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ABSTRACT

Aims. We investigate the confinement and long-term dynamics of themagnetised solar tachocline.
Methods. Starting from first principles, we derive the values of turbulent transport coefficients in the magnetised solar tachocline and then
explore the implications for the confinement and long-term dynamics of the tachocline.
Results. For reasonable parameter values, the turbulent eddy viscosity is found to be negative, with turbulence enhancing the radial shear in
the tachocline. Both magnetic diffusivity and thermal diffusivity are severely quenched, with the values much smallerthan the magnitude of
the eddy viscosity. The effect of the meridional circulation on momentum transport viathe hyperviscosity becomes important when the radial
shear becomes large (larger than the presently inferred value) due to the negative viscosity. The results imply that thetachocline develops too
strong radial shear to be a stationary Hartmann layer. In thelimit of a strong radiative damping where the turbulence is active on very small
scales (< 10−4R⊙), the eddy viscosity can become positive although its effect is likely to be dominated by the hyperviscosity. In comparison
with the momentum transport, the transport of magnetic field, heat, and passive particles is more severely quenched. Theresults imply that the
tachocline of thickness is larger thanO(10−2R⊙), independent of the strength of magnetic fields. In addition, the momentum transport is much
more efficient than the particle mixing in the tachocline, consistent with the observations.
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1. Introduction

A consistent theory of transport in the solar interior (in particular, the tachocline) is essential to the understanding of the evolution
of solar rotation and magnetic fields and the distribution ofchemical species. While turbulence is assumed to be absent in the
interior in the standard solar model (Stix 1989), observations (e.g., Pinsonneault et al. 1989) and numerical simulations (e.g.,
Rüdiger & Kitchatinov 1996) suggest that transport in thisregion — although not so fast as turbulent transport (e.g., such as in
the convection zone) — should be faster than molecular processes to be consistent with the current rotational profile andsurface
depletion of light elements. Such a modest transport could be due to waves via dissipative processes (e.g., radiative damping
of gravity waves). Another interesting possibility, whichhas not received much attention, is that turbulence is present in the
interior due to a variety of instabilities (e.g., see Spruit1999 and references therein), but that the overall transport due to this
turbulence is considerably reduced as a result of turbulence regulation. Our previous works (Kim 2005; Kim & Leprovost 2006)
have shown that stable stratification as well as shearing by the radial differential rotation in the tachocline can precisely do this
as the excitation of gravity waves reduces the stochasticity in turbulent flow while shearing enhances the overall dissipation (see
also Kim 2004).

The turbulent transport reduction can also be caused by magnetic fields (e.g., Cattaneo & Vainshtein 1991; Gruzinov &
Diamond 1994; Kim & Dubrulle 2001; Kim 2006). In the tachocline, a strong toroidal magnetic field of the strength 104 ∼ 105

G is believed to be present, which can easily be generated when a weak poloidal magnetic field is sheared by differential rotation
in the tachocline. A poloidal magnetic field here could be either of primordial origin evolving on a long evolutionary time scale
(i.e., slow tachocline), or generated by dynamo process operating on fast time scale of the solar cycle (i.e. fast tachocline) (see
e.g., Gilman 2000; Petrovay 2003). Thus, magnetic fields canpotentially play a crucial role in the transport of momentum,
chemical species, and magnetic flux on long and/or short time scales. In particular, on an evolutionary timescale, the tachocline
may be considered as a boundary layer between the uniformly rotating radiative interior and differentially rotating convection
zone with latitudinal variation (Rüdiger & Kitchatinov 1996; Gough & McIntyre 1998; MacGregor & Charbonneau 1999), and
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the dynamics of this boundary layer crucially depends on thevalues of the effective magnetic diffusivity, eddy viscosity, etc.
The understanding of this boundary layer thus requires the prediction of these turbulent transport coefficients, derived from first
principles. Furthermore, the momentum transport and chemical mixing across the tachocline play a crucial role in the evolution
of solar differential rotation and the distribution of chemical species. In particular, the present solar rotational profile and surface
depletion of light elements (lithium) (Schatzman 1993) indicate that the angular momentum transport must have been more
efficient than the particle mixing in the solar interior (e.g. Pinsonneault et al. 1989). This should be explained by a consistent
theory of the momentum transport and chemical mixing in the tachocline, rather than invoking a crude parameterization as has
often been done by previous authors.

The purpose of this paper is to provide a consistent theory ofturbulent transport in the magnetised tachocline and then
investigate its implications for a long-term dynamics of the (slow) tachocline. Special attention is paid to the elucidation of
different effects on transport of shearing, stable stratification, and magnetic fields, identifying what is most likely to be the main
mechanism for turbulence regulation in the tachocline. Theremainder of the paper is organized as follows. We elucidatethe
effects of gravity-Alfven waves on turbulent transport in Sect. 2. In Sect. 3, we incorporate the effect of shear flow given by the
radial differential rotation and provide the theoretical predictionsfor turbulent coefficients in the stratified magnetised tachocline.
We elaborate on implications of the results for a long-term dynamics of the tachocline in Sect. 4. Section 5 is devoted to the
discussion of the limit of strong radiative damping. Section 6 contains the conclusions and discussions.

2. Turbulent transport in 2D MHD with density stratification

We envision that turbulence in the tachocline is driven externally, for instance, when plumes penetrating from the convection zone
randomly stir/perturb the region. In the presence of density stratification and magnetic fields, this random stirring will excite both
gravity and Alfven waves in the tachocline, which will in turn increase the memory of fluid motion which would otherwise be
random and incoherent. As a result, turbulent transport is expected to be reduced (e.g. see Kim & Leprovost 2006). In Kim &
Leprovost (2006), we have shown that the stable stratification (gravity waves) leads to transport property in the three dimensional
hydrodynamic (3D HD) turbulence very similar to that in the two dimensional hydrodynamic (2D HD) turbulence (without the
latitudinal dependences) with a negative viscosity in both2D and 3D. We recall that without stratification the eddy viscosity is
negative in 2D HD case while it is positive in 3D HD case. Magnetic fields also tend to make the property of 2D turbulence more
like that of 3D turbulence, leading to a positive viscosity even in 2D (Kim & Dubrulle 2001). Therefore, we model our stratified
magnetized tachocline by a 2D incompressible fluid in a localcartesian coordinatesx andy. Here,x andy represent radial and
azimuthal directions, respectively. We consider a uniformtoroidal magnetic fieldB = B0ŷ = (0,−∂xa0, 0) and represent the
differential rotation by a large-scale shear flowU0 = U0(x)ŷ in parallel to the toroidal magnetic field. Note that a similar cartesian
2D model for the tachocline was adopted in Kim & MacGregor (2001). For simplicity, we adopt the Boussinesq approximation
to capture the effect of density stratification and the quasi-linear analysisby assuming that total mass densityρ = ρ0+ ρ

′, particle
density for chemical speciesn = n0+ n′, vorticityω = ω′ = ω′z = ∂xvy − ∂yvx, and magnetic potentiala = a0+ a′ consist of mean
and fluctuating components, denoted by subscript ‘0’ and prime, respectively. The governing equations for the fluctuationsω′,
a′, andρ1 = ρ

′/ρ (ρ is the mean constant mass density) can be written as follows:

(∂t + U0∂y)ω′ = g∂yρ1 − B0∂y∇2a′ + ν∇2ω′ + f , (1)

(∂t + U0∂y)a
′ = −vx∂xa0 + η∇2a′ , (2)

(∂t + U0∂y)ρ1 =
N2

g
vx + µ∇2ρ1 . (3)

Here,ν, η andµ are molecular viscosity, Ohmic diffusivity and thermal diffusivity, respectively;f in Eq. (1) is the small-scale
forcing driving turbulence;N =

√

−g(∂xρ0 + ρg/c2
s)/ρ is the Brunt-Väisälä frequency;cs is the sound speed;ρ0 = ρ0(x) andρ

are the mean background and constant mass densities, respectively. Note that the typical values ofν, µ, η, andN in the tachocline
are 102 cm2s−1, 107 cm2s−1, 104 cm2s−1, and 10−3 s−1, respectively.

To elucidate the role of magnetic fields and stable stratification in transport, it is illuminating to examine their effect on the
diffusion of magnetic flux. To this end, we ignore the large-scaleshear flowU0 and forcingf and recast Eqs. (1)–(3) as follows:

∂tω̃ = igkyρ̃1 + ikyB0k2ã − νk2ω̃ , (4)

∂tã = iB0kyω̃/k
2 − ηk2ã , (5)

∂tρ̃1 =
N2

g

ikyω̃

k2
− µk2ρ̃1 . (6)

Here,ω̃, ã andρ̃1 are the Fourier transform ofω′, a′ andρ1. Equations (5) and (6) give us∂tρ̃1/∂tã ∼ ρ̃1/ã ≃ N2/gB0 for small
dissipation, which can then be used in Eq. (4) to obtain

∂tω̃ ≃ ikyB0k2













N2

k2B2
0

+ 1













ã , (7)
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By using Eq. (7), we can compute the magnetic flux as

Γx = 〈vxa′〉

=

∫

d2kdt〈∂t ṽx(k)ã(−k) + ṽx(k)∂tã(−k)〉

≃ τB0

2

[

〈v2〉 − α〈b2〉
]

. (8)

Here,b = ∇×a′ẑ, α = 1+N2/k2B2
0, and

∫

dt ∼ τ is used whereτ is the characteristic time scale of turbulence (see, e.g., Gruzinov
& Diamond 1994). For stationary fluctuations, the fluxΓx is related to magnetic energy〈b2〉 asB0Γx = η〈b2〉, thereby giving us
ηT = Γx/B0 as:

ηT ≃
η0

T

1+ α
η0

T B2
0

η〈v2〉

, (9)

whereη0
T = τ〈v2〉/2 is the turbulent diffusivity in the absence of magnetic field (B0 → 0) and stratification (N → 0). ηT in

Eq. (9) immediately shows that magnetic diffusivity is severely quenched for largeRm = η0
T /η as either the magnetic field or

density stratification becomes strong. This is because the excitation of waves (Alfven or gravity waves) increases the memory of
turbulent eddies, reducing their stochasticity which is essential for turbulent transport. Note that Eq. (9) recoversthe 2D MHD
result asN → 0 (e.g. Gruzinov & Diamond 1994).

To elucidate the effect of radiative damping, it is instructive to consider the limit of strong radiative damping. In that case,
Eq. (6) can be approximated asN2ikyω̃/gk2 ∼ µk2ρ̃1. A similar analysis then gives us the magnetic diffusivity

ηT ≃
η0

T

λ +
η0

T B2
0

η〈v2〉

, (10)

whereλ = 1+ τk2
y N2/µk4. The contribution from the gravity waves to the transport reduction (the denominator ofηT ) in Eq. (10)

is τk2
y N2/µk4, which should be compared withτN2/ηk2 in Eq. (9). The ratio of the two is thusη/µ, which becomes very small

for strong radiative damping (i.e., for largeµ). That is, magnetic diffusivity in Eq. (10) is less reduced by stratification in the case
of a strong radiative damping, as compared to that in the caseof weak damping [Eq. (9)]. This is simply because the radiative
damping weakens buoyancy effect. In the extreme limit ofµ→ ∞, the effect of stratification disappears withλ→ 1 in Eq. (10),
recovering 2D MHD result in the absence of stratification.

3. Consistent theory with the radial differential rotation

In Sect. 2, we have shown that both stable stratification and magnetic fields can severely quench the transport of magneticfield.
In this section, we present a consistent theory of turbulenttransport in the magnetised tachocline, by incorporating abackground
shear flowU0ŷ provided by the radial differential rotation. The latitudinal differential rotation is neglected compared to radial
differential rotation since it is weaker in the tachocline due tothin tachocline thickness (< 0.03 ∼ 0.05 of the solar radius) [see
Leprovost & Kim (2006) for the dynamics and the effect of latitudinal differential rotation]. This shear flow plays a crucial role
in regulating turbulence and turbulent transport by shearing [e.g., see Kim (2005)]. For simplicity, we assume a linearshear
flow U0ŷ = −xAŷ, whereA = |∂xU0| > 0 is the radial shear (or shearing rate), which is assumed to be positive without loss
of generality. In order to incorporate the shearing effect non-perturbatively, we employ the special Fourier transform for the
fluctuating quantitiesφ′:

φ′(x, t) =
1

(2π)3

∫

d3kφ̃(k, t) exp{i(kx(t)x + kyy + kzz)} , (11)

wherekx(t) linearly increases in time due to shearing as

kx(t) = kx(0)+ kyAt . (12)

Here,A = |∂xU0| is again the shearing rate of the shear flow. In this section, we consider the case where the radiative damping
rate is small compared to the shearing rate. That is, we consider a strong shear limit whereξµ = µk2

y/A ≪ 1. Here,l f = 1/ky is
the characteristic length scale of the forcing. Thus,ξµ (≪ 1) is a small parameter, representing the strong shear limit. For typical
solar parametersµ ∼ 107 cm2 s−1 andA ∼ 3× 10−6 s−1, this is a good assumption valid for a broad range of characteristic length
scales of the forcingl f = 1/ky

>∼ 106 ∼ 107 cm (∼ 10−4R⊙ whereR⊙ ∼ 5× 1010 cm is the solar radius). Note that the opposite
limit of the strong radiative damping is considered in Sect.5.
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For ξµ ≪ 1, the coupled equations (1)–(3) can easily be combined to form the following equation for ˆa =

ã exp [µ(k3
x/3kyA + k2

y t)/2]

∂τ[(1 + τ
2)∂τâ] + γ2[(1 + τ2) + β]â ≃ iB0

A2ky
f̂ (τ) , (13)

to leading order inξµ. Here,τ = kx/ky = kx(0)/ky + At, γ = |B0ky/A|, β = N2/B2
0k2

y = N2/ω2
A, ωA = |B0ky| is the Alfven

frequency of the modeky, and f̂ = f̃ exp [µ(k3
x/3kyA + k2

y t)/2].
The solution to Eq. (13) in the limit of strong magnetic fieldγ ≫ 1 and stratificationN2/A2 ≫ 1 can be found as

â(τ) ≃ iB0

A2kyγ

∫

dτ1
sinγ[Q(τ) − Q(τ1)] f̂ (τ1)

[(1 + τ2)(1+ τ2
1)(1+ τ2 + β)(1+ τ2

1 + β)]1/4
, (14)

whereQ(τ) =
∫

dτ
√

1+τ2+β

1+τ2 . Note that the strong magnetic field limitγ > 1 holds on a broad range of length scales of the forcing

l f
<∼ LB = 1010 cm for B0 = 104 ∼ 105 G in the tachocline. To obtain the turbulent coefficients, we assume that the forcing is

homogeneous with a short correlation timeτ f ;

〈 f̃ (k1, t1) f̃ (k2, t2)〉 = τ f (2π)2δ(t1 − t2)δ(k1 + k2)φ(k2) . (15)

A long but straightforward algebra by using Eqs. (1)-(7), (14) and (15) then gives us the eddy viscosity defined by〈vxvy−bxby〉 =
−νT∂xU0 = νTA (b = ∇ × a′ẑ):

νT =
τ f

2A2

∫

d2k
(2π)2

φ(k)
k2

y















−1+
1

√

1+ β















∼ 1
A2















−1+
1

√

1+ β















F . (16)

Here,φ(k) is the power spectrum of the forcing defined in Eq. (15);F ∼
∫

d2kφ(k)/k2
y ∼ v2

f /τ f is the strength of the forcing

with the characteristic velocityv f and correlation timeτ f ; β = N2/B2
0k2

y = N2/ω2
A, ωA = |B0ky|; A = |∂xU0| is the radial shear.

What is the most remarkable about the eddy viscosity in Eq. (16) is that it is always negative regardless of the relative strength of
stratification to magnetic field (i.e.,β = N2/ω2

A). In 2D MHD, the Maxwell stress exactly cancels the Reynoldsstress to leading
order while the incomplete cancellation between the two in the next order gives a small positive eddy viscosity (∝ 1/B2

0) (Kim &
Dubrulle 2001). The cancellation of these leading order contributions in 2D unstratified MHD can easily be checked in Eq.(16)
by puttingβ = 0, which givesνT = 0. In contrast, in a stratified medium withβ , 0, the leading order cancellation in Eq. (16)
is not perfect, giving a net negative eddy viscosity. This can be shown to be due to the fact that the exact equipartition between
the kinetic energy and magnetic energy (for pure Alfven waves) is broken by buoyancy, with larger kinetic energy than magnetic
energy, driving a negative eddy viscosity. A negative eddy viscosity, in a sharp contrast to a positive eddy viscosity, signifies an
anti-diffusive momentum transport against the gradient of the shear flow. In other words, the overall momentum transport due to
turbulence accelerates the mean flow, accentuating its gradient rather than eradicating it. A similar tendency of the acceleration
of the mean flow in the magnetised tachocline can also be due tothe direct momentum deposition of gravity waves via radiative
damping (Kim & MacGregor 2001).

For clarity, we examine the behavior ofνT as a function ofβ. For largeβ (strong stratification/weak magnetic field),νT ∝
[−1 + |B0ky/N|]/A2, showing that the effect of magnetic fields tends to make eddy viscosity positive.In the opposite limit of
smallβ (weak stratification/strong magnetic field),νT ∝ −N2/B2

0A2, whose absolute magnitude|νT | is small compared to 2D
HD case. This again reflects the tendency of magnetic fields making the eddy viscosity less negative (i.e. more positive).Note
that for parameter values typical of the tachocline, the cross-over scaleLN from β > 1 to β < 1 is roughlyLN = 107 ∼ 108

cm. To recapitulate, the result (16) shows a tendency of a negative eddy viscosity in stratified medium despite the presence
of strong magnetic fields, suggesting that the turbulent transport in the tachocline would amplify the shear provided bythe
radial differential rotation for reasonable values of parameters. We emphasize that the negative eddy viscosity represents the
amplification of a large-scale shear flow at the expense of small-scale turbulence. The value of magnetic diffusivity, defined by
〈a′vx〉 = −ηT∂xa0, depends on whetherα = (ξµ/3)(1+β)3/2 is larger or smaller than unity. First, in the caseα≪ 1, which is valid
for eitherβ > 1 orβ < 1 on scalesL < LM = B3

0A/µN3 ∼ 108 cm (1011 cm) for B0 ∼ 104 G (105 G), we can obtain

ηT =
τ f

2B2
0

∫

d2k
(2π)2

φ(k)
k4

y
ξηG0

1
√

1+ β

∼ 1

B2
0k2

y

ξ2/3
η

(

η

µ

)1/3 1
√

1+ β
F . (17)
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Here,G0 = (3/ξµ)1/3Γ(1/3)/3; ξµ = µk2
y/A ≪ 1; ξη = ηk2

y/A ≪ 1; Γ(x) is the Gamma function;F ∼
∫

d2kφ(k)/k2
y ∼ v2

f /τ f is
again the strength of the forcing with the characteristic velocity v f and correlation timeτ f . In comparison, for (β ≫) α ≫ 1, we
obtain

ηT =
τ f

2N2

∫

d2k
(2π)2

φ(k)
k2

y
ξηG1

∼ 1
N2

ξ1/3
η

(

η

µ

)2/3

F , (18)

whereG1 = (3/ξµ)2/3Γ(2/3)/3. In each case, the density (heat) diffusivity µT (〈ρ′vx〉 = −µT∂xρ0) is given by

µT ≃
µ

η
ηT . (19)

(see also Kim 2006).
Equation (17) shows that the turbulent diffusion of magnetic field (ηT ) can severely be quenched by a strong mean magnetic

field and stratification, proportional to 1/B2
0 for β < 1 and to 1/B0N for β > 1, respectively. It is worth noting thatηT ∝ 1/B2

0
was observed in numerical simulation (e.g. Cattaneo and Vainshtein 1991) of 2D unstratified MHD turbulence (β = 0). As
the stratification becomes stronger for a fixedB0 with the further increase inβ, the diffusion is now reduced as 1/N2 [see Eq.
(18)]. It is important to note that in all cases, magnetic diffusivity has a much smaller magnitude than the eddy viscosity[in
Eq. (16)], with a small value ofηT /|νT |. Note that a similar tendency was also found in the stably stratified shear turbulence
without magnetic fields (Kim & Leprovost 2006). Specifically, in the strong magnetic field and weak stratification region with
α < 1 andβ > 1, ηT /|νT | ∼ ξ

2/3
η (η/µ)1/3A2/NωA ≪ 1. Furthermore, the heat diffusivity µT in Eq. (19), although larger than

ηT by a factor ofµ/η = 103, is yet much smaller than the magnitude ofνT . For instance, again whenα < 1 andβ > 1, this
ratio becomesµT /|νT | ∼ ξ2/3

µ A2/NωA ≪ 1 for typical parameter values. These results have very interesting implications for a
long-term dynamics of the tachocline, as discussed in Sect.4.

4. Implications for a long-term dynamics of the tachocline

The results of the present and previous paper (Kim & Leprovost 2006; Kim & MacGregor 2001) suggest that the uniform rotation
in the radiative interior is very unlikely to be explained byhydrodynamical means as the momentum transport in stratified medium
accelerates the mean flow, sharpening the gradient of radialdifferential rotation that has been created during the solar spin-down
(see, however, Charbonnel & Talon 2005). Previous authors (Rüdiger & Kitchatinov 1996; Gough & McIntyre 1998; MacGregor
& Charbonneau 1999), have however shown that a rather weak poloidal magnetic field in the radiative interior can eliminate the
differential rotation, thereby leading to a uniform rotation therein. In this case, the tachocline can be envisioned as a boundary
layer where the generation of the toroidal magnetic field by the shearing of the poloidal magnetic field (due to differential rotation)
is balanced by the diffusion of the toroidal magnetic field while the dissipation ofthe radial differential rotation is balanced by
the azimuthal Lorentz force associated with the large-scale toroidal and poloidal magnetic fields, i.e., Hartmann layer (Rüdiger &
Kitchatinov 1996; Gough & McIntyre 1998; MacGregor & Charbonneau 1999). By adopting the molecular values for viscosity,
magnetic diffusivity, and heat diffusivity in the tachocline, these previous authors obtainedestimates of the tachocline thickness
and the strength of the interior poloidal magnetic field. In the case of the tachocline with residual turbulence, for instance, driven
externally (e.g. plume penetration) or internally (e.g. via instability), the values of turbulent transport coefficients, instead of
molecular values, should be used in the analysis of the Hartmann layer.

For the clarity of the discussion, it is worth recalling thatthe Hartmann layer is based on the configuration where a poloidal
magnetic field is fully contained in the interior, without penetrating into the convection zone above so that the latitudinal differen-
tial rotation in the convection zone does not leave its footprint into the radiative interior. By representing the latitudinal coordinate
by z, and by denoting the poloidal and toroidal magnetic fields byBz andBy = B0, respectively, the major force balance for the
toroidal magnetic field in the tachoclineBy and the mean shear flowUy due to the differential rotation can roughly be expressed
as

∂tUy ∼ Bz∂zBy + νT∂xxUy − λT∂xxxxUy , (20)

∂tBy ∼ Bz∂zUy + ηT∂xxBy . (21)

Here,λT ∼ µT (Ω/N)2(R⊙/Λ)2 is the hyperviscosity due to the meridional circulation (see, e.g., Spiegel & Zahn 1992);Ω ∼
3 × 10−6 s−1 andR⊙ ∼ 5 × 1010 cm are the average rotation rate and solar radius, respectively; Λ is a constant of order unity.
Similarly to a positive eddy viscosity, a (positive) hyperviscosity acts to smooth out the gradient of (or damp) a large-scale shear
flow.

While the values of turbulent transport (νT , ηT , andλT ) for the coupled system (20)-(21) have conventionally beenassumed
to be positive, the results in Sect. 3 show that the turbulentmomentum transport in the sheared stratified turbulent tachocline
is anti-diffusive with negative viscosity (i.e.,νT < 0), accelerating the mean shear flowUy (i.e., radial differential rotation).
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The negative viscosity will amplifies the shear in the differential rotation and consequently toroidal magnetic fieldsince they
are coupled via the Lorentz force (viaBz). The crucial question is then how the Hartmann layer is maintained with negative
viscosity which tends to become unstable due toνT < 0. Obviously, if the magnetic diffusivity ηT is large enough to overcome an
unstable situation caused by the negative viscosity, the coupled system can find a stable stationary configuration. However, this
is very unlikely since the magnetic diffusion is pathetically small compared to the magnitude of theeddy viscosity, as discussed
in Sect. 3. Could the hyperviscosityλT ∼ (R⊙/Λ)2(Ω/N)2µT due to the meridional circulation then stabilize the system? To
answer this question, we note that the contribution from thehyperviscosity to Eq. (20) is of orderλT/h4 while the contribution
from the eddy viscosity is of orderνT/h2, whereh is of order of the tachocline thickness. Thus, the ratio of the two is roughly
(µT/νT )(R⊙/h)2(Ω/N)2 (e.g.∼ (µk2

y/A)2/3(A2/NωA)(Ω/N)2(R⊙/h)2 for α < 1 andβ > 1), which can be shown to be small for
the parameter values typical of the present solar tachocline. However, it is important to realize that this ratio (∝ A4/3 for α < 1
andβ > 1, for instance) becomes large as the shearA increases. Therefore, it is plausible that as the shear is amplified via
the negative eddy viscosity, the effect of the hyperviscosity becomes important and eventuallydominates the negative viscosity,
possibly stabilizing the system. In order for this to be the case, the shearA in the radial differential rotation however has to be
larger than what is observed today. This can be checked by requiringλT /h2νT > 1. For instance, in the caseα < 1 andβ > 1, this
demandsA/N > (N/µk2

y)1/2(B0ky/N)3/4(hN/R⊙Ω)3/2, wherel f = 1/ky is the characteristic scale of the forcing. Even if we take
B0 ∼ 104 G and a thin tachoclineh ∼ 10−3R⊙,A > 0.1N for ky ∼ 10−7 cm−1, andA > 0.01N for ky ∼ 10−6 cm−1, which seem to
be rather too large to be reasonable (recallN ∼ 103 s−1 andA ∼ 3× 10−6 s−1 are the presently inferred values in the tachocline).

To make this argument more concrete, it is instructive to examine the behavior of Eqs. (20)-(21) in more detail. To this end,
we average them over the space (x) with the approximation∂z ∼ i/R⊙ and∂x ∼ 1/h and use the values ofνT , ηT andµT obtained
for α < 1 in Sect. 3. Here,h is again the tachocline thickness. The resulting envelop equations forA ∼ Uy/R⊙ and By, in a
properly non-dimensonalized form, are as follows:

∂tS = iM + [ν(S , M) − βη(S , M)]S ,

∂t M = iS − η(S , M)M . (22)

Here,S = A/Ω, M = By/ΩR⊙, ν = α[1 − 1/
√

1+ 1/M2]/|S |2, andη = 1/
√

M4 + M2|S |2/3. The parameterα appearing in
ν is a rough measure of|νT/ηT |, which was shown to be very large in Sect. 3 because the magnetic diffusion is much smaller
than the magnitude of the eddy viscosity. Specifically,α ∼ (µ/η)1/3(A/ηk2

y )2/3N2/A2 >∼ O(108) obtained by using the reasonable
parameter values in the tachoclineA ∼ 3×10−6 s−1, N ∼ 3×10−3 s−1, andky ∼ 10−8 cm−1. The parameterβ in Eq. (22) represents
a rough measure of the ratio of the effect of hyperviscosity to that of magnetic diffusivity, with the valueβ ∼ (R⊙Ω/hN)2(µ/η) ∼
<∼ O(103) for h/R⊙ > 10−3.

We note that the values ofηT , νT andµT are all proportional to the intensity of the forcingF , which is a free parameter in
our problem. In our non-dimensionlization, this value is fixed by utilizing the observational evidence that the particle diffusivity
of light elements (lithium) is aboutDT ∼ 103 cm2 s−1 to be consistent with the present solar surface lithium depletion (e.g., see
Barnes, Charbonneau & MacGregor 1999). SinceηT ∼ (η/D)DT whereD ∼ 20 cm2 s−1 andη ∼ 104 cm2 s−1, we impose the
condition thatηT ∼ 105 cm2 s−1 for the parameter values typical of the present sun (i.e.By ∼ 105 G,A ∼ 3×10−6 s−1, etc). [Note
thatηT in Eq. (17)–(18) depends on bothA andBy, which change in time according to Eq. (22).]

The results from the numerical simulation of Eq. (22) forα = 108 are plotted by the cross symbols in Fig. 1, which shows
|S | = |A/Ω| for various values ofβ. The results nicely show that the amplitude ofS decreases asβ (hyperviscosity) becomes
large, as expected. However, for smallβ (hyperviscosity), an amplitude ofA > 103Ω is too large to be reasonable. For this
large value ofA, which is comparable to the Brunt-Väisälä frequencyN, the shear flow is likely to be unstable against a shear
instability (see, e.g., Drazin 1981). Asβ increases, the amplitude ofA decreases and approaches the asymptotic value given by
the dashed line [α/(2β + 2)]3/4, which is obtained by using|S | = |M|. The asymptotic value indicates thatA ∼ 100Ω for β = 105

whileA ∼ 3Ω for β = 107. By using the definition ofβ, one can easily show that a reasonable value of shearA ∼ Ω is possible
only for an extremely thin tachocline withh/R⊙ ∼ 10−5. Since|S | = |M| along the dashed line in Fig. 1, the toroidal magnetic
field also seems too strong (> 105 G) to be stable (e.g. against the magnetic buoyancy instability). To summarize, the results from
our toy model (22) clearly demonstrate that for reasonable parameter values, a stable stationary Hartmann layer is veryunlikely
in the tachocline. Thus, a large-scale shear flow is likely tobecome time-dependent (similarly to the behaviour found inKim and
MacGregor 2001), or to develop a secondary instability.

5. In the limit of the strong radiative damping

The anti-diffusive momentum transport discussed in the previous sections originates from the stable stratification in the
tachocline. The buoyancy force can however be weakened by a strong radiative damping, as demonstrated in Sect. 2. Thus,
it is conceivable that if a radiative damping is large enoughto weaken the buoyancy force sufficiently, the momentum transport
may become diffusive, smoothing out the gradient of the radial differential rotation. In this section, we explore this possibility by
considering the limit of a strong radiative damping where the density fluctuationρ1 in Eq. (3) is stationary with (∂t+U0∂y)ρ1 = 0.
In order for this limit to be valid, the parameterξµ = µk2

y/A, which has been assumed to be small in the previous sections,is
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Fig. 1. The plot of the amplitude ofS = A/Ω as a function ofβ (∝ hyperviscosity) forα = 108. The cross symbols represent
the results of the numerical simulation of the toy model Eq. (22). The dashed line denotes the asymptotic behavior, givenby
[α/(2β + 2)]3/4.

no longer small. We are however still interested in the case where the dissipation rate of magnetic field is small comparedto the
shearing, namely, forξη = ηk2

y/A ≪ 1. Note that this is a valid assumption for the reasonable values of the characteristic scale
of the forcingl f = 1/ky > 105 cm in the tachocline.

By usingN2vx/g + µ∇2ρ1 = 0, the coupled equations (1)-(2) can easily be combined to yield
















∂τ +
N

2

(1+ τ2)2

















[(1 + τ2)∂τâ] + γ2(1+ τ2)â ≃ iB0

A2ky
f̂ (τ) , (23)

to leading order inξη ≪ 1. Here,â = ã exp [η(k3
x/3kyA + k2

y t)/2]; f̂ = f̃ exp [η(k3
x/3kyA + k2

y t)/2]; τ = kx/ky = kx(0)/ky +At,

γ = |B0ky/A|, ωA = |B0ky|, andN
2
= N2/A(µk2

y ). The solution to Eq. (23) can be obtained in the limitξη < 1:

â(τ) ≃ iB0

A2kyγ

∫

dτ1
sinγ[ϕ(τ) − ϕ(τ1)] f̂ (τ1)e−N

2
(̟(τ)−̟(τ1)

(1+ τ2)1/2(1+ τ2
1)1/2ψ(τ1)

. (24)

Here,ϕ(τ) =
∫ τ

dτ1ψ(τ1), ψ(τ) = 1− [(1+ τ2)−2−N
2
τ(1+ τ2)−3+N

4
(1+ τ2)−4/4]/2γ2, and̟(τ) = [tan−1 τ+ τ/(1+ τ2)]/4. By

omitting the details of the algebra, we here provide the resulting eddy viscosityνT , magnetic diffusivity ηT and heat diffusivity
µT :

νT ≃
τ f

4B2
0

∫

d2k
(2π)2

φ(k)
k4

y

[

1−G(N
2
)
]

∼ 1

ω2
A

F , (25)

ηT ≃
τ f

2B2
0

∫

d2k
(2π)2

φ(k)
k4

y

(

ξη

3

)2/3

Γ

(

1
3

)

e−πN
2
/4 <∼

ξ
2/3
η

ω2
A

F , (26)

µT ≃
τ f

N
2

∫

d2k
(2π)2

φ(k)
k2

y
∼ 1

N2
F . (27)

Here,ωA = |kyB0|, ky is the typical wavenumber of the forcing, andF ∼ τ f

∫

d2kφ(k)/k2
y ∼ v2

f /τ f is the strength of the forcing

with a characteristic forcing velocityv f and correlation timeτ f . The functionG(N
2
) depends onN

2
, taking at most a maximum

value∼ 0.37 for N
2 ∼ 4 and vanishing as eitherN → 0 or N → ∞. SinceG(N

2
) < 1, the eddy viscosity in Eq. (25) is now

positive. That is, turbulent momentum transport in the limit of a strong radiative damping is diffusive, in contrast to the case of
weak radiative damping considered in Sec. 3. This can be shown to be related to the equipartition between kinetic and magnetic
energy to leading order, in contrast to the weakly damped case in Sect. 3 where the excess of kinetic energy over magnetic energy
causes a negative viscosity. As expected, this is because the buoyancy force is greatly reduced by strong radiative damping. The
results in Eqs. (25)–(27) show that bothνT andηT are quenched largely by magnetic fields whileηT is also reduced by shear
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(∝ ξ2/3
η ∝ A−2/3). In comparison, the heat diffusivity in Eq. (27) exhibits a different behavior, being mainly inhibited by buoyancy

force. This is because the coupling of the density fluctuation to the fluid is feeble due to strong radiative damping.
The comparison of Eqs. (25) and (26) reveals that the magnetic diffusivity is smaller than eddy viscosity by a factor of

ξ
2/3
η ≪ 1 (recallξη = ηk2

y/A is a small parameter characterizing the strong shear limit,wherel f = 1/ky is the characteristic
scale of the forcing). The ratioηT/νT ≪ 1 is however larger than the value in the case of weak damping in Sect. 3. This is
an interesting result since this ratio is crucial in the estimate of the tachocline thickness, which has been set by the molecular
values withη/ν ∼ 102 in previous works. We emphasize that our predicted valueηT/νT (≪ 1) is much smaller thatη/ν based
on molecular values. Furthermore, the ratio of the effect of the hyperviscosity to that of eddy viscosity on the shear flow is now
roughly given by (B0/R⊙N)2(R⊙2ky/h)2(Ω/N)2 >∼ 1 for reasonable parameter values. That is, the effect of hyperviscosity due to
meridional circulation is crucial in maintaining the momentum balance in the tachocline.

Based on these observations, we now seek to obtain the estimate on the thickness of the tachocline and the strengthBy and
Bz by requiring∂t = 0 and by ignoringνT in Eq. (20). A simple analysis of Eqs. (20)-(21), with the help of Eqs. (26) and (27)
andUy ∼ AR⊙, gives us

h/R⊙
R⊙ky

∼ 1
Λ

(

A
N

)2

ξ−1/3
η , (28)

Bz

By
∼ ηT

Ah2
, (29)

whereξη = ηk2
y/A and l f = 1/ky is the characteristic length scale of the forcing. In a sharpcontrast to the previous works

which use the molecular values for the viscosity and magnetic diffusivity, the result (28) shows that the tachocline thickness is
independent of the strength of magnetic fields. For instance, for ky = 10−7 ∼ 10−6 cm−1, h/R⊙ = 0.01∼ 0.05 (forA ∼ 3× 10−6

s−1, N ∼ 10−3 s−1, andΛ ∼ 3). This estimate is much larger thanh/R⊙ ∼ 10−3 by Gough & McIntyre (1998), and is mainly due
to the small magnetic diffusivity with the valueηT/µT ∼ ξ2/3

η (N/ωA)2 ≪ 1. That is, a more efficient momentum transport than
magnetic dissipation causes a thicker tachocline. Equation (28) implies that the tachocline thickness decreases as the stratification
becomes stronger, which could have some implications for other stars. On the other hand, Eq. (29) shows that the ratio of magnetic
field strengths depends on the tachocline thickness and the turbulent magnetic diffusivity ηT . As ηT is directly proportional to the
strength of the forcingF , we again utilize the constraint on the turbulent particle diffusivity DT ∼ 103 cm2 s−1 in the tachocline
to be consistent with the surface depletion of lithium on theSun. SinceηT ∼ (η/D)DT (see Kim 2006) whereD ∼ 20 cm2 s−1

andη ∼ 104 cm2 s−1, we obtainηT ∼ 105 cm2 s−1. By using this value in Eq. (29) andh/R⊙ >∼ 0.01 ∼ 0.05, we can obtain
Bz/By ∼ 10−8 ∼ 10−7. If we take,By ∼ 104 G, Bz ∼ 10−4 ∼ 10−3 G while for By ∼ 105 G, Bz ∼ 10−3 ∼ 10−2 G. These values
of Bz are comparable to the previously estimated value. It is important to note that forηT ∼ 105 cm2 s−1, Eqs. (25) and (27) give
νT ∼ 106 cm2 s−1 andµT ∼ 1010 cm2 s−1 (≫ µ). Therefore, our results naturally predict a more efficient momentum transport than
particle transport (recallDT ∼ 103 cm2 s−1) in the tachocline without fine-tuning parameters (see alsoKim 2006), as required to
be consistent with the observations.

6. Discussion and conclusions

We have presented a theory of turbulent transport in the sheared stratified magnetised tachocline when turbulence is driven and
maintained by an external forcing (e.g. due to plumes penetrating from the convection zone). Despite the presence of a strong
(uniform) magnetic field, the momentum transport is found tobe anti-diffusive (νT < 0) for reasonable parameter values in the
tachocline. The magnetic diffusivity (ηT ) and heat diffusivity (µT ) are found to be positive, but severely reduced as a result ofthe
shear stabilization and transport reduction by Alfven-gravity waves with very small values ofηT /|νT | (≪ 1) andµT /|νT | (≪ 1.
Since the momentum transport is anti-diffusive, the gradient in the radial differential rotation is amplified. As the shear becomes
strong, the hyperviscosity due to the meridional circulation, which is always diffusive, can become important, counteracting
the effect of negative eddy viscosity. However, in order to maintain the radial shearA in the differential rotation with a value
comparable to the average solar rotationΩ, as presently inferred, the tachocline as the Hartmann layer has to be very thin with
the thicknessh/R⊙ ∼ 10−5 for the toroidal magnetic fieldBy ∼ 105 G. Here,R⊙ is the solar radius. Otherwise, the radial shear
and/or toroidal magnetic field in the tachocline appears to be toostrong to be stable against the shear instability and/or magnetic
buoyancy instability. Furthermore, since the turbulent coefficients depend nonlinearly onA andBy,A andBy form a nonlinear
dynamical system, which can exhibit complex time variation. These results point to the possibility that the tachoclinemay exhibit
a much more complex (temporal and/or spatial dependent) dynamics than previously thought even in the slow tachocline scenario.

In the limit of strong radiative damping where the temperature (density) fluctuation is almost stationary, the turbulent mo-
mentum transport is found to be diffusive, down the gradient. This requires the turbulence to beon very small scales such that
ξµ = µk2

y/A ≫ 1. Here, 1/ky = l f is the characteristic length scale of the forcing, andA ∼ 3× 10−6 s−1 is the radial shear. Thus,
the forcing scalel f has to be smaller than 106 ∼ 107 cm, which is about 10−4R⊙. In this case, the tachocline may be viewed as a
Hartmann layer with possibly stable configurations of the radial differential rotation and toroidal magnetic field. A simple analysis
by using the predicted values ofνT , µT , andηT suggested that the effect of the hyperviscosity is likely to dominate over the eddy
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viscosity. However, since the magnetic diffusion is severely quenched compared with heat diffusivity, the momentum transport is
effectively much more efficient than the magnetic field diffusion. Consequently, the major force balance in the tachocline leads
to the estimate of the tachocline thickness (>∼ 10−2R⊙), which is larger than the previously estimated value∼ 10−3R⊙ by Gough
& McIntyre (1998). AsηT andµT depend on the strength of toroidal magnetic fields and radialshear, the tachocline thickness is
found to be independent of the strength of (toroidal and/or poloidal) magnetic field (c.f. Gough & McIntyre 1998). Thestrength
of poloidal magnetic field in the radiative interior is estimated to be of order 10−4 ∼ 10−2 G for the value of the toroidal magnetic
field 104 ∼ 105 G, comparable to the previously estimated value. Importantly, the results provide a natural explanation for a more
efficient momentum transport than particle mixing in the tachocline. However, a severe reduction in the magnetic field diffusion
could be problematic for the solar dynamo [e.g., the interface dynamo (Parker 1993)].

While the discussion of our results is focused on the applications to the present sun, they might also have interesting im-
plications for other stars. In particular, our predicted values of turbulent transport coefficients have different dependences on
the strength of magnetic field, stratification, and radial shear as well as on the molecular values of viscosity, ohmic diffusivity,
and radiative diffusivity. As the values of these parameters vary from one starto another, it would be of interest to explore the
implications of these results for other stars. For example,it might be possible to utilize the results to infer the valueof the radial
shear or the strength of magnetic field in other stars, and also to gain some insight into the presence of a tachocline-likeshear
layer in those. Of course, in the case of more massive stars, the rotation rate is much faster the sun, demanding the prediction
of turbulent transport coefficients by taking into account the effect of average rotation (Leprovost & Kim 2006). Ultimately,it
will be interesting to investigate a consistent model incorporating the spin-down of the sun (and other stars) due to theangular
momentum loss. Finally, we note that our analysis, limited to 2D, should be extended to 3D, in particular, to study solar dynamos
(e.g. theα effect). These issues are currently under investigation and will be addressed in future publications.
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Rüdiger, G., & Kitchatinov, L. L. 1996, ApJ, 466, 1078
Schatzman, F. D. 1993, The stars (Springer-Verlag, Berlin;London)
Spiegel, E. A., & Zahn, J.-P. 1992, A&A, 265, 106
Spruit, H. C. 1999, A&A, 349, 189
Stix, M. 1989, The sun: an introduction (Springer-Verlag, Berlin; London)


