

i det(G) [, det(GP7P))...
u([J1(F) > 0) = o8 (T aet (P T, det(GPP v

i<j<k

The positivity yields an interesting determinant product inequality.
It follows in particular that the probability a non trivial loop i in L, visits
two distinct points z and y equals 1 — (%) and G(sz o ifa=1

12



Note finally that if y has support in D, by the restriction property

u(1 {RF):O}(e—<l’><> — 1)) = —log(det(I + G”M,)) = log(det(GD)[G"] ™)

Here the determinants are taken on matrices indexed by D. or equiva-
lently on operators on HP.

For paths we have Pw’y( 7<ZA’X>) = exp(t(L — My ))zy
R By
Hence p®¥(e=(70) = ((f P+ Myym) gy =[Gy ™.
Also E?(e=00) = Zy[GX]m’y/{y.
In the case of a lattice, one can consider a Poisson process of loops with

intensity M(ﬁ)

5 Associated Gaussian field

By a well known calculation, if X is finite, for any x € RY,

det(M)\ - C)
(2m)~

det(Gy)
det(G)

- 1
/(6_%<ZZ’X>6_%G(Z)H%X§dzu ANdz, =

and

det(M, + M, — C 27, —Lle(z 4 n —u T
( 227T)|X|X )/z ZY(e” 3<EX> o3 ()Huexédz Ndz" = (Gy)™Y

This can be easily reformulated by introducing the complex Gaussian field
¢ defined by the covariance E¢(¢$$y) = 2G™Y (this reformulation cannot be
dispensed with when X becomes infinite)

So we have E((e”2<%9X>) = det(I + GM, )" = det(G,,G~') and

E((¢%¢ e 2<¢0x>) = (Gy)™¥ det(G,G™') Then the following holds:

Theorem 5 a) The fields ZI and 2(}55 have the same distribution.
b) E¢((¢m¢ F(¢¢)) = [E(F £1 + 7)) u™Y(dry) for any functional F of a

non negative field.

This is a version of Dynkin’s isomorphism (Cf [[]). It can be extended to
non symmetric generators (Cf [[L0]).

13



Note it implies immediately that the process ¢¢ is infinitely divisible. See
[B] and its references for a converse and earlier proofs of this last fact.

In fact an analogous result can be given when « is any positive half
integer, by using a real scalar or vector valued Gaussian field.

Recall that for any f € H, the law of f + ¢ is absolutely continuous with
respect to the law of ¢, with density exp(< —Lf, ¢ >, —3e(f))

Recall (it was observed by Nelson in the context of the free field) that
the Gaussian field ¢ is Markovian: Given any subset F' of X, denote Hp
the Gaussian space spanned by {¢¥,y € F'}. Then, for x € D = F°, the
projection of ¢* on Hp is EyeF[HF]Zgby .

Moreover, ¢P = ¢ — H¥ ¢ is the Gaussian field associated with the process
killed at the exit of D.

Note also that if a function h is such that Lh < 0, the loop measure
defined by the h*m-symmetric generator L; = %LMh is associated with the
Gaussian field h¢. The killing measure becomes *TLh)\

Remark finally that the transfer matrix K is the covariance matrix of the

Gaussian field d¢™¥ = ¢* — ¢Y indexed by oriented links.

6 Energy variation and currents

The loop measure p depends on the energy e which is defined by the free
parameters C, k. It will sometimes be denoted p.. We shall denote Z, the
determinant det(G) = det(M, —C)~t. Then u(p > 0) = log(Z.)+>_ log(\,).

Other intrinsic variables of interest on the loop space are associated with
real antisymmetric matrices w,, indexed by X A, Wgy = —Wyg.. Let us
mention a few elementary results.

The operator [P¥]7 = P exp(iw,,,) is self adjoint in L*(\).The associated
loop variable writes Y 0_; we ¢, or 35, we y Noy(1). We will denote it f; w.
This notation will be used even when w is not antisymmetric. Note it is
invariant if w, , is replaced by w,, + g(z) — g(y) for some g. Set [G¥]"Y =
W and denote Z, ,, the determinant det(G*). By an argument similar
to the one given above for the occupation field, we have:

P (et — 1) = exp(t(P¥ — 1))y — exp(t(P — I)),,. Integrating in ¢
after expanding, we get from the definition of u :

[ = dutty = 3 LT (P = Tr(P))
k—

1

e
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Hence
/(eiflw — 1)du(l) = log[det(—L(I — P*)™!]

and

plep(Y 1 [0) = 1) = loglden(GG ) = log(2) (@)

leLq ¢

The following result is suggested by an analogy with quantum field theory

(Ct [@])-
Proposition 6 z')a% = ﬁu
ii)alog%z,y - —T$7y,lL
with Ty y(1) = Cry(I" 4+ 1¥) = Npy (1) — Ny (1)

Note that the formula i) would a direct consequence of the Dynkin iso-
morphism if we considered only sets defined by the occupation field.

Recall that o = 37,y e dTL:""Z;iz > e iczpmexy ez Ceupne T dr}

Coy = Cya = AP; and N, =k, + Zy Coy

The formulas follow by elementary calculation.

Recall that p(1*) = G**.and u(N,,) = G*YC,,

So we have p(Ty,) = Cyy (GT* + G¥Y — 2G™VY)

Then, the above proposition allows to compute all moments of 7" and T
relative to u. (Schwinger functions)

Consider now another energy form e’ defining an equivalent norm on H.
Then we have the following identity:

Cl
)= (o)

8,“6’ 3" Nz ylog(
—— =
Olhe
The above proposition is the infinitesimal form of this formula. Note that
from the above expression of u (?7),

/
ny

((ez Nz y IOg(Cz:y )= (A=)l 1))

Zo
Z, )
(the proof goes by evaluating separately the contribution of trivial loops,
which equals Y log(3#)).
Note that if C;w — h*hvCy, et K, = _TLh)‘ for some positive function h

on E such that Lh <0, ZZZ' = H(flﬂ)Q.

He = log(
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—Lller—e
ZE :E(e 2[ ](d)))

Equivalently
C/ )\x P/{L' )\1. Ze/
no( [ T = 1 = e [T % T - 1 = loe(5)
(@y) Y z O zy Y x 7 €
(5)
and therefore
Cl @ A1 (@) Zo
Be,, (][54 [ = (55)
Cay M, Z.
(z,y) ' x
Note also that H [Cz z]Nzy - H{m,y}[cz Z]Nz v+ Ny«
N.B.: These " determine, when e’ varies Wlth <1 and & =1, the

Laplace transform of the distribution of the traversal numbers of non orlented

links N, , + N, ., hence the loop distribution f.

More generally

— > Ng,ylo %— A= Aa)lp+i [, w Ze/,w
pro(e” 2= M EER) TR OIS ) — 1og(Z2) (6)
or C/
A Zer
Y twz y | Na,y TN+ e \w
ME(E[C$7Z/6 ] ]J[)\g] ) log( Ze )

Note also that this last formula applies to the calculation of loop indices if
we have for exemple a simple random walk on an oriented two dimensional
lattice. In such cases, w, can be chosen such that flwzz is the winding
number of the loop around a given point 2’ of the dual lattice! X’. Then
e'm Y, € Ly [;w), is a spin system of interest.

We then get for exemple that

u(/lw) #0) = —%/0 ﬂlog(det(GQ’T““G_l))du

!The construction of w can be done as follows: Let P’ be the uniform Markov transition
probability on neighbouring points of the dual lattice and let h be a function such that
P’h = h except in z’. Then if the link 2y in X intersects 'y’ in X', with det(z—y,2'—y') >
0, set wy ., = h(y") — h(z)

16



and hence

Q 2m 2ruw y—1
]P)( ‘ /w;|) = 0) = e2r Jo " log(det(G G™1))du
2.1

lela

Conditional distributions of the occupation field with respect to values of
the winding number can also be obtained.

We can apply the formula ] to calculations concerning the links visited
by the loops (similar to those done in section [ for sites).

For exemple, R is a set of links, denote e/fl the energy form defined from
e by setting all conductances in R to zero and increasing « in such a way
that A is unchanged..

Then Me(Z(x,y)eR Nyy+ Ny,y > 0) = —IOg(det(G]R[)) and therefore, the

det(G)
probability no loop in L, visits R equals dzte(gg[) = (Zzlf[ ).

7 Self-avoiding paths and spanning trees.

Recall that link f is a pair of points (f*, f~) such that Cy = Cp+ - # 0.
Define —f = (f~, f1).

Let ,ujiy be the measure induced by C' on discrete self-avoiding paths.between
x and y: u;’y(a:, 22, ey, Tn—1,Y) = Cp 2,Coy 25 Co_1 -

Another way to defined a measure on discrete self avoiding paths from x
to y is loop erasure (see for exemple [[]). One checks easily the following:

Proposition 7 the image of u®¥ by the loop erasure map v — vBE is u34%
. 2. x, x, det(G x,
defined on self avoiding paths by py(n) = MJ(TI)W({&) = M¢y(77) det(G gy n})

(Here {n} denotes the set of points in the path n)

Proof: If n = (1 = z,29, .7, = y),and 0, = (x,..2,,), p*Y(yBF =

n) = VEPLVEV]g Vi Pre VORI =l (n) it as

. detc(G{n}c)
M e e e
<n-—1
) TZlS_O:T} 67<a’X>1{WBE=n}:“x’y(d7) - %ei<ﬁ’x>ﬂiy(n)
- det(Gx)\{n}X{n}e_<ﬁ’X>Niy(n) = m%e_@“>ug%(n) for any

self-avoiding path 7.

17



Therefore, under p*¥, tmlditional distribution of ¥ — 7 given v2F =1

is the distribution of £; — Ei"}c i.e. the occupation field of the loops of £,
which intersect 7.
More generally, it can be shown that

Proposition 8 the conditional distribution of the set L. of loops of v given
~BE = is the distribution of £1/L™" i.e. the loops of L1 which intersect
7.

Proof: First an elementary calculation shows that
oyl c;n cr, .
' (P =) = g g ([ g2 Vo s D T[S L ey )

Cx , LY Cxl xzg-- "
Therefore, by the previous proposmon

Cuw L1, ZeZ pinye
HEY (T[22 Vo OV N0 O T [Re] M O) | = ) = T

Moreover, by | and the properties of the Poisson processes,

Cln 1Moy (£ MY LNy (L1720 M Nu(Lr/LiM%) _ ZeZ e inye
E(Hu#[cw] w(L1/ )+Ny,x(L1/ )Hu[ ] (L1/ ) — R
It follows that the distributions of the N$7y+N .'S are identical for the set

of erased loops and £/ Ei"}c. Moreover, remark ] allows to conclude, since
the same conditional equidistribution property holds for the configurations
of erased loops.
Similarly one can define the image of P* by BFE which is given by
PEe(n) = Coips--Cop_y an bz, et (G <y ), for n = (21, ..., 2,), and get
the same results.

Wilson’s algorithm (see [[]) iterates this construction, starting with a’s
in arbitrary order. Fach step of the algorithm reproduces the first step
except it stops when it hits the already constructed tree of self avoiding
paths. It provides a construction of the probability measure P%;. on the set
STx,a of spanning trees of X rooted at the cemetery point A defined by the
energy e. The weight attached to each oriented link & = (z,y) of X x X
is the conductance and the weight attached to the link (x,A) is k.. As
the determinants simplify, the probability of a tree T is given by the simple
formula

1) =2 ]

£er
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Proposition 9 The random set of discrete loops Ly constructed in this al-
gorithm is independent of the random spanning tree, and independent of the
ordering. It has the same Poisson distribution as the non trivial discrete
loops of L.

It follows easily from proposition f .
Together with the spanning tree these discrete loops define an interesting
random graph.

First note that, since we get a probability

Zz Y [ ¢y [ w-=1

YeSTx A (z,y)€T z,(z,A)ET
or equivalently

. 1
2 1w 1l PA_H:EGX)‘:BZG

YeSTx A (z,y)eY z,(z,A)eT

n=2z][» ] & ] F

reX (z,y)eY z,(x,A)eY

so that

Then, it comes that, for any €,

pr pre H \ z
S Y A zeX o Le
(z,y)eYT Py z,(x,A)eY PA H A Ze/

and

C, K/ zZ
e Y Rgy _ Ze
(Il I =% ™)
(z,y)eY 7z, (z,A)ET
We also have Pg,((z,y) € T) = PPP (. = y) = VIPIPY(T, = o) =
CoyG™*(1 — &2)
“From the results exposed in [§] and [[], or directly from the above, we

recover Kirchhoff’s theorem:

Sr(E(r,y) € T) = Coy[G22(1 = &%) + Gvo(1 — G22)] = Cy (G5 +

Gz,z
GYY —2G™Y) = O, , K*¥)@¥) and more generally Pemantle’s transfer current
theorem:
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k
(£, ... £&eY) = (H Ce,)det (K% 1 <i,j <k)

1

Note this determinant does not depend on the orientation of the links.

Proof: We use recurrence on k. Let M denote the smallest subset of
X2 containing the links +¢;, ... + &, and denote £ — M by D Let V be the
subspace of A spanned by all K@% with = and y in M,. Note that the
orthogonal of V' in A is spanned by dG”(4,) and that for any n = (u v) the
projection of K" on V* is dGP(6,—6,), and (dG" (8, — 6,),dGP (6, — b.)) =
[GD]u,u + [GD]v,v _ Q[GD]u,v

Moreover det(K%% 1 < i,j < k) = HK51 A ... /\ngHikA. Therefore, if
Eppr = n det(K%% 1 <4, < k+1) =det(K%% 1 < 4,5 < k)([GP]»" +
[GD]U,U _ 2[GD]u,v)

But the argument given for £ = 1 shows also that Pg,(£n € T|£&, ...+
& €)= Cuu([GP]™" + [GP]Y — 2[GP]*?) so we can conclude.

Therefore, given any function ¢g on non oriented links, E¢;(e™ 2eer 9(5)) =
Esr([Te(1 + (6799 = Dleer) = 3 Tr((Me(e-o—1)K)") and we have

By (e et 9©) — det(T+K Mce—o_1)) = det(I—M i EM sames)

This is an exemple of the Fermi point processes discussed in [[[4].
But, by ([) and (H), it comes that

log(Esr( [ T %) = 2 T2 1) = log( 22
Rz Cmy A Ze/

(zy)eY Y z(z,A)ET z,y

/
vay

The first identity could also be derived from proposition. Q

Pz
As 22 = — L (with the convention - = A1 if k, = 0) we
£ vajccx’erPX'% Kz
T,y Kz

obtain
For any function ¢ on non oriented link of XA, non negative on links of

X

E., (e Zzyg{wy})nyH Z Pre —g{wz} ~Nemly — det(/ — KMeg—e-9))”

T zeXA

20



We can check that this formula allows to recover the identity E._ (w

Nyy — Nyo) = aCy(G™* + G¥Y — 2G™Y) It also gives back prpositin é for
g=0on X x X.

If s is positive everywhere, we can adjust g({z, A}) to make °__ o Pre 905} =
1 This means we have to choose k,(1—e 9{=AD) = /{x(l—i—z(l—zzex Pre—9lzzh)y)

= (Ko — Aot ex Cpre~ 9zl = S ex Cypo(e79U=2h — 1)

We check also also that by [

B, (¢~ Xaw9{zvhNew) — (ZeLya — (th(MAi_(ieC_)g))*“ Finally, the restriction

. Ze L det (M) .
on k can be removed by taking a limit and we obtain:

Proposition 10 For any function g on non oriented link of Xa, non neg-
ative on links of X, set Tg(§) = Ce(1 — e799)) if € is a link of X and
Tg({z,A}) =3 .cx C’m(e 9l@2) 1) for all x. Then

det(I +C(I —[e79)))™ = E,, (e~ Zew9UevDNow) — det(I — KM(g))™®

We see that the Poisson measure on loops L, induces a point process N
on the space of non oriented links defined by the pair (a, K') which reminds
the point processes discussed in [[4]. Note however a difference of sign in the
right hand side determinant, which is not a Laplace transform for positive a.

8 Fock spaces and Wick product

Recall that the Gaussian space H spanned by {¢”, x € X} is isomorphic to H
by the linear map mapping Re(¢,) on G,.. which extends into an isomorphism
between the space of square integrable functionals of the Gaussian fields
and the symmetric Fock space obtained as the closure of the sum of all
symmetric tensor powers of H (Bose second quantization). We have seen
that L? functionals of ZI can be represented in this symmetric Fock space.
In order to prepare the extension of these isomorphisms to a more interest-
ing framework (including especially the planar Brownian motion considered
in [{]) we shall introduce the renormalized (or Wick) powers of ¢¢.
The Laguerre polynomials L2 (z) are defined by their generating function
_xt
=t Ly (x)

Then one defines the polynomial P,(-) = (=1)"n!L2(-)
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Setting 0, = G, it comes that O"Pn(%) is the inverse image of a 2n-th
tensor in the Fock space denoted : (¢¢)" :.Note that : (¢@) := (¢¢)—20 These
variables are orthogonal in L?. Set o =1 — o, be the centered occupation
field. Note that an equivalent formulation of proposition f is that the fields
% . ¢¢ : and L, have the same law.

Let us now consider the relation of higher Wick powers with self intersec-

tion local times.

9 Decompositions

If D C X and we set F' = D¢, the orthogonal decomposition of the Dirichlet
norm e(f) into e?(f — HY f) + e(HY f) (cf [{] and references) leads to the
decomposition of the Gaussian field mentionned above and also to a decom-
position of the Markov chain into the Markov chain killed at the exit of D
and the trace of the Markov chain on F'.

Proposition 11 The trace of the Markov chain on F is defined by the
Dirichlet norm e} (f) = e(H f) , for which

CLY = Coy+ D CoaCin[G71"

a,beD

AT =0 = Y CraCia G
a,beD
and
Ze = Zp Z(r)

Proof: The first assertion is well known. For the second, note first that
for any y € F, [HY]Z = 15—y + 1p(x) > ,c p[GP ] Ch, . Moreover, e(HF f) =
(f,H"f)_ and therefore

M = e (1) = el H' ) = Ao = Yoep Coal HT: = A =
2 apep Co.aCbaGP]*.

Then for distinct  and y in F,

Cho' = = Ly L)ooy = = (Leps H Lgyy), = Cog + 22, Coal H' g =
Coyt Yapep CraClhy[G7]™.

Finally, note also that Gt} is the restriction of G to F. asfor all z,y € F,
<G'7y, 1{m}>e{p} = <G"y, [HF]Q[;>6 = 1yz—yy. Hence the determinant decompo-
sition already used in yields the final formula.
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The cases where F' has one point was already treated in section 3-2.
The transition matrix [P{F }] can also be computed directly and equals

Px—l— Ea e PmeVDU{a:}] Px—l— S, e pe be[GDU{m}]ab The calcu-

F}
lation of f - yields a decomposition in two parts according whether the jump
to y oceurs from z or from D.

If we set e, = e + ||| 12(,) and denote [e, ]I} by et} we have

) J— D a,b
CUX = Coy + ) CraCiy[GY]
a,b

and
)\iF,x} =\, — Z Cx,acb,z [G?]a,”

a,b

More generally, if e# is such that C# = C on F x F, and A = A\*¥ on F

we have:
F Dia
ctin =c,, Z Reend

and

)\Z:%{F} — )\ Z wa GID ab)

A loop in X which hits F' can be decomposed into a loop [} in F and
its excursions in D which may come back to their starting point.

Set Vﬂ?y = Cﬂ?yya@+2a,beD Cﬂ:,acb,ylua[;b and Vf) = )\;15®+Z;L.O:1 )\;n(Za,beD C%llcb,xﬁa[;b)@n'
Here 1% denotes the bridge measure (with mass [GP]* associated with e,
Note that v (1) = it and vP(1) = FIF} We get a decomposition of p

into its restriction u” to loops in D (associated to the process killed at the
exit of D), a loop measure p{f} defined on loops of F by the trace of the
Markov chain on F', measures I/gy on excursions in D indexed by pairs of
points in £ and measures v? on finite sequences of excursions in D indexed
by points of F'.

Conversely, a loop [Y} of points & in F (possibly reduced to a point), a
family of excursions ¢, ¢,,, attached to the jumps of It} and systems of i.i.d.

excursions , 7¢, attached to the points of (¥} defines a loop A (I}, (Vereinn ), ()
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Note excursions can be empty. Then p — p” is the image measure by A of
PN AN TT@E ¢, ) (dg ) TTPE (dre,), denoting ¥ the normalised mea-

sures m .

The Poisson process ci = {1} 1 € L£,} has intensity ptf? and is
independent of £P.
In particular, if x is a measure carried by D, we have:

—(Lax) | pAF Z.p CEZ’X} N. A Natl
setene -2 T (1 I

C{F}
l{F}eLgF} z,yel z,y zeF
More generally

Proposition 12 if C* =C on F x F, and A = \* on F

Eﬁa (Hg; y¢F><F[Cﬁy]Nx7y€_erD l;()\f—)\x)‘LiF}) —

Cz,y
Z cH#IF} {F}
[ éjDD]a Hl{F}el:gF}(Hm,yeF[ gﬁ} ]Nx’y HmeF[;\ﬁF}]NxH)

The proof can be done by decomposing all ¢’ into e# + (¢/ — e#), with
(¢/ — e?) carried by F’

These decomposition formulas extend to include a current w provided it
is closed (i.e. vanish on every loop) in D. In particular, it allows to define
w!" such that:

Zew = Zep Zory yF

10 Reflection positivity and Hilbert space

Let us fix a. In view of physical applications, it is appropriate to assume
that X is the union of two parts X* exchanged by an involution p under
which e is invariant. Each configuration £, of loops induces a configuration
A of loops in X = X* N X~. Given a function I on loops configuration in
X, it follows from the previous proposition the following

Corollary 13 E(F(Lu|x+)|A) = E(F o p(La|x-)|A)
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so that the reflection positivity (also called physical positivity) property
holds: B
|F|| = E(F(Fop)) > o.

The physical space is the quotient space modulo functionals of zero norm.
It identifies with L? functionals of A. Osterwalder-Schrader-type construc-
tion can be used to produce non commuting field observables. More precisely,
after extending the framework to infinite spaces (see section below), one can
assume for exemple X has a product structure S x Z and that the time
translation 7 and the time reversal p leave e invariant. Then 7 induces a
self adjoint contraction T of the physical space, hence a Hamiltonian log(7’)
and by complex exponentiation, a unitary dynamic U. Non commuting ob-
servables are obtained by conjugation of an observable by the opeators U™.
This extends the construction of the relativistic non commuting quantum
free field observables out of the Euclidean Gaussian field.

11 The case of general Markov processes

We now explain briefly how some of the above results will be extended to
a symmetric Markov process on an infinite space X. The construction of
the loop measure as well as a lot of computations can be performed quite
generally, using Dirichlet space theory Let us consider more closely the
occupation field [. The extension is rather straightforward when points are
not polar. We can start with a Dirichlet space of continuous functions and
a measure m such that there is a mass gap. Let P, the associated Feller
semigroup. Then the Green function is well defined as the mutual energy of
the Dirac measures 0, and J, which have finite energy. It is the covariance
function of a Gaussian Markov field ¢, which will be associated to the field
[ of local times.of the Poisson process of random loops whose intensity is
given by the loop measure defined by the semigroup F;. More precisely,
Propositions [l and [ still hold (x being defined as a Radon measure with
compact support on X) as long as the continuous Green function G will be
locally trace class. This will apply to exemples related to one dimensional
Brownian motion or to Markov chains on countable spaces.

When points are polar, one needs to be more careful. We will con-
sider only the case of the two and three dimensional Brownian motion in
a bounded domain killed at the boundary, i.e. associated with the classical
energy with Dirichlet boundary condition. The Green function is not locally
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trace class but it is still Hilbert-Schmidt which allows to define renormalized
determinants dety (Cf [[J]) and to extend the statement of proposition f
to the centered occupation field and the Wick square : ¢¢ : of the general-
ized Gaussian Markov field ¢. These three generalized fields are not defined
pointwise but have to be smeared by measures of finite energy x such that
[ G™Yx(dz)x(dy) < co. The centered occupation field [ is defined as follows:
Let AY be the additive functional associated with x of finite energy. Then

<T, X> is defined as lim, o fO(T_E)+ dAY — po O(T_a)Jr dAY) which converges in
L*(po). Tt is an intrinsic quantity.. We then have

Proposition 14 a) The centered occupation field Zvl and the Wick square
% 1 ¢¢ . have the same distribution.

b) E(e o)) = dety (G G1)°

To justify the use of dety, note that in the finite case det(I + GM,) =
dety(I + GM,)eX(?) where we recall that o,! is the capacity of z, which
vanishes now since x is polar.

In two dimensions, higher Wick powers of ¢¢ are associated with self
intersection local times of the loops.

Let us now consider currents. We will restrict our attention to the two
dimensional Brownian case, X being an open subset of the plane. Currents
can be defined by divergence free vector fields, with compact support. Then
flw and [ X@awgb — ¢0,¢)dx are well defined square integrable variables
(it can be checked easily in the case of the square by Fourier series). The
distribution of the centered occupation field of the loop process ”twisted”
by the complex exponential exp(} ., [ iw + L(|lw||*)) appears to be the
same as the distribution of : ¢¢ : "twisted” by the complex exponential
eXp(fx(¢aw¢ — ¢0,¢)dx) (CE[LO]).

These points, among others, will be developped in a forthcoming article.
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