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Abstract

This paper is concerned with a semiparametric partially linear regression model with

unknown regression coefficients, an unknown nonparametric function for the non-linear

component, and unobservable Gaussian distributed random errors. We present a wavelet

thresholding based estimation procedure to estimate the components of the partial linear

model by establishing a connection between an l1-penalty based wavelet estimator of the

nonparametric component and Huber’s M-estimation of a standard linear model with outliers.

Some general results on the large sample properties of the estimates of both the parametric and

the nonparametric part of the model are established. Simulations and a real example are used

to illustrate the general results and to compare the proposed methodology with other methods

available in the recent literature.

Keywords: Semi-nonparametric models, partly linear models, wavelet thresholding, backfitting, M-

estimation, penalized least-squares.

1 Introduction

Assume that responses y1, . . . , yn are observed at deterministic equidistant points ti = i
n of an

univariate variable such as time and for fixed values Xi, i = 1, . . . , n, of some p-dimensional
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explanatory variable and that the relation between the response and predictor values is modeled

by a Partially Linear Model (PLM):

yi = XT
i β0 + f (ti) + ui i = 1, . . . , n, (1)

where β0 is an unknown p-dimensional real parameter vector and f (·) is an unknown real-valued

function; the ui’s are i.i.d. normal errors with mean 0 and variance σ2 and superscript “T” denotes

the transpose of a vector or matrix. Given the observed data (yi, Xi)i=1,...,n, the aim is to estimate

from the data the vector β and the function f .

The interest in partial linear models has grown significantly within the last decade since their

introduction by Engle et al. (1986) to analyze in a nonlinear fashion the relation between electricity

usage and average daily temperature. Since then the models have been widely studied in the

literature. The recent monograph by Hardle et al. (2000) provides an excellent survey on the theory

and applications of the model in a large variety of fields, such as finance, economics, geology and

biology, to name only a few. The advantages of such a model is that it allows an adequate and

more flexible handling of the explanatory variables than in linear models and can be also serve

as a starting point for dimension reduction by additive modeling. Although there is still lack of

general theory on testing the goodness-of-fit of a partial linear model, there are some consistent

specification tests such as, for example, those developed by Chen and Chen (1991).

Until now, several methods have been proposed to analyse partially linear models. One approach

to estimation of the nonparametric component in these models is based on smoothing splines

regression techniques and has been employed in particular by Green and Yandell (1985), Engle et

al. (1986), Rice (1986), Chen (1987), Chen and Shiau (1991), and Schick (1996) among others. Kernel

regression (see e.g. Speckman (1988)) and local polynomial fitting techniques (see e.g. Hamilton

and Truong (1997)) have also been used to study partially linear models. An important assumption

by all these methods for the unknown nonparametric component f (t) is its high smoothness. But

in reality, such a strong assumption may not be satisfied. To deal with cases of a less-smooth

nonparametric component, a wavelet based estimation procedure is developed in this paper, and

as such it can handle nonparametric estimation for curves lying in Besov spaces instead of the more

classical Sobolev spaces.

The estimation method developed in this paper is based on a wavelet expansion of the

nonparametric part of the model. The use of an appropriate thresholding strategy on the

coefficients allows us to estimate in an adaptive way the nonparametric part with quasi-minimax
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asymptotic rates without restrictive assumptions on its regularity. To our knowledge, only few

developments in the use of nonlinear wavelet methods in the context of PLM models exist in

the literature. Wavelet based estimators for the nonparametric component of a PLM have been

investigated by Meyer (2003), Chang and Qu (2004) and by Fadili and Bullmore (2005), more

recently. Our results will be compared to the later, since the settings adopted in their work are

relatively similar to ours.

One novelty of the estimation procedure proposed in this paper is the link between wavelet

thresholding and classical robust M-estimation schemes in linear models with outliers: using soft

or hard thresholding or even a SCAD thresholding (see Antoniadis and Fan (2001)) amounts in

estimating respectively the unknown vector β0 of the linear part in the model by Huber’s M-

estimation or by a truncated mean or by Hampel’s estimator. This link allows us to investigate

the asymptotic minimax properties of the estimators and to derive second-order approximations

for the bias and variance of the resulting estimators of β0. This is essentially due to the fact that the

nonparametric part of the model has a sparse wavelet coefficients representation, and the wavelet

coefficients of a PLM in the wavelet domain appear then as outliers in the linear model composed

by the linear part.

Furthermore, the above established link of our method with M-estimation theory offers the

possibility to use specific M-estimation algorithms for numerically implementing the proposed

method, instead of using the backfitting technique proposed by Fadili and Bullmore (2005). For our

numerical implementation, we will adopt a class of half-quadratic optimization algorithms that

have been developed recently for robust image recognition in the pattern recognition literature (see

e.g. Charbonnier et al. (1997), Dahyot and Kokaram (2004), Vik (2004) and Nikolova and Ng (2005)).

The organization of this paper is as follows: Section 2 briefly recalls some relevant facts about the

wavelet series expansion and the discrete wavelet transform that we need further and presents the

wavelet decomposition used to model the observed partial linear model. In section 3, we establish

the connection between wavelet thresholding estimation for the PLM and M-estimation for a linear

model. Section 4 establishes the main properties of our estimators. In Section 5, we discuss the

computational algorithms that are used for the numerical implementation of our procedures where

we also present a small simulation study to illustrate the finite sample properties of our procedures

and to compare them to the backfitting algorithm proposed by Fadili and Bullmore (2005). Proofs

of our results are given in Appendix.
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2 The partly linear model and its wavelet transform

2.1 THE SETUP

Suppose that yi (i = 1, 2, . . . , n) is the i-th response of the regression model at point ti (where t is an

index such as time or distance) and can be modelled as

yi = XT
i β0 + f (ti) + ui, (2)

where XT
i are given p × 1 vectors of covariate values, ti = i

n and β0 and f are respectively the

parametric and nonparametric components of the partial linear model. We will assume hereafter

that the noise variables ui are i.i.d. Gaussian N (0, σ2) and that the sample size n = 2J for some

positive integer J.

In the nonparametric analysis, the nonparametric part f is modeled as a function lying in an

infinite dimensional space. The underlying notion behind wavelet methods is that the unknown

function has an economical wavelet expression, i.e. f is, or is well approximated by, a function

with a relatively small proportion of nonzero wavelet coefficients. An approach to modelling

the nonparametric component of the PLM model, that allows a wide range of irregular effects,

is through the sequence space representation of Besov spaces. The (inhomogeneous) Besov spaces

on the unit interval, Bs
π,r([0, 1]), consist of functions that have a specific degree of smoothness in

their derivatives. The parameter π can be viewed as a degree of function’s inhomogeneity while

s is a measure of its smoothness. Roughly speaking, the (not necessarily integer) parameter s

indicates the number of function’s (fractional) derivatives, where their existence is required in an

Lπ-sense; the additional parameter r is secondary in its role, allowing for additional fine tuning

of the definition of the space. For a detailed study on (inhomogeneous) Besov spaces we refer to,

e.g., D. L. Donoho and Johnstone (1998). To capture key characteristics of variations in f and to

exploit its sparse wavelet coefficients representation, we will assume that f belongs to Bs
π,r([0, 1])

with s + 1/π − 1/2 > 0. The last condition ensures in particular that evaluation of f at a given

point makes sense.

We now briefly recall first some relevant facts about the wavelet series expansion and the discrete

wavelet transform that we need further.
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2.2 The wavelet series expansion and the discrete wavelet transform

Throughout the paper we assume that we are working within an orthonormal basis generated

by dilatations and translations of a compactly supported scaling function, ϕ(t), and a compactly

supported mother wavelet, ψ(t), associated with an r-regular (r ≥ 0) multiresolution analysis of
(

L2[0, 1], 〈·, ·〉
)

, the space of squared-integrable functions on [0, 1] endowed with the inner product

〈 f , g〉 =
∫

[0,1] f (t)g(t) dt. For simplicity in exposition, we work with periodic wavelet bases on [0, 1]

(see, e.g., Mallat (1999), Section 7.5.1), letting

ϕ
p
jk(t) = ∑

l∈Z

ϕjk(t − l) and ψ
p
jk(t) = ∑

l∈Z

ψjk(t − l), for t ∈ [0, 1],

where ϕjk(t) = 2j/2 ϕ(2jt − k) and ψjk(t) = 2j/2ψ(2jt − k). For any given primary resolution level

j0 ≥ 0, the collection

{ϕ
p
j0k, k = 0, 1, . . . , 2j0 − 1; ψ

p
jk, j ≥ j0; k = 0, 1, . . . , 2j − 1}

is then an orthonormal basis of L2[0, 1]. The superscript “p” will be suppressed from the notation

for convenience. Despite the poor behavior of periodic wavelets near the boundaries, where

they create high amplitude wavelet coefficients, they are commonly used because the numerical

implementation is particular simple. Therefore, for any f ∈ L2[0, 1], we denote by cj0k = 〈 f , ϕj0k〉
(k = 0, 1, . . . , 2j0 − 1) the scaling coefficients and by djk = 〈 f , ψjk〉 (j ≥ j0; k = 0, 1, . . . , 2j − 1) the

wavelet coefficients of f for the orthonormal periodic wavelet basis defined above; the function f

is then expressed in the form

f (t) =
2j0−1

∑
k=0

cj0k ϕj0k(t) +
∞

∑
j=j0

2j−1

∑
k=0

djkψjk(t), t ∈ [0, 1].

The approximation space spanned by the scaling functions {ϕj0k, k = 0, 1, . . . , 2j0 − 1} is usually

denoted by Vj0 while the details space at scale j, spanned by {ψjk, k = 0, 1, . . . , 2j − 1} is usually

denote by Wj.

In statistical settings, we are more usually concerned with discretely sampled, rather than

continuous, functions. It is then the wavelet analogy to the discrete Fourier transform which is

of primary interest and this is referred to as the discrete wavelet transform (DWT). Given a vector

of real values e = (e1, . . . , en)T , the discrete wavelet transform of e is given by d = Wn×ne, where d

is an n× 1 vector comprising both discrete scaling coefficients, sj0k, and discrete wavelet coefficients,

wjk, and Wn×n is an orthogonal n× n matrix associated with the orthonormal periodic wavelet basis
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chosen. In the following we will distinguish the blocs of Wn×n spanned respectively by the scaling

functions and the wavelets. The empirical coefficients sj0k and wjk of e are given by

sj0 ,k ≈ 1√
n

n

∑
i=1

ei ϕj0 ,k(ti) for k = 0, . . . , 2j0 − 1

wj,k ≈ 1√
n

n

∑
i=1

eiψj,k(ti) for







j = j0, . . . , J − 1,

k = 0, . . . , 2j − 1.

When e is a vector of function values F = ( f (t1), ..., f (tn))T at equally spaced points ti, the

corresponding empirical coefficients sj0k and wjk are related to their continuous counterparts cj0k

and djk (with an approximation error of order n−1) via the relationships sj0k ≈ √
n cj0k and

wjk ≈ √
n djk. Note that, because of orthogonality of Wn×n, the inverse DWT (IDWT) is simply

given by F = WT
n×nd, where WT

n×n denotes the transpose of Wn×n. If n = 2J for some positive

integer J, the DWT and IDWT may be performed through a computationally fast algorithm (see,

e.g., Mallat (1999), Section 7.3.1) that requires only order n operations.

We will further use the following notation. For a n-dimensional vector e, its Euclidian (or l2) norm
(

∑
n
i=1 e2

i

)1/2
will be denoted by ‖e‖ and the Frobenius norm of a matrix B with general entries bi,j

will be denoted by ‖B‖ =
(

∑i,j b2
i,j

)1/2
.

2.3 A wavelet-based model specification of the PLM model

In matrix notation, the PLM model specified by (2) can be written as

Y = Xβ0 + F + U, (3)

where Y =
(

y1, . . . , yn

)T
, XT =

(

X1, . . . , Xn

)

is the p× n design matrix, and F =
(

f (t1), . . . f (tn)
)T

.

The noise vector U =
(

u1, . . . , un

)T
is a Gaussian vector with mean 0 and variance matrix σ2 In.

For the model to be asymptotically identifiable, we will assume:

(A1) The vector 1
n XTF tends to 0 as n goes to infinity.

(A2) The matrix X is full rank, i.e. 1
n XTX converges towards an invertible matrix.

Expressing the vector of coefficients of the linear part as

β0 =

(

1

n
XTX

)−1

XT(Y − F − U),
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clearly shows that conditions (A1) and (A2) are sufficient to asymptotically ensure the identifiability

of the PLM model. As it will be seen in the Appendix, none of these assumptions is restrictive.

Let now Z = Wn×nY, A = Wn×nX, θ0 = Wn×nF and ε = Wn×nU. Then premultiplying (1) by W, we

obtain the transformed model

Z = Aβ0 + θ0 + ε. (4)

The orthogonality of the DWT matrix Wn×n ensures that the transformed noise vector ε is still

distributed as a Gaussian white noise with variance σ2 In. Hence, the representation of the model

in the wavelet domain not only allows to retain the partly linear structure of the model but also

to exploit in an efficient way the sparsity of the wavelet coefficients in the representation of the

nonparametric component.

3 Soft Thresholding and Huber’s M-estimation

The wavelet shrinkage estimators that are classically obtained by hard or soft thresholding can be

regarded as an extension of the penalized least squares (PLS) estimator (see Antoniadis and Fan

(2001)). We therefore propose estimating the parameters β0 and θ0 in model (4) by penalized least

squares. To be specific, our wavelet based estimators will be defined as follows:

(β̂n, θ̂n) = argmin
(β,θ)

{

Jn(β, θ) =
n

∑
i=1

1

2
(zi − AT

i β − θi)
2 + λ

n

∑
i=i0

|θi|
}

, (5)

for a given penalty parameter λ, where i0 = 2j0 + 1. The penalty term in the above expression

penalizes only the empirical wavelet coefficients of the nonparametric part of the model and not its

scaling coefficients. The choice l1 of the penalty function produces the soft thresholding rule.

The regularization method proposed above is closely related to the method proposed recently

by Chang and Qu (2004), but these authors essentially concentrate on the backfitting algorithms

involved in the optimization, without any theoretical study of the resulting estimates. The method

also relates to the recent one developed by Fadili and Bullmore (2005) where a variety of penalties

is discussed. Note, however, that their study is limited to quadratic penalties which amounts

essentially in assuming that the underlying function f belongs to some Sobolev space and does

not exploit the sparse representation of f .

In order to establish the link with Huber’s estimation we will have a closer look at the minimization
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of the criterion Jn stated in (5). For a fixed value of β, the criterion Jn(β, ·) is minimum at

θ̃i(β) =











zi − AT
i β if i < i0,

sign(zi − AT
i β)

(

|zi − AT
i β| − λ

)

+
if i ≥ i0.

(6)

Therefore, finding β̂n, a solution to problem (5), amounts in finding β̂n minimizing the criterion

Jn(θ̃(β), β). However, note that

Jn(θ̃(β), β) =
n

∑
i=i0

ρλ(zi − AT
i β) (7)

where ρλ is Huber’s cost functional with threshold λ, defined by:

ρλ(u) =











u2/2 if |u| ≤ λ,

λ|u| − λ2/2 if |u| > λ.

(8)

The above facts can be derived as follows. Let i ≥ i0. Minimizing expression (5) with respect to θi

is equivalent in minimizing j(θi) := 1
2 (zi − AT

i β − θi)
2 + λ|θi|. The first order condition for this is:

j′(θi) = θi − (zi − AT
i β) + sign(θi)λ = 0 where j′ denotes the derivative of j. Now,

• if θi ≥ 0, then j′(θi) = 0 if and only if θi = zi − AT
i β − λ. Hence, if zi − AT

i β ≤ λ, θi = 0 and

otherwise θi = zi − AT
i β − λ.

• if θi ≤ 0, j′(θi) is zero if and only if θi = zi − AT
i β + λ; therefore, if zi − AT

i β ≥ −λ, θi = 0 and

otherwise θi = zi − AT
i β + λ.

This proves that for a fixed value of β, the criterion (5) is minimal for θ̃(β) given by expression (6). If

we now replace θ in the objective function Jn we obtain Jn(β, θ̃(β)) = 1
2

n

∑
i=i0

(

(zi − AT
i β − θ̃i)

2 + λ|θ̃i|
)

since θ̃i = zi − AT
i β for i < i0. Now denoting by I the set I :=

{

j = i0, . . . , n, |zj − Ajβ| < λ
}

, we

find that Jn(β, θ̃(β)) = 1
2∑

I

(zi − AT
i β)2 + 1

2∑
IC

λ2 + λ∑
IC

(

|zi − AT
i β| − λ

)

by replacing θ̃i with (6),

which is exactly Huber’s functional.

The mathematical equivalence of the solution of the two classes of estimation can be stated in the

following proposition.

Proposition 1. If β̂n and θ̂n are solutions of the optimization problem (5), then they satisfy

β̂n = argmin
β

n

∑
i=i0

ρλ(zi − AT
i β), (9)

θ̂i,n =











zi − AT
i β̂n if i < i0

γso f t,λ(zi − AT
i β̂n) if i ≥ i0,

, i = 1, . . . , n, (10)
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with ρλ being Huber’s cost functional defined in (8) and γso f t,λ the soft-thresholding function with threshold

λ defined by γso f t,λ(u) = sign(u) (|u| − λ)+.

This result allows the computation of the estimators β̂n et θ̂n in a non-iterative fashion. We can

estimate the parameter β0 directly from the observed data without caring about the nonparametric

part of the model by means of eq.(9), and then determine θ̂n, thence F̂n using eq.(10).

The resulting form of the estimators allows us to study their asymptotic properties. Moreover, as

we shall see in the simulation section of this paper, another benefit is that we can design estimation

algorithms that are much faster than those based on backfitting. Lastly, Propostion 1 leads to a nice

interpretation of the estimators.

We may summarize the estimation procedure as follows. Using the observed data (Y, X) :

1. Apply the DWT of order J = log2(n) on X and Y to get their corresponding representation A

and Z in the wavelet domain.

2. The parameter β0 is then Huber ’s robust estimator which is obtained without taking care of

the nonparametric component in the PLM model, given by the optimization problem (9).

In other words this amounts in considering the linear model zi = AT
i β0 + ei with noise

ei = θ0i + ε i.

3. The vector θ of wavelet coefficients of the function f is estimated by soft thresholding of

Z − Aβ̂n, i.e. by equation (10). The estimation of f is then obtained by applying the

inverse discrete wavelet transform. Note that this last step corresponds to a standard soft-

thresholding nonparametric estimation of f in the model:

yi − XT
i β̂n = f (ti) + vi, i = 1, . . . , n,

where vi = XT
i (β0 − β̂n) + ui.

Remark 1. The above estimation procedure is in phase with the one advocated by Speckman (1988) who

suggests that it is usually preferable to estimate first the linear component in a PLM and to then proceed to

the estimation of the nonparametric one. Indeed, we propose to estimate β0 and F by: β̂ = (XTSTSX)−1SY

and F̂ = (I − S)(Y − Xβ̂), with S = (I − T)W, T being the threshold operator. We recognize the exact same

form as those of Speckman (1988), differing only on the fact that the smoothing operator S is not anymore

linear.
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The wavelet soft-thresholding procedure proposed in this section was derived by establishing

the connection between an l1 based penalization of the wavelet coefficients of f and Huber’s M-

estimators in a linear model. Other penalties, leading to different thresholding procedures can

also be seeing as M-estimation procedures. For example, if γλ denotes the resulting thresholding

function, we can show in a similar way that the estimators verify

β̂n = argmin
β

n

∑
i=i0

ρλ(zi − AT
i β),

θ̂i,n =











zi − AT
i β if i < i0,

γλ(zi − AT
i β) if i ≥ i0,

, i = 1, . . . , n,

with ρλ being the primitive of u 7→ u − γλ(u). From what precedes, one sees that hard thresholding

corresponds to mean truncation, while SCAD thresholding is associated to Hampel’s M-estimation.

The above thresholding procedures and the corresponding criteria are illustrated in Figure 1.

Figure 1: Link between different thresholdings and M-estimation. The dashed line displays the
least squares criterion.

However, in this paper, we only concentrate on the properties of estimators obtained by soft

thresholding, those corresponding to other rules presenting avenues for further research that hope
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will be addressed in the future.

4 Asymptotic properties

Huber’s M-estimation was introduced as an alternative to least squares in order to limit the

sensitivity of the least-squares estimates to each individual observation. While Huber’s M-

estimators do not have finite breakdown points, one can show they are quite robust to outliers

(see e.g. Hampel et al. (1986)). Huber’s M-estimation appears therefore a natural approach for

robustly fitting the linear part of a PLM, interpreting the wavelet coefficients of the nonparametric

part as outliers. In what follows, relying upon this analogy, we study the asymptotic properties of

our estimator. To establish our asymptotic results we will require several assumptions to hold.

First a condition which ensures the unicity of β̂n defined in (9):

(A3) The series (Kn) defined by Kn := 1
n ∑

n
i=1 AiA

T
i ρ′′λ(θ0i + ε i), converges in the L2-norm towards

a non-singular matrix K0.

The next assumption deals with the structure of the regression design matrix. Since the dicrete

wavelet transform W is orthogonal it follows that AT A = XTX and, therefore when (A2) holds

the matrix AT A is non-singular for n sufficiently large. Consequently, the projection matrix on

the space spanned by the columns of A, say H = A(AT A)−1AT, has a rank p. In such a case, if

(h1, . . . , hn) denotes the diagonal of H, the equality ∑ hi = p holds. With regards to the design, we

will also use the assumption:

(A4) The quantity h := max
i=1,...,n

AT
i (AT A)−1Ai tends to 0 when n goes to infinity.

Assumption (A4) is common in a robust regression framework, validating among other things the

use of the Lindeberg-Feller criterion. The only difference in our case is that the regression matrix

that we consider is the wavelet transformed A rather than X, but the relevant discussion in the

Appendix shows that such an assumption is reasonable.

Existing results for semi-parametric partial linear models establish parametric rates of convergence

for the linear part and minimax rates for the nonparametric part, showing in particular that the

existence of a linear component does not changes the rates of convergence of the nonparametric
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component. Within the framework adopted in this paper, the rates of convergence are similar, but

an extra logarithmic term will appear in the rates of the parametric part, mainly due to the fact that

our smoothness assumptions on the nonparametrric part are weaker. We are now in position to

give our asymptotic results.

Theorem 1. Let β̂n and θ̂n be the estimators defined by (9,10) in the model (1). Consider that the penalty

parameter λ is the universal threshold: λ = σ
√

2 log(n). Under assumptions (A1)– (A4), we have

β̂n − β0 = ©P

(
√

log(n)

n

)

,

and
√

n(β̂n − β0) = K−1
0

(

1√
n

n

∑
i=1

ρ′λ(θ0i + ε i)Ai

)

+ oP(
√

log(n)).

If in addition we assume that the scaling function ϕ and the mother wavelet ψ belong to CR and that ψ

has N vanishing moments, then, for f belonging to the Besov space Bs
π,r with 0 < s − 1/2 + 1/π and

1/π < s < min(R, N), we have

‖ f̂n − f ‖2 = ©P

(

(

log(n)

n

)
s

1+2s

)

,

where ‖ f̂n − f ‖2
2 =

∫ 1
0 ( f̂n − f )2.

The Theorem is proved in the Appendix. As noted previously, we lose a factor
√

log(n) in the

estimation of the vector of parameters β. The presence of a logarithmic loss lies on the choice of

the threshold λ: taking λ which tends to 0, as suggested by Fadili and Bullmore (2005), would lead

to a minimax rate in the estimation of β. The drawback is that the quality of the estimation for the

nonparametric part of the PLM would not be anymore quasi-minimax. This phenomenon was put

in evidence by Rice (1986): a compromise must be done between the optimality of the linear part

estimation with an oversmoothing of the functional estimation and a loss in the linear regression

parameter convergence rate but a correct smoothing of the functional part.

The method of estimation that we propose leads to quasi-minimax convergence rates and is

applicable for a large class of functions f . An important remark is also that our procedure is

adaptative relatively to the regularity of f , thanks to the use of threshold techniques in the wavelet

decomposition. Note also that Theorem 1 give a Bahadur’s representation of β̂n, allowing to

elaborate appropriate testing procedures; such inferential problems are out of the scope of the

present paper, but interesting for future work.
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4.1 Estimation of the variance

Our estimation procedure relies upon knowledge of the variance σ2 of the noise, appearing in

the expression of the threshold λ (recall that we have adopted the universal threshold: λ =

σ
√

2 log(n)). In practice, this variance is unknown and needs to be estimated. One could estimate

σ2 in an iterative way, i.e. with a backfitting algorithm. We propose instead a direct method of

estimation based on a QR decomposition of the linear part.

In wavelet approaches for standard nonparametric regression, a popular and well behaved

estimator for the unknown standard deviation of the noise is the median absolute deviation (MAD)

of the finest detail coefficients of the response divided by 0.6745 (see D. Donoho et al. (1995)). The

use of the MAD makes sense provided that the wavelet representation of the signal to be denoised

is sparse. However, such an estimation procedure cannot be applied without some pretreatment of

the data in a partially linear model because the wavelet representation of the linear part of a PLM

may be not sparse. Indeed, in practice we have observed that for many partly linear models such a

procedure leads to biased estimations.

A QR decomposition on the regression matrix of the PLM allows to eliminate this bias. Since often

the function wavelet coefficients at weak resolutions are not sparse, we only consider the wavelet

representation at level J = log2(n). Let AJ be the wavelet representation of the design matrix X

at level J. The QR decomposition ensures that there exist an orthogonal matrix Q and an upper

triangular matrix R such that

AJ = Q





R

0



 .

If ZJ , θ0,J and εJ denote respectively the vector of the wavelets coefficients at resolution J of Y, F

and U, model (4) gives

QTzJ =





R

0



 β0 + QTθ0,J + QTεJ .

It is easy to see that applying the MAD estimation on the last components of QTzJ rather than on

zJ will lead to a satisfactory estimation of σ. Indeed thanks to the QR decomposition the linear part

does not appear anymore in the estimation and thus the framework is similar to the one used in

nonparametric regression. Following D. Donoho et al. (1995), the sparsity of the functional part

representation ensures good properties of the resulting estimator.
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5 Simulation study

The purpose of this section is to study through simulations several algorithms for estimating the

linear part of a PLM model but also to evaluate the performance of the proposed estimators. Our

wavelet estimation method for PLM will be also compared with a wavelet backfitting algorithm

proposed by Fadili and Bullmore (2005). As already noted, our estimation method allows us to first

estimate the linear regression parameter vector β0 independently of the nonparametric part, and

to then proceed to the estimation of the functional part of the PLM model. The M-estimation β̂n

of β0 is obtained by means of iterative optimization procedures that are more or less efficient, but

usually much faster than backfitting procedures, as we shall see. Before proceeding to the analysis

of our simulation results, we briefly recall two particular optimization algorithms that may be used

for estimating the linear part.

5.1 Half-quadratic algorithms

The minimization problem we have to solve is of the form:

β̂n = argmin
β

J(β) with J(β) =
n

∑
i=1

ρλ(zi − AT
i β). (11)

Minimizers of J(β) can be obtained using standard optimization tools such as relaxation, gradient,

conjugated gradient and so on, but even if the loss function ρλ is convex, its second derivative

is large near to zero, so the optimization may be slow. For this reason, specialized optimization

schemes have been conceived. A very successful approach is half-quadratic optimization, proposed

in Geman and Reynolds (1992) and Geman and Yang (1995) for cost functions of the above form.

The idea is to associate with every β in (11) an auxiliary variable c and to construct an augmented

criterion K, such that for every c fixed, the function β → K(β, c) is quadratic (hence quadratic

programming can be used) whereas for every β fixed, each c can be computed independently

using an explicit formula. The augmented criterion K is chosen to have the same minimum as

J, attained for the same value of β. The optimization problem of the augmented energy can be

solved iteratively. At each iteration one realizes an optimization with respect to β for c fixed and

a second with respect to c for β fixed. More precisely, if β(m) and c(m) are the values given after m
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iterations, the (m + 1)th step of the algorithm actualizes these values through:

β(m+1) = argmin
β

K(β, c(m))

c(m+1) = argmin
c

K(β(m+1), c)

(12)

This procedure leads to two algorithms, namely ARTUR and LEGEND, that are also referenced in

the literature as IRLS and IMR. We refer to Nikolova and Ng (2005) for some theory on the their

use with Huber M-estimation. These algorithms are used for example in robust recognition (see

e.g. Charbonnier et al. (1997), Dahyot et al. (2004) or Vik (2004)). Vik (2004) in particular stresses

the link between ARTUR and LEGEND and Huber’s approach.

ARTUR

The algorithm described hereafter is referenced as the ARTUR algorithm in the optimization

literature or as Iterative Reweighted Least Squares (IRLS) in the robustness literature. Geman and

Reynolds’s theorem leads to an augmented criterion of the form

K(β, c) =
n

∑
i=1

ci(zi − AT
i β)2 + Ψ(c).

The auxiliary variable c corresponds to a weight on the residuals of the least squares fit, thus

explaining the IRLS terminology. Intuitively, weights on large residuals have a tendency to

eliminate the corresponding responses from the fit. For β fixed, the minimum is reached for

ci =
ρ′λ(ri)

ri
where ri is the ith residual ri = zi −AT

i β. At this point the value of Ψ is ρλ(ri)− ρ′λ(ri)ri/2.

The m + 1 step of the ARTUR algorithm can therefore be described as follows:






















r
(m)
i = zi − AT

i β(m)

c
(m+1)
i =

ρ′λ(2r
(m)
i )

2r
(m)
i

, ∀i ∈ {1, . . . , n}

β(m+1) = (ATc(m+1)A)−1ATc(m+1)Z

LEGEND

LEGEND, or Iterative Modified Residuals (IMR), is a slightly different algorithm. The auxiliary

variable doesn’t weight the residuals anymore but subtracts the larger values of the residuals

instead. The existence of the corresponding augmented energy functional follows from the second

theorem of Geman and Reynolds (1992). The criterion to be minimized can be written as

K(β, c) =
n

∑
i=1

(zi − AT
i β − ci)

2 + ξ(c).
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For β fixed, the minimum is reached for ci = ri

(

1 − ρ′λ(ri)
2ri

)

where ri ith residual ri = zi − AT
i β and

at this point the function ξ takes the value ρλ(ri) − ρ′λ(ri)
2/4.

With similar notation as for the ARTUR algorithm, the m + 1 step of the LEGEND algorithm can be

described as follows:






















r(m) = Z − Aβ(m)

c
(m+1)
i = r

(m)
i

(

1 − ρ′λ(2r
(m)
i )

2r
(m)
i

)

∀i ∈ {1, . . . , n}

β(m+1) = (AT A)−1AT(Z − c(m+1))

Both ARTUR and LEGEND are very easy to program. Nikolova and Ng (2005) show that the

risk obtained via the multiplicative form ARTUR is always smaller than the one obtained via the

additive form, but the later one is numerically faster. The main reason for this is that under the

multiplicative form a matrix inversion is performed within each iteration.

5.2 Numerical simulations

In this subsection, we give some simulation results. All the calculations were carried out in

MATLAB 7.0 on a unix environment. For the DWT, we used the WaveLab toolbox developed by

Donoho and his collaborators at the Statistics Department of Stanford University (http://www-

stat.stanford.edu/̃wavelab). For each of the simulated examples in the sequel, we may summarize

the various ingredients of our fitting procedure as follows:

1. Application on the observed data of the discrete wavelet transform (DWT) using the

pyramidal algorithm of Mallat (1989);

2. Estimation of the variance σ2 by means of a QR decomposition on the matrix of wavelet

coefficients at maximal resolution followed by a MAD estimation;

3. Estimation of β0 with ARTUR or LEGEND, solving (9);

4. Estimation of θ0 by soft thresholding of Z − Aβ̂n, given by (10);

5. Finally, estimation of f̂n by applying the inverse DWT on θ̂n.

We will compare with Fadili and Bullmore’s procedure that estimates conjointly β0 and θ0 using a

backfitting algorithm.

In order to reduce the number of iterations, we have used a stopping criterion in both ARTUR
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et LEGEND: while fixing a larger upper bound for the total number of iterations allowed, we

also consider that the algorithm has converged as soon as the difference between two successive

iterations is smaller than some given threshold δ. More precisely, the iterations are stopped as soon

as
‖β

(m+1)−β
(m)‖2

‖β
(m)‖2

< δ or whenever we attain their upper limit.

For illustration, we generated three test problems as follows. The nonparametric component f0

was selected among two different functions, one sinusoidal function and one piecewise constant

function. The covariate is chosen as Xi = g(i/n) + ηi with polynomial functions g and with the

(ηi)i=1,...,n generated independently from a centered distribution with finite variance, as explained

in Section 6. For DWT, the filter we used is the Daubechies Symmlet filter with 8 vanishing

moments. The sample size we took was n = 28. For each setting, 500 replicates of data with

different X and u were generated. The variance of the noise was chosen such as the signal-to-noise

ratios of the nonparametric and parametric component respectively were equal to 2.2 and 4.38.

Such choices seem reasonable. With the simulated data, we then used the proposed algorithms

to estimate the unknown parameters. For wavelet thresholding the universal threshold was used,

while the termination tolerance δ was set to 10−5 for ARTUR and 10−10 for LEGEND. For Backfitting,

we have used the algorithm of Fadili and Bullmore (2005) with a tolerance level δ equal to 10−20. To

save computational time we have also specified an upper limit of 2000 for the maximum number

of iterations allowed.

Example 1: Sinusoidal test function

In examples 1 and 2, the covariate was generated using the polynomial function g(t) = t5 + 2t

and with the (ηi)i=1,...,n generated independently from N(0, 1). We have also run some numerical

simulations with different design functions g such as g(t) = 2t, g(t) = e−t2
or g(t) = cos(t) with

similar results, not reported here by the lack of space. It seems that assumption (A4) is not really

necessary for asymptotic consistency.

We first consider the case of a sinusoidal function for the nonparametric part. In such a case one

could obviously use smoothing splines based semiparametric estimation but it is interesting to see

how our wavelet based procedure behaves. Figure 2 displays the wavelet transform of the data

and of the design matrix. Note that the sparse representation of the nonparametric part allows an

efficient reduction of the bias between the observations and a linear model. The dashed lines in the

plot displayed in Figure 2, represent the lines Xiβ0 ± λ. Observations lying far out from these lines
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do not affect the estimation of β0.

Figure 2: Wavelet transform of the data. Figure (a) represents the scatter plot of the observations yi

versus the values of the covariates Xi. The line is the linear part of the model, of equation yi = Xiβ0.
Figure (b) is the scatter plot in (a) after the Discrete Wavelet Transform: it represents the coefficients
zi versus Ai. The solid line is the linear part of the model (equation zi = Aiβ0) and the dashed lines
are the lines of equations zi = Aiβ0 ± λ.

We now evaluate the effect of the QR decomposition on the estimation of the noise, and we

compare the computational time required by each of the algorithms, namely ARTUR, LEGEND

and Backfitting over the 500 replications of the experiment.

Estimation of σ by MAD

True value without QR with QR

0.5 1.2222(0.0955) 0.5023(0.0511)

Table 1: The mean values of the estimates and their standard deviation over the 500 simulations in Example

1 with n = 28 (the standard deviation appears in brackets).

From Table 1, we get a fairly good impression on the effect of the QR decomposition on the

estimation of the noise variance: the presence of the linear part introduces a strong bias in the

MAD estimator, bias which is strongly diminished when using the QR decomposition. This also

explains why in the comparison of their various thresholded estimators, Fadili and Bullmore (2005)

often obtain estimators that are over-smoothed, since the variance that is used in their thresholds

is over estimated. To be fair, we therefore have adopted for all methods the universal threshold
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λ = σ
√

2 log(n) with σ estimated by MAD after a QR decomposition.

Estimation of β0

True value Backfitting ARTUR LEGEND

1 0.9000(0.0273) 0.9417(0.0327) 0.9417(0.0327)

Average computing time 0.0936 0.0232 0.0151

Table 2: The mean values of the estimates and their standard deviation over the 500 simulations in Example

1 (standard deviation appears in brackets) with n = 28. The average MISE for the nonparametric part for

these simulations is 0.1029 for ARTUR and LEGEND and 0.1098 for Backfitting.

From the last row of Table 2 one can see that both half-quadratic procedures (ARTUR and LEGEND)

are faster than Backfitting and the quality of estimation of both the parametric and nonparametric

parts in terms on mean squared error is also better. The differences observed in estimating β0

between the various procedures is mainly due to the different tolerance levels δ used by each.

Note also that Backfitting always stops because the maximal number of iterations is reached. The

estimation given by Backfitting could be improved but at the cost of a much larger computational

time.

Recall that for both half-quadratic based algorithms, once the unknown parameter β0 is estimated,

a nonparametric wavelet based estimation procedure is applied to the resulting residuals yi − Xiβ̂n

for estimation of the nonparametric part. Figure 3 displays a typical example of these residuals and

of the corresponding nonparametric estimation using ARTUR on one replication.

For the value of the signal-to-noise ratio (SNR f = 2.2) adopted in our simulations for the

nonparametric part, the estimator does not detect the discontinuity. However it produces results

very similar to those by standard wavelet denoising of an identical nonparametric signal (without

a linear part) with the same SNR, supporting our claim that the presence of the linear part in a PLM

doesn’t affect the estimation of the nonparametric part.

In their numerical implementation of ARTUR et LEGEND, both Vik (2004) and Dahyot and

Kokaram (2004) conclude that LEGEND converges faster, supporting the theoretical results of

Nikolova and Ng (2005). To share some light on this fact we have run some simulations with a

larger number sample size. With n = 210 observations and the same signal-to-noise ratio as before

one can see a clear difference in computational time among the two algorithm for estimators with
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Figure 3: Estimation of the nonparametric part in Example 1. Figure (a) represents the residuals obtained

after estimation of the linear part of the models, meaning zi − Ai β̂n, and the true functionnal part (dash). in

Figure (b) we have the resulting estimation of the function (solid) and the true function (dash).

Figure 4: A typical partial linear fit from Example 1. The figure represents the scatter plot of the

observations, the estimated functionnal part (dash) and the parial linear fit (solid) for one of the simulation.

equivalent qualities, as reported in Table 3.

Example 2: piecewise linear function

We would like now to illustrate our estimation procedure when the nonparametric part is highly

non regular. We thus consider a function f0 which is piecewise constant. It is obvious that for such

a function, our wavelet based procedure is better suited than a spline based procedure. All other

setting adopted for these simulations are the same as those for example 1.
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Estimation of β0

True value ARTUR LEGEND

1 0.9762(0.0127) 0.9762(0.0127)

Average computing time 0.2331 0.0166

Average number of iterations 7 59

Table 3: The mean values of the estimates and their standard deviation over the 500 simulations in Example

1 (the standard deviation appears in brackets) with n = 210. LEGEND is much faster than ARTUR.

Estimation of σ by MAD

True value with QR

0.5 0.49961(0.052741)

Table 4: The mean values of the estimates and their standard deviation over the 500 simulations in Example

2 (the standard deviation appears in brackets) for n = 28.

The results given in Table 5 reinforce our claim from example 1 that half-quadratic algorithms are

more efficient than Backfitting. Note moreover that the non regularity of the nonparametric part

does not seem to affect the quality of the estimation of the vector of regression parameters.

Estimation of β0 for n = 28

True value Backfitting ARTUR LEGEND

1 0.8999(0.0273) 0.9548(0.0309) 0.9548(0.0309)

Average computing time 0.0744 0.0209 0.0139

Table 5: The mean values of the estimates and their standard deviation over the 500 simulations in Example 2

(standard deviation appears in brackets). The average MISE for the nonparametric part for these simulations

is 0.1012 for ARTUR and LEGEND and 0.1078 for Backfitting.

As in example 1, one can see from Table 5 and Table 6 that LEGEND outperforms ARTUR, and that

the difference of computing time increases with the number of observations n.

The estimation of the nonparametric part does not detect the discontinuities of the function. Yet
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Estimation of β0 for n = 210

True value ARTUR LEGEND

1 0.9554(0.0149) 0.9554(0.0149)

Average computing time 0.3036 0.0209

Table 6: The mean values of the estimates and their standard deviation over the 500 simulations in Example 2

(standard deviation appears in brackets). The average MISE for the nonparametric part for these simulations

is 0.0584 for ARTUR and LEGEND.

Figure 5: Estimation of the nonparametric part in Example 2. Figure (a) represents the residuals obtained

after estimation of the linear part of the models, meaning zi − Ai β̂n, and the true functionnal part (dash). In

Figure (b) we have the resulting estimation of the function (solid) and the true function (dash).

compared to standard wavelet denoising in a nonparametric regression model with the same SNR,

the estimation obtained in the PLM is very similar. The bad visual quality of the estimation results

from the choice of the signal-to-noise ratio (SNR f = 2.2) adopted in our simulations rather than

the presence of the linear part.

Example 3: dimension 4

We now consider a case where the vector of parameter β belongs to R4 (the dimension of the design

regression matrix X is then n × 4). The nonparametric part f0 is the same as in example 2, meaning

that the function is highly irregular. The SNR for the global model was chosen equal to 5.99, with

a SNR equal to 4.38 for the nonlinear part. One may summarize the results for this example in the

above tables.
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Estimation of σ by MAD with QR

True value with QR

0.5 0.52261(0.053808)

Table 7: The mean values of the estimates and their standard deviation over the 500 simulations in Example

3 (the standard deviation appears in brackets).

Estimation of β0

True value Backfitting ARTUR LEGEND

-1 -1.4969(0.45822) -0.7203(0.461) -0.7203(0.461)

3 2.8563(0.09770) 2.9168(0.09941) 2.9168(0.09941)

0 -0.1201(0.33685) 0.0125(0.34415) 0.0125(0.34415)

8 7.5601(0.16772) 7.7112(0.18525) 7.7112(0.18525)

Mean squared error 0.8434 0.5438 0.5438

Average computing time 0.1602 0.0305 0.0234

Table 8: The mean values of the estimates and their standard deviation over the 500 simulations in Example

3 (the standard deviation appears in brackets) for a given value of the true β0. The average MISE for the

nonparametric part for these simulations is 0.2140 for ARTUR and LEGEND and 0.2164 for Backfitting.

As one can see with computational times that are similar for all procedures, both half-quadratic

algorithms outperform Backfitting in terms of the MSE.

As for examples 1 and 2, when the sample size increases, among the half-quadratic algorithms the

LEGEND one is much faster.

Conclusion

This paper develops a powerful penalized least squares estimation in partially linear models, based

on a wavelet expansion of the nonparametric part. Choosing an appropriate penalty on the wavelet

coefficients of the function, the procedure leads to an estimation of the linear part of partly linear

models independent from the nonparametric part, while the estimation of the nonparametric part is

adaptative relatively to the smoothness of the function. Since the functionnal part of the model has
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Figure 6: Estimation of the nonparametric part in Example 3. Figure (a) represents the residuals obtained

after estimation of the linear part of the models, meaning zi − Ai β̂n, and the true functionnal part (dash). In

Figure (b) we have the resulting estimation of the function (solid) and the true function (dash).

Figure 7: A typical partial linear fit from Example 3. The figure represents the scatter plot of the

observations, the estimated functionnal part (dash) and the partial linear fit (solid) for one of the simulation.

a sparse representation, the estimation of the regression parameters vector is moreover interpreted

as a common M-estimation. In the particular case of an l1-penalty (leading to soft thresholding and

Huber’s estimator) the near-minimaxity of the estimation of both parametric and nonparametric

parts of a partially linear model is established, and the result is avalaible for a large class of

functions, including nonsmooth irregular functions. From an implementation point of view, half-

quadratic algorithms are proposed that appear to give good results on simulation studies.

Our ongoing research is focusing on exploring the asymptotic properties of the procedure for other

thresholding schemes and in more general frameworks such as nonequidistant designs for the

nonparametric part.
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6 Appendix

Appendix A. Discussion of the assumptions.

In this Section, we study wether the assumptions made in Theorem 1 are reasonable in practice.

Following Rice (1986) or Speckman (1988) we suppose that the design matrix X can be written

as a sum of a deterministic function and a noise term. The (i, j)-component of X can be written

as xi,j = gi(tj) + ξi,j with functions gi such that
∫

f gi = 0 and where ξi,j denotes a realization of

a random variable ξi. The variables (ξi)i=1,...,n are supposed to be independent and identically

distributed, centered and with finite variance, independent from the ui. With these notation,

assumptions (A1), (A2) and (A4) become:

(A1) The norm of 1
n XTF can be decomposed as follows:

‖ 1
n XTF0‖2 = ∑

p
j=1

(

1
n ∑

n
j=1 gi(tj) f (tj) + 1

n ∑
n
j=1 ξi,j f (tj)

)2
.

The convergence towards 0 of the first term is ensured by the assumption that
∫

f gi = 0 for

all i = 1, . . . , p. We can prove that the second term tends to 0 almost surely.

Remark 2. When we suppose that ∀i,
∫

f gi = 0, this impose that either the integral of f is equal to

zero or the vector 11n×1 is not in the space spanned by the columns of X. This is the usual assumption

for identifiability in PLM (e.g. Chen (1988) or Donald and Newey (1994)).

(A2) Let V(g) be the matrix with entries
∫

gigj and V denotes the covariance matrix of the variables

(ξi)i=1,...,n. One can prove that 1
n XTX converges almost surely to V(g) + V. It is sufficient to

assume that the family (gi)i=1,...,n is L2-orthogonal in order that the matrix V(g) + V is non

singular.

(A4) Actually, it is equivalent to prove that 1
n sup ‖Ai‖2 → 0 to get (A4). For i ∈ {1, . . . , n}

given, 1
n‖Ai‖2 is equal to n−1AT

i Ai = ∑
p
l=1

[

1
n ∑

n
j=1 ψi(tj)Xj,l

]2
. With the previous notation,
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xj,l = gl(tj) + ξ j,l and we can establish that n−1AT
i Ai tends almost surely to ∑

p
l=1

(∫

ψigl

)2
.

This can also be written as n−1AT
i Ai ∼ ∑

p
l=1(wl

i)
2 with (wl

i)i=1,...,n wavelets coefficients of the

functions gl .

If, for all l = 1, . . . , p, gl is a polynomial function whose degree is less than or equal to the

number of vanishing moments N of the wavelet mother, then this assumption holds.

Hypothesis (A3) is not detailled here because even if it does not seem very constraining, it is

difficult to study its feasibility.

To conclude, when the design Xi, i = 1, . . . , n can be written as Xi = gi + ξi with gi orthogonal

polynomial functions with a degree less than or equal to N, and with ξi centered independent

random variables with finite variance, whenever
∫

f gi = 0 for all i, assumptions (A1), (A2) and

(A4) hold.

Appendix B. Proofs of the main results

B.1. Preliminary result

Proposition 2.

When assumptions (A2) and (A3) hold,

1√
n

n

∑
i=i0

ρ′λ(θ0 i + ε i)Ai = ©P(λ)

This result comes from Bernstein’s inequality applied to the random variables Yi,j =
Ai,j√

n

ρ′λ(θ0i+ε i)
λ ,

i = 1, . . . , n, for any fixed j in {1, . . . , p}. Indeed, these variables are almost surely uniformly

bounded and ∑
n
i=1 E[Y2

i,j] is bounded, due to the following lemma:

Lemma 3. If (A2) and (A3) hold,

(i) n−1/2 supi=1,...,n ‖Ai‖ → 0

(ii) n−1 ∑i=1,...,n ‖Ai‖2 = ©(1)

This result lies on the observation that ‖Ai‖2 = AT
i (AT A)1/2(AT A)−1/2Ai, and consequently

‖Ai‖ ≤ n1/2‖( 1
n AT A)1/2‖h1/2

i .
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B.2. Variables transform

Let us recall that we are studying the model

zi = AT
i β0 + θ0i + ε i under (A2)-(A4) (13)

(Assumption (A1) is an identifiability assumption and does not intervene in the proofs). Following

Huber (1981) or Bai et al. (1992), we build an equivalent model by a change of variables. Let us

define the following transforms:

R = A(AT A)−1/2,

α =
1

λ
(AT A)1/2(β − β0)

di =
1

λ
(θi + ε i).

The results may be established equivalently for the following model:

zi = RT
i α0 + di under (A2”)-(A4”); (14)

(A2”) RTR = Ip.

(A3”) h = max
i=i0,...,n

RT
i Ri tends to 0.

(A4”) K′′
n := ∑

n
i=i0

RiR
T
i E
[

ρ′′1 (di)
]

tends to K′′
0 , non singular matrix.

As the Huber cost function has scale transform properties:

for any v > 0, ρλ(u) = v2ρλ/v(u/v), (15)

we then can prove that in the model (14), the estimator α̂n is solution of the minimization problem

α̂n = argmin
α

n

∑
i=1

ρ1(di − RT
i α).

As ρ′λ(u) = λρ′1(u/λ) and ρ′′λ(u) = ρ′′1 (u/λ), we have K′′
0 ∼ Σ−1K0 and Proposition 2 becomes in

(14):
n

∑
i=i0

ρ′1(di)Ri = ©P(1).

In all the proofs, we will consider the model (14) and obtain the consistency results thanks to the

mentionned transforms.
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B.3. Convergence of the criterion

Proposition 4.

Let c be a strictly positive constant. Suppose (A1) to (A4) hold. Then,

sup
{‖β−β

0
‖≤cλn−1/2}

1
λ2

∣

∣∑
n
i=i0

(

ρλ(θ0 i + ε i − AT
i (β − β0)) − ρλ(θ0 i + ε i)

)

+
n

∑
i=i0

ρ′λ(θ0 i + ε i)AT
i (β − β0) − n

1

2
(β − β0)

TK0(β − β0)

∣

∣

∣

∣

∣

P−→ 0.

The proof is built on two phases: we first approximate the Huber cost function ρ with a smoother

function, keeping a control on the third derivative; secondly, we develop a scheme of proof very

similar to Bai et al. (1992) in the transformed model (14). The main argument is the convexity of ρ,

which allows in particular the use of Rockafellar’s theorems.

B.3.1. Approximation of Huber cost function

The approximation is built by three successive integrations. Let 0 < δ < 1. We define r3
δ on R:

r3
δ : u 7→











6
δ3 (u − (1 − δ/2))(u − (1 + δ/2)) if 1 − δ/2 < |u| < 1 + δ/2

0 otherwise

.

We introduce next, r2
δ primitive of r3

δ equal to zero at 1 + δ/2, r1
δ primitive of r2

δ equal to zero at 0

and rδ, primitive of r1
δ equal to zero at 0.

The function series ρ̃1 = r3
1/n2 is a series of convex functions C3, which converges uniformly towards

ρ1 when n goes to infinity. We can furthermore prove that
∫

|ρ̃(3)
1 | ≤ 12, and that

n‖ρ̃1 − ρ1‖∞ −→
n→∞

0, (16)

n‖ρ̃′1 − ρ′1‖∞ −→
n→∞

0, (17)

‖ρ̃′′1 − ρ′′1‖∞ ≤ 1. (18)

Moreover, ρ̃′′1 and ρ′′1 only differ from each others on two intervals of length 1/n2.

B.3.2. Preliminary tools

Proposition 5. Let C be an open compact set of Rm. We consider ( fn)n∈N and f a family of convex

functions defined on C and taking their values in a given probability space (Ω, P, µ). Suppose for all u ∈ C,
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fn(u) − f (u) converges in probability to 0. Then the convergence in probability of sup{u∈C} fn(u) − f (u)

towards 0 is acquired.

Proof. We recall a theorem given in Rockafellar (1970) (Theorem 10.8, page 90):

Proposition 6. Let C be an open compact set of Rm. We consider ( fn)n∈N and f a family of finite convex

functions defined on C. Suppose the series ( fn)n∈N converges simply to f on C. Then the convergence is

uniform on C.

In order to obtain a similar result for the convergence in probability, we may use the following

characterization of such a convergence:

Lemma 7. Let (Xn)n be a series of random variables and X a random variable. The series (Xn) converges

in probability towards X if and only if from all subsequence of Xn we can extract a series which tends almost

surely to X.

Consider fν(n) a subsequence of fn. We would like to find β(n), subsequence of ν(n), such that for

all u ∈ C, fβ(n)
(u) − f (u)

a.s.−→ 0. The Lemma 7 tells us that for all u ∈ C there exists ηu(n) extraction

of ν(n) such that fηu(n)(u) − f (u)
a.s.−→ 0. Let us consider D = {u0, u1, u2 . . .} dense and countable

subset of C. Using a diagonal procedure, we can exhibit (β(n)) such that for all u ∈ D, we have

fβ(n)
(u) − f (u)

a.s.−→ 0. Afterwards, the convergence of fβ(n)
− f on C holds by density of D and

continuity of fβ(n)
− f . Applying Rockafellar’s Theorem, we obtain that sup

u∈C

fβ(n)
(u) − f (u) tends

almost surely to 0.

To conclude, we have proved that from all subsequence sup
u∈C

fν(n)(u) − f (u) of sup
u∈C

fn(u) − f (u) we

could extract a series which converges almost surely to 0. This finishes the proof using Lemma

7.

B.3.3. Convergence criterion

Let c > 0. We are going to prove that in model (14) we have:

sup
{‖α‖≤c}

∣

∣

∣

∣

∣

n

∑
i=i0

(

ρ1(di − RT
i α) − ρ1(ei)

)

+
n

∑
i=1

ρ′1(di)RT
i α − 1

2
αTK′′

0 α

∣

∣

∣

∣

∣

P−→ 0. (19)

Note that in the initial model (13), this is equivalent to

sup
{‖β−β

0
‖≤cλn−1/2}

1
λ2

∣

∣∑
n
i=i0

(

ρλ(θ0 i + ε i − AT
i (β − β0)) − ρλ(θ0 i + ε i)

)

+
n

∑
i=i0

ρ′λ(θ0 i + ε i)AT
i (β − β0) − n

1

2
(β − β0)

TK0(β − β0)

∣

∣

∣

∣

∣

P−→ 0.
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• We introduce:

∆(α) :=
n

∑
i=1

(

ρ̃1(di − RT
i α) − ρ̃1(di) + ρ̃′1(di)RT

i α
)

.

The cost function ρ̃1 is convex. For every i, it gives the upper bound:

∣

∣

∣
ρ̃1(di − RT

i α) − ρ̃1(di) + ρ̃′1(di)RT
i α
∣

∣

∣
≤ |ρ̃′1(di − RT

i α) − ρ̃′1(di)||RT
i α|. (20)

This inequality gives a bound of the variance of ∆(α):

Var(∆(α)) ≤
n

∑
i=1

E

[

(

ρ̃′1(di − RT
i α) − ρ̃′1(di)

)2
]

|RT
i α|2.

The function ρ̃′1 being 1-Lipschitz,

∀n ∈ N, ∀i = 1, . . . , n, ∀u ∈ R
+, E

(

ρ̃′1(di + u) − ρ̃′1(di)
)2 ≤ u2.

Consequently,

Var(∆(α)) ≤
n

∑
i=1

|RT
i α|4 ≤ ‖α‖4

n

∑
i=1

‖Ri‖4.

As α is supposed to be bounded and ∑
n
i=1 |Ri|4 ≤ h ∑ hi = hp tends to 0, we obtain that Var(∆(α))

tends to 0. Bienaymé-Tchebychev inequality ensures then that |∆(α)−E∆(α)| converges towards 0

in probability.

• The term E∆(α).

As the function ρ̃ is C3, the Taylor expansion of degree 2 with a rest of an integral form of ρ̃1 on a

neighborhood of di exists. It gives:

ρ̃1(di − RT
i α) − ρ̃1(di) + ρ̃′1(di)RT

i α − 1

2
ρ̃′′1 (di)αTRiR

T
i α

= −
∫

ρ̃
(3)
1 (t)(di − t)311

di−RT
i α≤t≤di

dt/6.

Using the bound
∫

∣

∣

∣
ρ̃

(3)
1 (t)

∣

∣

∣
dt ≤ 12, obtained when constructing ρ̃, we obtain:

E

∣

∣

∣

∣

∣

n

∑
i=1

(

ρ̃1(di − RT
i α) − ρ̃1(di) + ρ̃′1(di)RT

i α − 1

2
ρ̃′′1 (di)αTRiR

T
i α

)

∣

∣

∣

∣

∣

≤ 2‖α‖3
n

∑
i=1

‖Ri‖3.

Note that ∑
n
i=1 ‖Ri‖3 ≤ h1/2 ∑ hi = h1/2 p → 0. Therefore, when ‖α‖ ≤ c,

E∆(α) =
1

2
αTK̃′′

nα + o(1), with K̃′′
n =

n

∑
i=i0

RiR
T
i E
[

ρ̃′′i,1(di)
]

.

Actually, K̃′′
n converges towards K′′

0 . Let us decompose ‖K̃′′
n − K′′

0‖ in

‖K̃′′
n − K′′

0‖ ≤ ‖K̃′′
n − K′′

n‖ + ‖K′′
n − K′′

0‖.
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The convergence to 0 of the second term is ensured by hypothesis (A3”). The first term is:

K̃′′
n − K′′

n = ∑ RT
i E(ρ̃′′1 (di) − ρ′′1 (di)).

The functions ρ̃′′1 and ρ′′1 only differ on intervals whose total length is 2/(n2). Consequently,

E(ρ̃′′λ(di)− ρ′′λ(di)) ≤ 2/(n2)‖ρ̃′′λ − ρ′′λ‖∞‖ fε‖∞ where fε denotes the density function of ε i. We obtain

the inequality: ‖K̃′′
n − K′′

n‖ ≤ 1
n h1/2C, with C a constant. As h tends to 0 under (A4”), we deduce

that K̃′′
n converges towards K′′

0 and thus E∆(α) = 1
2 αTK′′

0 α + oP(1).

When ‖α‖ ≤ c, the convergence in probability of |∆(α) − E∆(α)| to 0 implies:

∣

∣

∣

∣

∣

n

∑
i=1

(

ρ̃1(di − RT
i α) − ρ̃1(di) + ρ̃′1(di)RT

i α
)

− 1

2
αTK′′

0 α

∣

∣

∣

∣

∣

P−→ 0.

If D̃ and D respectively denote D̃ := ∑
n
i=1 ρ̃1(di −RT

i α)− ρ̃1(di) and D := ∑
n
i=1 ρ1(di −RT

i α)− ρ1(di),

then |D − D̃| ≤ n‖ρ̃1 − ρ1‖∞. Using (16), we obtain the almost sure convergence of D − D̃ to

0. In the same way, if B̃ := ∑
n
i=1 ρ̃′1(di)RT

i α and B := ∑
n
i=1 ρ′1(di)RT

i α, we then have |B − B̃| ≤
n‖ρ̃′1 − ρ′1‖∞‖α‖h1/2. When ‖α‖ ≤ c, properties (17) implie that B − B̃ tends almost surely to 0. All

together, we have:

∣

∣

∣

∣

∣

n

∑
i=1

(

ρ1(di − RT
i α) − ρ1(di) + ρ′1(di)RT

i α
)

− 1

2
αTK′′

0 α

∣

∣

∣

∣

∣

P−→ 0.

• We may prove now that the convergence is uniform on the set {‖α‖ ≤ c}.

The functions in α:

n

∑
i=1

(

ρ1(di − RT
i α) − ρ1(di) + ρ′1(di)RT

i α
)

and
1

2
αTK′′

0 α

are convex and the set {‖α‖ ≤ c} is convex, compact and independent from n. Proposition 5

completes the proof.

B.4. Proof of Theorem 1

B.4.1. Consistency

In the model (14), we are willing to prove that α̂n = ©P(1). Let cn → ∞. We may prove that

P (‖α̂n‖ > cn) → 0. We can deduce from (19) that there exists a series c′n such that c′n → ∞, c′n ≤ cn

and

sup
{‖α‖≤c′n}

∣

∣

∣

∣

∣

n

∑
i=1

(

ρ1(di − RT
i α) − ρ1(di) + ρ′1(di)RT

i α
)

− 1

2
αTK′′

0 α

∣

∣

∣

∣

∣

P−→ 0.
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It is sufficient then to prove that P (‖α̂n‖ > c′n) → 0.

• Suppose ‖α‖ = c′n.

We have
n

∑
i=1

(

ρ1(di − RT
i α) − ρ1(di)

)

= −
n

∑
i=1

ρ′1(di)RT
i α +

1

2
αTK′′

0 α + oP(1).

First,

‖1

2
αTK′′

0 α‖ ≥ 1

2
s(K′′

0 )(c′n)2,

with s(K′′
0 ) smallest eigenvalue of K′′

0 . As the matrix K′′
0 is nonsingular, s(K′′

0 ) > 0. Next, Proposition

2 implies that

‖
n

∑
i=1

ρ′1(di)RT
i α‖ = ©P(c′n).

As a consequence, the probability that the quantity

n

∑
i=1

ρ1(di − RT
i α) − ρ1(di) = −∑ ρ′1(di)RT

i α +
1

2
αTK′′

0 α + oP(1)

is negative tends to 0. This result is true uniformly for α verifying ‖α‖ = c′n. We obtain:

P

(

inf
{α, ‖α‖=c′n}

n

∑
i=1

ρ1(di − RT
i α) − ρ1(di) ≤ 0

)

→ 0. (21)

• Let α be such that ‖α‖ ≥ c′n.

We define t =
c′n
‖α‖ ∈]0; 1] and α′ = tα. With the equality di − RT

i α′ = (1 − t)di + t(di − RT
i α),

together with the convexity of ρ, we have:

ρ1(di − RT
i α′) − ρ1(di) ≤ t

(

ρ1(di − RT
i α) − ρ1(di)

)

.

As ‖α′‖ = c′n, it comes that:

P

(

inf
{α, ‖α‖≥c′n}

n

∑
i=1

ρ1(di − RT
i α) − ρ1(di) ≤ 0

)

→ 0, (22)

or equivalently:

P

(

inf
{α, ‖α‖≥c′n}

Jn(α) ≤ Jn(0)

)

→ 0.

The estimator α̂n has been defined as the argument realizing the minimum of Jn, and so,

P (‖α̂n‖ ≥ c′n) tends towards zero, which achieves the proof.

32



B.4.2. Bahadur’s representation

We want to prove that in model (14), we have

α̂n = K′′
0
−1

(

1√
n

n

∑
i=1

ρ′1(di)Ri

)

+ oP(1).

Let us first recall this result given in Rockafellar (1970):

Proposition 8. Let C be an open convex set. Let fn be a family of differentiable convex functions and f be a

differentiable convex function. If fn converges simply towards f on C, then ∇ fn converges simply towards

∇ f on C and the convergence is uniform on every compact set of C.

Similarly to Proposition 5, this Proposition can be generalized to a convergence in probability (using

Lemma 7).

Applying this Proposition to the result (19) gives us that, for all c > 0,

sup
‖α‖≤c

∣

∣

∣

∣

∣

n

∑
i=1

(

ρ′1(di − RT
i α)Ri − ρ′1(di)Ri

)

+ K′′
0 α

∣

∣

∣

∣

∣

P−→ 0.

We have proved precedently that α̂n = ©P(1). Then,
∣

∣

∣

∣

∣

n

∑
i=1

(

ρ′1(di − RT
i α̂n)Ri − ρ′1(di)Ri

)

+ K′′
0 α̂n

∣

∣

∣

∣

∣

P−→ 0. (23)

By definition of α̂n, ∑
n
i=1 ρ′1(di − RT

i α̂n)Ri = 0. The convergence of (23) becomes:

α̂n = K′′
0
−1

(

n

∑
i=1

ρ′1(di)Ri

)

+ oP(1),

which is the announced result.

B.4.3. Asymptotic behavior of the functionnal part

The model considered for this part of the proof is the model (13) contrarily to what precedes.

Parseval equality gives: ‖ f̂n − f ‖2 ∼ 1
n‖θ̂n − θ0‖. We decompose this bound into: 1

n‖θ̂n − θ0‖ ≤
1
n‖θ̂n − θ̃n‖ + 1

n‖θ̃n − θ0‖ where

θ̃i,n =











zi − AT
i β0 if i < i0

sign(zi − AT
i β0)

(

|zi − AT
i β0| − λ

)

+
if i ≥ i0

.

D. Donoho (1992) proved that there exists a constant C such that E
1
n‖θ̃n − θ0‖ ≤ C

(

log(n)
n

) s
1+2s

. The

convergence in L2 implies the convergence in probability.
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The term 1
n‖θ̂n − θ̃n‖ verifies the inequality 1

n‖θ̂n − θ̃n‖ ≤ 1
n‖A‖‖β̂n − β̂0‖ + 2 λ

n . Assumptions (A2)

and (A3) ensure that 1√
n
‖A‖ =

(

1
n ∑ ‖Ai‖2

)1/2
is bounded and that ‖β̂n − β̂0‖ = ©P( λ√

n
) through

the first part of the Theorem. Then, 1
n‖θ̂n − θ̃n‖ = ©P(λ

n ) = ©P(
log(n)1/2

n ).
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