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ABSTRACT 

STRUCTURAL MORPHOLOGY 
AND CONSTITUTIVE BEHAVIOUR 

OF MICROHETEROGENEOUS MATERIALS 

A. Zaoui 

Ecole Polytechnique, Palaiseau, France 

One of the main specific aspects of continuum micromechanics is related to the fact that one 
has generally to deal with ill-defined bodies: only partial information on the statistical 
distribution of the constituent phases of the considered random inhomogeneous materials is 
available. 

The first chapter briefly reports the main classical ways to use such an information in 
the context of linear elasticity for the derivation of bounds and estimates; attention is then 
focused on isotropic particulate composites and especially on Hashin's composite spheres 
assemblage. New estimates are proposed for the overall shear modulus which include 
Hashin's bounds as well as the three-phase model estimate : improved Hashin-Shtrikman­
type bounds are conjectured from this analysis. 

The second chapter presents a proof of this guess as well as a generalization of the 
method used for arbitrary "morphological representative patterns"; the classical Hashin­
Shtrikman variational procedure is adapted to such a morphological analysis. Applications to 
the derivation of bounds and estimates for the overall elastic moduli are developed both for 
isotropic and anisotropic distributions of the patterns. 

In the third chapter, we lay the stress on behavioral aspects of this approach, with 
special emphasis on the viscoelastic coupling. Whereas it is easy to study the influence of 
morphological characteristics on the overall behaviour of linearly viscoelastic materials, this 
is more difficult to do for nonlinear behaviours: Hill's treatment of the rate-independent 
classical self-consistent model is highlighted and extended to rate-dependent behaviours but 
this remains an approximation and new ways have still to be explored. 
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1. INTRODUCTION

1.1 Continuum micromechanics and structural morphology 
In what follows, we assume the usual conditions which define the framework of 

continuum micromechanics to be satisfied: a random inhomogeneous material is considered 
which obeys macrohomogeneity requirements, which implies that the pertinent scale lengths 
of the body (referring to the size of the elementary "microscopic" inhomogeneities, of the 
"mesoscopic" volume elements and of the "macroscopic" structure and mechanical loading 
respectively) differ by one order of magnitude at least from each other. This separation of the 
scales allows "representative volume elements" (R.V.E.) to be defined : their details differ 
from one to the other but they lead to the same "homogeneous equivalent medium" 
(H.E.M.). 

Nevertheless, the detailed microstructure of each R.V.E. is so complicated that it 
cannot be described completely: only some properties of the statistical distribution of the 
constituent phases are known. These properties may be quantitative, such as the knowledge 
of the volume fractions of the phases, of the two-point correlation functions of the elastic 
moduli etc. They may also be qualitative, so as e.g. to specify the isotropy or the symmetries 
of the anisotropy of the spatial phase distribution, the connectedness of one "matrix" phase, 
the average shape of inclusions belonging to another phase ...  We refer to all such 
informations as the "morphological" description of the inhomogeneous material. 

The question is now: how to deal with such informations in order to derive either 
optimal bounds or pertinent estimates for the overall mechanical parameters? The main 
classical ways to answer this question are first reported briefly in what follows (§2) in the 
context of linear elasticity. The well-known solution of Eshelby's inclusion problem [ 1] has 
been used to derive several classical estimates whose morphological meaning is discussed. A 
general "systematic theory" for random elastic media [2] has been developed too which 
allows to derive a set of bounds for the overall elastic moduli associated with correlation 
functions of various orders. 

These methods are shown to be unsatisfactory when materials exhibiting one 
continuous phase, such as the matrix of reinforced composites, are considered. For the rest 
of the chapter, we focus on this problem with special attention paid to Hashin's [3] 
composite spheres (or cylinders) assemblage (C.S.A. or C.C.A.). We build up a continuous 
set of estimates for the overall shear modulus of the isotropic C.S.A. which lie between the 
older bounds derived by Hashin by using a Voigt-Reuss type approach adapted to the 
C.S.A. whereas the three-phase model [4] is recovered as the self-consistent treatment of the 
problem. We can guess that two of the obtained estimates correspond to new Hashin­
Shtrikman-type bounds: such improved bounds with respect to Hashin's ones should be 
obtained by taking better advantage of the isotropic distribution of the composite spheres. 

This guess is demonstrated and developed systematically in the next chapter (§3) 
which combines the definition of "morphologically representative patterns" (M.R.P.) with 
the use of Hashin-Shtrikman variational procedure [5]. It is shown that, for an isotropic 
distribution of the patterns, explicit bounds can be derived from the solution of elementary 
composite spheres problems: this solution may be approximated analytically as closely as 
wanted. When. the centers of the patterns obey an "ellipsoidal distribution", the numerical 
resolution of similar composite inclusions problems [6] lead to refined bounds whose 
comparison with older ones is meaningful. Finally new estimates can be defined too, 
especially in the context of the self-consistent procedure: M.R.P.-based generalized self­
consistent schemes [7] using finite element computations for the solution of the associated 
inclusion elementary problems are suggested to yield an interesting alternative to the "unit 
cell" or periodic homogenization techniques. 
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1.2 Behavioral aspects 
In the last chapter (§4) ,  we lay the stress on behavioral aspects of the proposed 

approach. This can be done easily in the case of linear (non ageing) viscoelasticity through 
the Laplace transform technique. An illustration of the influence of morphology on the "long 
range memory effect" is given by comparing the relaxation spectra of the shear modulus of 
an isotropic two-phase material whose constituents obey a Maxwellian behaviour as 
predicted either by the classical or by the generalized self-consistent scheme: whereas in both 
cases the relaxation spectrum is a continuous one, which proves that the overall behaviour is 
no more Maxwellian, this spectrum is split tip into two parts when the three-phase model is 
used: this property is characteristic of the continuous morphology of the matrix phase [8]. 

The connection between morphology and overall behaviour is much harder to be 
modelled in case of nonlinearity. For the rest of the chapter, attention is mainly focused on 
the nonlinear classical self-consistent scheme which already confronts us with most of the 
difficulties to be overcome. The advantages of Hill's treatment of elastoplasticity [9] with 
respect to former ones are first recalled. The difficulty to extend it to rate-dependent plasticity 
arises from the fact that, since stress and strain time derivatives of different orders are 
simultaneously present in the constitutive equations, Green techniques cannot be used 
directly. This difficulty can be solved [10] by combining the same kind of linearization 
procedure along the loading path and the use of the Laplace transform technique: at each 
incremental step, we are left with a linear viscoelastic behaviour with eigenstrains which can 
be converted into a (symbollically) classical elastic problem with eigenstrains. 

Nevertheless an important basic problem of nonlinear micromechanics has not been 
solved by Hill's self-consistent treatment: it is associated to the fact that, at any stage, a 
nonlinear phase which is not homogeneously deformed cannot be defined by a unique set of 
instantaneous moduli (this is the case for the matrix for the self-consistent scheme). This 
difficulty is still increased with the different versions of the generalized self-consistent 
scheme which consider heterogeneously deformed phases. Some ways to appreciate this 
difficulty in connection with the recent theories of nonlinear bounds are suggested in 
conclusion. 

2. CONTINUUM MICROMECHANICS AND MORPHOLOGICAL ANALYSIS

2.1 The need of a morphological analysis 
It is well known that, except for quite special cases, e.g. when the assumption of a 

periodic microstructure can be made, the material content of a Representative Volume 
Element (R.V.E.) of a microinhomogeneous material cannot be described in a deterministic 
way. Even if a statistical point of view is adopted, the statistical description of the spatial 
distribution of the constituent phases cannot be performed completely. Consequently, we 
cannot aim more than at bounding or estimating the overall mechanical characteristics of the 
considered material. This is performed the more efficiently, the more completely the available 
information on the phase distribution is used or the more pertinently this information is 
obtained. 

As a matter of fact, it is not easy to decide which kind of information, in addition to the 
minimal one consisting in the determination of the volume fractions of the constituents and 
their own mechanical characteristics, will lead to the closest bounds or to the most adequate 
estimates. It will depend on the specific morphology of the considered material: in some 
cases, the two-point correlation functions of some material parameters will be more efficient; 
in other cases, it will be the symmetry of the overall anisotropy or the fact that one phase is 
continuous and the other ones are not. ..  

In any case, some morphological analysis has to be performed before any attempt to 
derive bounds or estimates. In what follows, we shall briefly recall first the main current 
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ways to build up such bounds and estimates in order to illustrate the way they could take 
account of such a morphological analysis. This will be done for linear elasticity in order to 
concentrate on these morphological aspects: behavioral ones will be considered later. Let us 
start with the most classical estimates of the overall elastic moduli which have been derived 
from the classical solution of Eshelby's inclusion problem. 

2.2 Inclusion-based estimates of the overall elastic moduli
The principle of any method for the derivation of estimates of the overall elastic moduli 

cest or compliances sest of macrohomogeneous heterogeneous media is quite simple: since
the local values c, and s, are uniform per phase, we only have to estimate the average stress

a, or strain £, in each phase (r) for a given macroscopic stress E or strain E, i.e. to

estimate the average stress B:sr or strain A:sr concentration tensors, from which we derive:

or: 

E =< E >= L f,E, = L f,A:st : Er r 
cest = };f,c,:A:st =<c:Aest >r 

r r 
sest =}; f ,s,: B:sr =< s: Best >r 

(2.1) 

(2.2)

where fr is the volume fraction of phase ( r) and <· > stands for the volume average in the
considered R. V .E .. 

Inclusion-based estimates may be defined by reference to Eshelby's solution [I] of the 
problem of an ellipsoidal inhomogeneity H whose moduli c differ from those, C, of the
surrounding infinite matrix submitted to homogeneous strain EO at infinity. The strain tensorEH in the inclusion is known to be uniform and given by

(2.3) 

where SE is the Eshelby tensor, P = SE: c-1, &: = c - C and I is the unit fourth-order

tensor. We may now estimate A:sr by considering that the mechanical state of each phase (r) 
in the R.V.E. submitted to the global strain E is, in average, the same as the one of an
ellipsoidal homogeneity H, with the same moduli c, embedded in a fictitious homogeneous
medium with moduli c0, submitted to some homogeneous strain EO at infinity. The shape
and orientation of H, can be specified from what we know of the ( r) phase domains
geometry whereas EO is determined by the average condition 

<E>=};f,E,=E (2.4) r 
As for the moduli c0, they can be chosen at will in order to express at best the specific

morphology of the considered material; each choice of co leads to a specific estimate C(/1 
through the corresponding po value.
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The associated set of equations reads: 
- o s:_o -1 EoEr = (I + Pr ;cx;r ) : 
E =< E >=< (I + Po: &o r1 >: Eo
A:(/ = (I + pro:&.:? rl : < (I + Po: &o rl >-1
Cost=< c : (l + po.-&o rl >: < (I + po.-&o rl >-I

= 2, Urc r : (l + Pr0 : &? r1 ): (2, !JI +  Ps°-· &� r1 r1 

(2 .5 )  

Of course, similar results could be obtained for the compliances, namely, with obvious 
notation: 

- 0 s: 0 -] 0<J r = (I + Qr : usr ) : L 
Q� = Co - Co: Pro.-co

L =< a>=< (I +Qo: 8so rl >:Lo
B:r/ = (I + Q� : 8s?r1 : < (1 + Q0: 8s0r1 >-1
Sost =< s: (I + Qo: 8so rl >: < (I + Qo: 8so rl >-1 

= LUrsr : (I +Q� : 8s?r1 J: (2,fs(I +Q� : 8s?r1r1 r s 

(2 .6)  

Several classical estimates enter this framework for different co or so values. Voigt's
( CV = <c >) and Reuss's (SR = <s>) ones correspond to vanishing values of so and co 
respectively, which conforms with their extremal character and their underlying assumptions 
(uniform strains, as transmitted to the inclusion by a rigid matrix ,  and uniform stresses, as 
transmitted to the inclusion by an infinitely soft matrix, respectively). 

Two other usual estimates, namely Mori-Tanaka's [ 1 1 ]  and the self-consistent [ 1 2, 13] 
ones, may be obtained too. The first one corresponds to the choice co= CMat, where CMar 
are the elastic moduli of the matrix phase of a composite material. This is an approximate 
way for expressing the continuity of the matrix of such reinforced composites: in this case, 
the reinforcements as well as the matrix itself are supposed to be surrounded by the 
continuous matrix, which corresponds obviously to an overestimation of the mechanical role 
of this phase since interactions between particles or fibres as well as their strengthening 
effect on the matrix response are neglected. From Walpole's interpretation [ 1 4] of Hashin­
Shtrikman [ 1 5] bounds in terms of matrix/inclusion situations, it is easy to show that for 
spherical particles and isotropy, this estimate coincides with Hashin-Shtrikman's lower 
bounds when, as usual, the matrix is softer than the reinforcements. Note that this derivation 

only insures the reciprocity of the overall moduli and compliances ( SMT = ( CMT r1) but not
their symmetry when particles with different aspect ratios and orientation are considered. 

As for polycrystals, their phases (i. e. grains with identical lattice orientation and shape) 
are rather disordered so that they play a similar morphological role: each grain with a given 
lattice orientation and shape is surrounded by many other grains and, as a whole, the set of similarly shaped and oriented grains is surrounded by almost all the other phases. 
Consequently, a more adequate choice for the moduli co would be to take them as the
researched moduli ces t themselves. This is the basic assumption of the "classical self-
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consistent scheme" (C.S.C.S.) whose moduli ccscs and compliances scscs satisfy, from
(2 .5) and (2.6) ,  the equations 

ccscs = < c:( I+ pCSCS: &:cscs rl >: < (I+ pCSCS: &:cscs rl > -1

or <&:cscs:(I+P cscs:&:cscsr1 >=O

scscs = <s:(I +Qcscs .. &cscs;-1 >:<(I +Qcscs:8scscsr1 >-1

or < &cscs:( I+ Qcscs: 8scscs ;-1 >= O

with pcscs, rx:cscs and QCscs, &cscs formed from ccscs and scscs. 

(2 .7) 

Many other estimates, of course, could be defined with other choices for co or so, for
instance cv, SR, CMT etc., but without any clear morphological meaning. An illustration is

given on Fig. 1 for the estimation µest of the overall shear modulus of a two-phase isotropic
incompressible material at some given volume fraction according to the foregoing method. 
The ruling formula reads here: 

est 2µ,µ2 + 3µ0 < µ >µ = (2 . 8 )  
2µ1µ2 < µ-1 > +3µ0

where µO can vary from zero to infinity. Note that Hashin-Shtrikman's bounds are obtained

for µo = µ1 and µo = µ2 and that the successive estimates µ<O-) ( = µ1 ), µ<2-) ( = µHS- = µM1),
... , µ<2n-) . . .  as well as µ<O+) (= µ2), µ<2+) (= µHS+), ... , µ<2n+) converge towards the self­
consistent estimate, as expressed by Kroner's recursive formula for this estimate [ 1 6] ,  which 
could be put in connection with his theory of "graded disorder". 

v 

Fig. 1 An infinite set of estimates for the overall shear modulus of an isotropic 
incompressible two-phase elastic material, for a given volume fraction 
(the inclined straight line is the first bisector of the positive quadrant) 
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2.3 A systematic bound theory 
There is a systematic way to obtain bounds for the overall elastic moduli of random 

media which get sharper and sharper by integrating more and more information on the spatial 
distribution of the local moduli. Without entering into the details of their derivation, let us 
emphasize some aspects of this "systematic theory" [2] in view of our further developments: 

- the fundamental equation which is considered is the so-called "Lippman-Schwinger" 
equation which derives from the application of the Green technique to the problem of a given 

inhomogeneous body with moduli c( x): if G0 ( i, x 1) is the Green tensor for an arbitrary
reference homogeneous medium with the same geometry, the moduli co and fixed 
boundary, the strain field in the heterogeneous body satisfies the integral equation 

e(i) + r0(x,i')* &0(x'): e (i') = e 0 (2.9) 

where eO is the uniform strain field which would exist if the body was homogeneous and the 

sign * indicates a convolution-type product. Here r0 ( i, x 1) is the "modified Green strain

operator", defined from G0 (x, x ')by:

ro ( - -') a1 Go (- -') ijkl X, X =
a a , ik X, X (ij)(kl) 

'X j 'XJ 
(2. 1 0) 

where the index (ij) stands for symmetrization with respect to i and}. Note that r0(x,x') is
singular at x = x 1 and behaves as a Dirac function at this point. 

- if the distribution c(x) was known, (2.9) could be solved, at least formally, in order

to derive the effective moduli celf: 
celf =< c: (i + I'o*Oco rl >: < (i + ro *Oco rl >-1
or 

with &elf = c - celf 
(2. 1 1 )  

where the exponant (-1) refers to an operator inversion and i is the Dirac unit tensor. Similar

expressions are valid for the effective compliances self by changing c(x) into s(x) and

r0 (i, x ') into its stress counterpart L1° (i, x ') defined by:

Lio = Co - Co*I'o.-Co (2. 1 2)

- the same Green technique may be used to build up sets of kinematically (or statically) 
admissible strain e ' ( x) (or stress a * ( x)) fields from any polarization (symmetric) stress
field p(x) through the equations:

e'(x) + r0 (x,x1)*p(x1) = e0

< e' >= E (2. 1 3) 

a*= c0: e' + p
Such trial fields may be used in the potential and complementary energy theorems in order to 
bound the effective moduli and compliances, according to the available information on the 
distribution of the local quantities. 
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when such an information is given under the form of the first n-point correlation 
functions of the local moduli or compliances, it can be used to yield n-th order bounds which 
are the closer, n the larger. 

- a special case which is worth-mentioning is concerned with materials obeying a n-

rank disorder condition [ 1 7]: if £0 and F0(x,x') are the (singular) local part and the
(regularized) long-range part of the Green operator respectively, so that this operator may be 
put in the form 

ro (- -') _ Eo s: ( - -') Fo (- - ')X, X - U X, X + X, X 
this condition reads: 

< c':(F0*c'JP >= 0 , V'p= lto(n-1) 

(2. 1 4) 

(2. 1 5) 

An interesting property of such a class of materials is that well-known bounds or estimates 
are recovered as special cases: Voigt-Reuss's bounds correspond to n = 1, Hashin-

Shtrikman's ones to n = 2, whereas the self-consistent' estimate is obtained for n ---700, the
so-called "condition of perfect disorder". In this case, all the contributions of the Green 
operator reduce to their local part, so that (2. 1 1 )  reduces to: 

Ccscs =< c:( I + Ecscs: &/SCS rl >: < (I + Ecscs: &cscs ;-1 >-I

or < &cscs:( 1 + Ecscs: &cscs )-1 >= 0
(2. 1 6) 

which coincides with (2.7a) for spheres and isotropy; (2.7b) could be obtained in the same 

way by use of the local part of L1 ° ( x, x,) instead of r0 ( x, x,). 
- one could think this systematic theory to yield the final solution of the problem of 

taking morphology into account in homogenizing elastic random media. What makes the 
situation less optimistic is that, in addition to the mathematical complexity of the practical 
computation of bounds from given correlation functions of the e lastic moduli, these 
functions can hardly be extracted from an experimental investigation beyond n = 3 whereas 
many primary morphological characteristics, such as the geometrical connectedness of one 
phase or its inclusive nature could only be expressed through correlation functions of quite 
high an order ... 

2.4 Treatments of connectedness 
This question has been for a long time a bone of contention between people interested 

in composites and those concerned with polycrystals. For the former, any homogenization 
model should obviously express, for instance, the fact that a porous medium can have some 
mechanical strength up to a porosity of 100% and they found the self-consistent scheme to
be physically meaningless because of its prediction of vanishing elastic moduli for a porosity 
larger than . 5  or .6 ; on the contrary, metallurgists have considered for a long time Hashin­
Shtrikman's bounds as useless for their usual (polycrystalline) materials whereas they found 
the self-consistent prediction of a rigid overall behaviour of a two-phase (duplex) metal as 
soon as the volume fraction of the quasi-rigid second phase is larger than .4 or .5 as quite 
sensible and meaningful ... 

If one has in mind any care for the role of morphology in micromechanical modelling, 
one may consider such a dispute as out-of-date: it only reflects the fact that composites and 
polycrystals refer to basically different morphological types and cannot be satisfactorily 
described by the same models, as already discussed. In this section, we focus attention on 
the treatment of connectedness according to various models proposed in literature before 
proposing a new method to do it in an improved manner. 
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From what we have seen before, we can conclude that the question is still open. 
Among the different inclusion-based estimates reported in section 2.2, the Mori-Tanaka's 
one offers a rather crude and indirect way to express the geometrical continuity of the matrix 
of a composite. The fact that it coincides with Hashin-Shtrikman's lower bound for an 
isotropic particle-reinforced composite illustrates its overestimation of this morphological 
property and we could hope that this property could be accounted for in a Jess extremal and 
indirect way. At the opposite, the self-consistent estimate is clearly inadequate to this 
purpose and is rather adapted to polycrystal-type disordered and dispersed morphologies. 

As for the systematic theory of bounds, which includes Hashin-Shtrikman's ones as a 
special case, it does not seem adequate anymore since it is centered around the idea of 
morphological description through point correlation functions. As above-mentioned, such a 
description would need correlation functions of a quasi-infinite order to have a chance to 
express the connectedness of one particular phase, which is untractable in practice. 

Two other ways have been proposed in literature in view of a better expression of the 
matrix continuity of a composite. The first one refers to the so-called "differential self­
consistent scheme" (D.S.C.S.) [ 1 8, 19] and the second one to Hashin's "composite sphere 
assemblage" (C.S.A.) [3]. We now briefly discuss the first method before paying sharper 
attention to the second one. 

2.4. 1 The differential self-consistent scheme 
Instead of considering a particle (or fiber)-reinforced composite in its actual state, with 

the reinforcement volume fraction f, we take it as the final result of a differential process 
which starts from the matrix phase alone. The second phase is added progressively, so as to 
have its current volume fraction c raised from 0 to f; at each stage, the medium is re­
homogenized according to the self-consistent procedure; the latter may be defined within the 
dilute approximation, since the considered second phase volume fraction is infinitesimal. 

This differential process may be derived as follows: at a current stage, we start from a 
homogeneous mixture with the overall moduli C( c) containing the matrix and the second
phases with the volume fractions ( 1 -c) and c respectively. We add some infinitesimal volume 
of the second phase with moduli ci, so that its final volume fraction be c+dc: it is easy to see
that, in this new mixture, the volume fraction of the newly added second phase is de!( 1-c) 
whereas the one of the previous homogeneous mixture is now ( 1-c-dc)I( 1-c). The overall
moduli of this modified mixture, say C(c+dc), are calculated from (2.7). If (2.7a) is 

specified for a two-phase material, with volume fractions fJ and h , the overall moduli C
can be derived from the equation 

(2. 1 7) 

where � and P2 are defined for the searched medium with moduli C. If now (2. 1 7) is
specified for the considered situation, i. e. for!J = (1-c-dc)l(l-c), CJ= C(c), J2 = dc/(1-c),
C = C(c+dc) = C(c) + dC and if only terms of first order in care kept, we find the
following differential equation: 

dC =�(c2 -C):(I +P2:(c2-CJFJ (2.18) 
1-c 

where C = C( c) and P2 may be defined from C instead of C( c+dc) . Integration of (2. 1 8)
has to use the initial value C(O) = CJ. This is not easy to be performed in closed form in the
general case, but it can be achieved better in special cases. 

For instance, for an isotropic composite with spherical particles and isotropic 
constituents, we have the classical relations: 
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c =2µK +3kJ C2 = 2µ2K + 3k2J 
1 I= J + K lijkl = 2( 8;k8jl + 8u8jk) 

f3 a {3-- 6(k+2µ) P2 =-K+-1 
2µ 3k 5(3k+4µ) 

I J . .  kl = -8--8k1 I) 3 I) 
3k a = ---

3k+4µ 

(2. 1 9) 

Consequently, the differential equation (2. 18) is split into two scalar equations, for the shear 

and the bulk moduliµ and k, namely:

dk-� k2-k
- 1-c 1 + a(k2 -k)

k 

(2.20) 

These are highly nonlinear equations and, due to the dependence of a and f3 on k and µ,,
they are coupled too. In order to illustrate simply the pos

'
sibilities of this scheme, let us 

consider the case of incompressibility for both phases, and so for the composite too. In the 

first equation (2.20), we can set f3 = 215, so that the equation for the shear modulus reads
now: 

(3µ +2µ2)dµ = �
5µ (µ2-µ) 1-c 

After integration, we get 

DSCS DSCS _µ __ £µ2 -µ rs12 = 0_1 rs12
µ] µ2 -µ1 

(2.2 1 )  

(2.22) 

This result can be compared, for µJ < µ2, with the (classical) self-consistent estimate µcscs 
as well as with Hashin-Shtrikman's lower bound (which coincides here with Mori-Tanaka's 

estimate µMT). They are given by the following relations:

µ cscs ( 5 f -2) µ 2 3 -5 f 1 -- = -+--+-µ] 6 µ] 6 6 

µ MT = 3(1-f)µ1 +(2+3f)µ2 
µ1 ( 3 + 2f)µ1+2(1-f)µ2

(2.23) 

It can be checked that, as expected, the three considered estimates are ordered according to: 

µMT< µDscs < µcscs. In order to pay special attention to the treatment of connectedness, it

is interesting to make the inclusions harder and harder (i. e. µ2 � oo ). It is easy to get in this
case (Fig. 2): 

DSCS 
_µ_ �o-tr512 

µ] 
µcscs 2 2 -- �-- ./�-µ] 2-5! 5 

µ MT 2+3/
--�---
µ] 2(1- f)

µcscs
-- �oo 

µ] , f �l_
5

(2.24) 
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Fig. 2 Comparison of the CSCS, DSCS and MT estimates of the inverse of the effective 
shear modulus for an isotropic incompressible composite with rigid particles. 

Whereas the three estimates behave similarly at low volume fractions f of the rigid
inclusions, namely as µ/ µ 1 =I+ 5 f /2, they differ more and more when/ is increasing: the

two first ones remain bounded for any f and they tend to infinity only when/� I whereas
the third one is unbounded as long as/� .4. These conclusions clearly express the fact that 
the two first estimates take some geometrical continuity of the matrix into account whereas 
the classical self-consistent scheme deals with some more disordered morphology so as to 
allow a rigid skeleton to be formed beyond some percolation-like threshold. 

As far as composite materials with a well-connected matrix are concerned, we now 
have two models at disposal. Can we conclude that the differential self-consistent scheme, 
which is more complex than Mori-Tanaka's one, is more relevant to express the matrix 
connectedness? On the one hand, we can suspect that it does not present the exaggerated 
character we have already underlined when discussing Mori-Tanaka's model. On the other 
hand, it is not beyond any reproach: it can be developed in closed form for special cases only 
so that its applications are more limited; moreover, though yielding the expected qualitative 
properties for particle (or fiber)-reinforced composites, its morphological meaning is not so 
clear. 

As a matter of fact, the step by step re-homogenization procedure after every increase 
of the particle (or fiber) content is rather artificial, despite its practical efficiency. It has been 
argued that this procedure is a quite natural one when a wide range of particle sizes is to be 
taken into account: the first steps would allow to deal with the smallest particles and the 
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following ones would be concerned with larger and larger ones. Nevertheless, this cannot be 
understood literally since the elementary matrix/inclusion problem (with an infinite matrix) 
has no absolute length scale and cannot distinguish by itself smaller and larger inclusions . . .  
That is why we cannot consider that the problem of matrix connectedness representation has 
received a final solution through the differential self-consistent scheme and other ways to do 
so have better to be explored. 

2.4.2 The composite spheres assemblage 
A much more direct and simple way to represent the matrix connectedness of a 

composite material has been proposed by Hashin [3] as soon as 1 962. Dealing first with an 
isotropic particulate material, the "composite spheres assemblage" (C.S.A.), which has been 
followed shortly after by the "composite cylinders assemblage" (C.C.A.) for fiber-reinforced 
transversely isotropic materials, consists in an unbounded set of contiguous similar 
composite spheres of all sizes, including vanishing ones, so as to be able to fill up the whole 
space (see Fig. 3). Each composite sphere, with some radius b, has a spherical core, with 
the radius a, made of the reinforcement material and a concentric spherical shell made of the
matrix material. The ratio ( a/b) equals J113 where f is the· particle volume fraction (for the
C.C.A., this ratio isf112). Since the composite spheres touch each other and all the particles
are surrounded by some matrix material, the matrix is unambiguously connected, just as 
wished. 

The point is now to derive the overall moduli from those of the constituents and the 
particle volume fraction/ Let us consider an isotropic C.S.A. and isotropic phases with the 

shear and bulk moduli µJ, µ2 and kJ, k2 , where the indices I and 2 refer to the matrix and
the particles respectively. Obviously, there is an infinity of ways to realize an isotropic 

C.S.A. with the parameters µ1, µ2, k1, k2 and/ Thus the overall moduli µc.s.A. and kC.S.A. 
must be either bounded or estimated. The first approach to the problem, as proposed by 
Hashin, aimed at bounding the overall moduli. More than fifteen years later, an estimate was 
derived by Christensen and Lo [20] through the so-called "three-phase model". 

or 

Fig. 3 The composite spheres assemblage and Hashin's assumption for the derivation of 
bounds for its overall moduli. 
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2.4.2. 1 .  Hashin's bounds for the C.S.A. 
In order to build up admissible strain and stress fields to be used in the energy 

theorems, Hashin considered homogeneous conditions at infinity of the form 

(2.25) 

and he imagined to transfer these conditions to the boundary of every composite sphere of 
the assemblage and to solve the corresponding elastic problems. It is noticeable that, when 
doing so, the required continuity conditions at the interface between any two contiguous 
spheres are automatically satisfied so that, if the two elementary problems can be solved, we 
are left with a kinematically admissible strain field and a statically admissible stress field 
respectively, which are defined throughout the whole asssemblage. 

From a practical point of view, isotropy allows to split each elementary problem into 
two ones, corresponding to purely radial or shear loading conditions, so that the overall bulk 
and shear moduli can be bounded separately. The solution of each problem derives from 
basic Love's results [2 1 ] .  The conclusion is twofold: the overall bulk modulus kC.S.A. is
unambiguously determined, since the upper and lower bounds coincide with the value 

kCSA 
= 1 + 

1 
f 

(2.26) 
k1 + 3k1 ( 1 - f) 

k2 /k1 - 1 3k1 +4µ 1
whereas the overall shear modulus µc.s.A. is not. For reasons which will appear later, the

corresponding Hashin's bounds µH+ and µH- may be conveniently written in the followingform: 
H_ 

!!:.____ = 1+ f<p(O)
µ] 

µH+
-= 1+ j<p(oo) 
µ] 

I 1-J2 / 3 2 
<p(x)= A( l - f)+ l _ f(l - f  ) 

m 2/m 1 - l BJ713+C+25(1-n 1/ 
6(x-1) 

with 

A= 2(4 - 5v 1 )
15( 1 - V 1 ) 

B = 10( 1 - v 1 ) (7 - JOv 2 )(7 + 5v 1)µ 1 - (7 -JOv 1 )(7 + 5v2 )µ 2
21 4(7 - 10V 2 )µ 1+(7+5V 2 )µ 2 

JO C = 
2
/7 - l0v 1 )(1 - v 1 )

In these equations, V 1 and v2 are the Poisson ratios of the considered phases.

(2.27) 

One can see on Fig. 4 an illustration of these results for a particular case. Whereas it 
can be checked that these bounds are closer to each other than Voigt-Reuss's ones, it may 
also be noticed that they happen to be more distant than Hashin-Shtrikman's ones. This 
remark may seem somewhat disappointing since Hashin-Shtrikman's bounds are known to 
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deal with unspecified (isotropic) morphologies, whereas the C.S.A. has especially been 
defined in order to specify a matrix/inclusion-type morphology ... We only note this apparent 
inconsistency at the moment and shall go back to this point later. 

I o �����������__, 
0 0.2 0.4 0,6 0,8 1 

fig 4 Hashin's bounds for the overall shear modulus for the C.S.A., compared with Voigt­

Reuss's and Hashin-Shtrikman's bounds (µ2!µ 1  = 6 , incompressibility)

2.4.2.2 The three-phase model 
Aiming at "solving" the problem of the isotropic C.S.A. for the determination of the 

overall shear modulus, Christensen and Lo actually proposed an estimate of this (not 
uniquely defined) modulus. This estimate was derived from the condition that, under given 
homogeneous (stress or strain) loading conditions at infinity, the strain energy density in 
some homogeneous isotropic elastic infinite body remains unchanged if part of this body is 
replaced by a composite sphere of the C.S.A.: the elastic moduli of such a homogeneous 

body would yield an estimate of µc.s.A. and kC.S.A .. In other words, this so-called "three­
phase model" (see Fig. 5) deals with a composite sphere embedded in a "third phase", the 

homogeneous equivalent medium (H.E.M.) whose moduli µ3PM and k3PM are derived from
the foregoing energy condition. 

Here again, the elementary inclusion problem is solved from classical Love results as a 

function of the unknown parameters µ3PM and k3PM which are determined from the energy
condition, conveniently transformed into a quite tractable equation by use of Eshelby's 
integral [22]. It happens that the resulting value of k3PM coincides with Hashin's finding of

eqn (2.26) whereas µ3PM I µ 1  is the positive solution of a second order equation. It can be
checked that this equation may be put in the following form, which refers to the notations of 
formula (2.27): 

x= l+f<p(x) (2.28) 

It is easy to verify that this estimate always lies between Hashin's lower and upper 
bounds. Nevertheless, it is not quite clear whether the underlying model still respects the 
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wished matrix connectedness and so reflects the corresponding morphology. As a matter of 
fact, the treated configuration (Fig. 5) according to which a representative composite sphere 
has been embedded in a fictitious homogeneous medium does not express any longer the 
geometrical continuity of the matrix phase, at least as directly as initially done in Hashin's 
assemblage. So, the morphological meaning of the three-phase model would improve on 
clarification, which could be done by comparing this estimate of the C.S.A. elastic moduli to 
some others to be derived. Such a derivation can be performed easily by applying to the 
C.S.A. the method proposed in a simpler form in section 2.2: instead of dealing with simple 
ellipsoidal inclusions, we would just have now to consider composite spheres. 

·H·E·M·. . . . .

Fig. 5 The three-phase model 

2.4.2.3 A set of estimates for the C.S.A. 
Let us consider the "phases" which constitute the C.S.A. in a new sense: instead of 

still referring to the two mechanical ones, namely the matrix and the particles, this term is 

applied now to composite spheres with the same diameter. Let (A) be such a "phase" defined 
by the diameter d?,., with the volume fractionf,r according to the proposed approach adapted 
to the present situation, its average strain £?.. and stress (f?.. state when the homogeneous 

strain E (or stress l:) is applied to the C.S.A. at infinity is estimated to be the same as the 

one of a composite sphere belonging to (A) embedded in an infinite elastic matrix with 

moduli ( µo, kO ), under some prescribed uniform strain £0 (or stress IfJ) at infinity. The

searched estimates C'f/1 are derived from

<f>='L,f?..£?..=E 
}.. 

(or < (f >= L,f?..O'?.. = };) 
}.. 

< (f >= c�s/: < e > 
(2.29) 

Obviously, £?.. and Cf?.. do not depend on d?,., so that £?.. = E (or (f?.. = J;). One

calculation only is needed in order to derive e (or O') from £0 (or IJJ) for any composite
sphere with the volume fractionf This can be made easily from the basic Love's solutions. 
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If e, e1, e2, 'Eo and 8, 81> 82, e0 denote the average strain deviators and traces in the
composite inclusion, the spherical shell, the spherical core and at infinity respectively, one 
can write the solution in the form 

e1 = a1'Eo, e2 = a2'Eo, e = [(1 - JJa1 + fa2J 'Eo 
- 0 - 0 - 0 01 =b1e, 02 =b2e, O =f(l-f)b1 +.fb2Je, 

with scalar values a1, a2, b1 and b2 depending on µo and kfl. We get formally

k(/1 =I + f(k2/k1 - J) b2/b1
k1 1-f + f b2/b1 

µgst =I + /(µ2/µ1 - l)a2/a1.µl l-f+f a2/a1 

(2.30) 

(2.31) 

It is found easily that b2/ b 1 does not depend on µo and kD, so that k{/' has a unique value
which coincides with Hashin's solution (2.26). For a2/a1 , we find

a2 ( 1 - f) <p(µ0 /µ1)
-;;; 

= 
µ2/µ1 - 1 -f <p(µ0 /µ1) (2.32) 

where <p(x) has been defined in (2.27). From (2.31), (2.32) and (2.27) we get finally:

est µo =l +f<p(µ0/µ1) (2.33) 
µl 

µ2/µ1 o --_._���������������"--�---t.-
Fig. 6 A set of estimates for the shear modulus of an isotropic C.S.A. for a given volume 

fraction (the inclined straight line is the first bisector of the positive quadrant) 
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A graphic representation, similar to the one of Fig. 1, can be derived for a given f 

value: Fig: 6 shows such a plot of µ(/1/µ 1  as a function of µ 0/µ 1  which yields a
continuous set of estimates for the overall shear modulus of the isotropic C.S.A., lying 
between Hashin's lower and upper bounds. Several comments can be made from this plot: 

- Hashin's bounds µH+ and µH- for the shear modulus of the C.S.A. are two "bounds"

for the present set of estimates: they correspond to µ0 = 0 and µ0-;00 respectively. Referring
to the single inclusion-based estimates of section 2.2 and to the analogy with classical Voigt­
Reuss's bounds, one could say that Hashin's bounds are the transcription of Voigt-Reuss's 
ones to the specific morphology of the C.S.A.: as a matter of fact, Hashin's transfer of the 
homogeneous stress or strain boundary conditions of the R.V.E. to the boundary of every 
composite sphere is similar to Voigt-Reuss's procedure of prescribing uniform stress or 
strain conditions throughout the R.V.E. (i. e. of transferring the macroscopic boundary 
conditions to any point of the R.V.E.). In some sense to be made more precise, we could 
say that Hashin's bounds are the composite sphere-based extension of Voigt-Reuss's ones 
or that Voigt-Reuss's bounds are the"point" version of Hashin's ones. 

- the three-phase model estimate is nothing but the "self-consistent" element of the 

present set, corresponding to µo = µest, as already apparent from (2.28): this is a justification
of the denomination of "generalized self-consistent scheme" (G.S.C.S.) which is given 
frequently to the three-phase model. Now again, we could say that the three-phase model is 
the composite sphere-based extension of the classical self-consistent scheme or that the 
classical self-consistent scheme is the "point" version of the generalized one. Similarly to the 
single inclusion-based estimates of section 2.2, we could define an iterative procedure and 
recursive formulae converging towards the three-phase model estimate: this would allow this 
model to appear as the proper treatment of a hypothetical "perfectly disordered" composite 
spheres assemblage. Incidentally, it can be checked that Christensen-Lo's "energy condition" 

coincides with a direct strain or stress condition (ED = E or IY = L), a coincidence which
can be proved to be valid in more general situations [23]. 

- going further along this speculative line of thinking, we can focus attention on two 

special estimates of the considered set, corresponding to µo = µ 1 and µo = µ2 respectively.

Note that, when (k1 - k2)(µ 1 - µ 2) � 0, the first one is nothing but the classical Hashin­
Shtrikman's lower bound (or Mori-Tanaka's estimate) for the considered two-phase 
isotropic material. Their derivation by embedding the composite sphere in the softer and the 
stiffer phases looks like an extension of Walpole's interpretation of the classical Hashin­
Shtrikman's bounds adapted to the C.S.A., so that one could guess them to coincide with 
new Hashin-Shtrikman-type bounds for the C.S.A.. If so, they would represent improved 
bounds, with respect to Hashin's ones, for the shear modulus of the C.S.A., without any 
new information except for a better use of the property of an isotropic spatial distribution of 
the C.S.A.. Anticipating the following we could say that such new bounds are the composite 
sphere-based extension of the classical Hashin-Shtrikman's ones or that Hashin-Shtrikman's 
bounds are the"point" version of these new ones. 

Before demonstrating this guess in the next chapter and generalizing the corresponding 
"composite spheres approach" to arbitrary geometrical patterns, let us briefly mention that the 
foregoing analysis of the C.S.A. can be generalized easily both to n-layered isotropic 
spheres [24] and to transversely isotropic cylinders [25] assemblages, in view of 
applications to coated particle or fiber-reinforced composites, as well as to approximate 
treatments of nonlinear constitutive behaviours (see chapter 4). 
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3. MORPHOLOGICALLY REPRESENTATIVE PATTERN-BASED BOUNDING AND
ESTIMATING IN ELASTICITY 

3.1 Introduction 
We have already stressed the fact that most of the classical micromechanical 

approaches use a description by points of the phase spatial distribution: this is obvious for 
Kroner's systematic theory which uses intensively point-correlation functions of various 
orders for the elastic moduli; it is also the case for single inclusion-based estimates (one 
single inclusion in an infinite matrix has no internal microstructure so that it behaves like a 
point) as well as for the classical Voigt and Reuss or Hashin and Shtrikman bounds. In 
principle, point-correlation functions are a powerful tool for the description of complicated 
microstructure but they reveal themselves rather limited in practice: their experimental 
determination cannot be achieved beyond an order larger than 2 or 3 while the description of
as elementary morphological properties as the connectedness of a matrix phase looks 
practically out of reach. 

Hashin's composite spheres (or cylinders) assemblage and its by-products open a quite 
novel method of morphological description by using finite inhomogeneous elements (instead 
of points) as basic "bricks": first, the complete knowledge of the material content of such 
bricks includes a much richer information that usual; in addition, something must be said on 
the spatial distribution of the bricks, which still enriches the morphological description of the 
material (one must keep in mind that both informations, namely the constitution of a 
composite sphere and the spatial distribution of the spheres, were necessary to make the 
C.S.A. express the matrix continuity). 

Looking back upon Hashin's approach, we could find his definition of the "bricks" 
rather sufficient for his purpose but his treatment of their spatial distribution somewhat 
improvable (no explicit used was made of the implicitly assumed isotropy of this 
distribution). In addition, one family of composite spheres was considered only and the need 
to fill up the whole space with this spheres made necessary to use an artificial quasi-fractal 
process, so that no local fluctuation of the particle volume fractions was allowed. 

In what follows, we shall aim at saving the basic idea of dealing with finite composite 
elements, without initial restriction to spheres or cylinders, and at improving the geometrical 
description of their spatial distribution. By doing so, we want to combine a deterministic 
description of small, but finite, well-chosen "composite patterns" and a statistical 
representation of their distribution. Such a morphological representation will then be used to 
adapt the classical Hashin-Shtrikman's variational procedure in order to yield bounds for the 
overall moduli of a heterogeneous material [5]. Moreover, this "pattern approach" will be 
applied to the definition of new estimates for these moduli, including a generalized 
"morphologically pattern-based self-consistent scheme" [7] which uses numerical 
computations for the resolution of the basic underlying composite inclusions problems. 

3.2 A variational pattern-based approach to heterogeneous elasticity 

3.2.1 Simplified approach 
Let us first consider a multiphase E.V.R., whose extension can be considered as 

infinite, submitted to homogeneous strain conditions E at infinity; the volume V of this

domain Q is supposed to have been entirely decomposed into several "morphological 

phases" (A) with the volume fraction cA = VA /V , consisting of NA identical composite

domains DA centered at X k, translated from the same domain D)., centered at the origin.I I 
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This domain D A. will be considered as the "morphologically representative pattern" (say

M.R.P.) of the (A) phase (Fig. 7). 

Fig. 7 A morphologically representative pattern 

Note that any inhomogeneous material may be decribed in this manner, at least with as 
many patterns, reducing to points, as mechanical phases. The classical "point approach" will 
then be a special case of the present one and classical bounds have to be recovered as by­
products. In addition, such a pattern decomposition is not unique for a given material: some 
descriptions may contain more informations than others and lead to more acurate bounds or 
estimates. In the same way, for one given pattern description, some variational approaches 
may be more powerful than others if they take more available information into account. Let 
us start with the simplest one, namely the Voigt-Reuss-type approach, before adopting the 
more efficient Hashin-Shtrikman variational procedure. 

3.2. l. l M.R.P.-based Voigt-Reuss bounds 
Let us transfer the homogeneous strain boundary conditions at the boundary of each 

pattern, namely 

ii{(x) =E. x, VXEdD;., . 'r.ID;., cQ (3.1) I I 
If one can compute the corresponding strain field e i. ( x) inside each pattern D ).., one has at

disposal, by simply collecting these fields throughout the whole body Q, a clearly 
kinematically admissible strain field e '(x) which can be used as a Voigt-type trial field in the 

potential energy theorem. This leads to a "M.R.P.-based Voigt bound" C�RP [6] such that 

CV > ceff CV . , , � c). J 'd MRP - • MRP· <f. >=< c:e >= L..J - c).:e). (1), 
A. DA. D;. 'r/E. (3.2) 

Similarly, a " M.R.P.-based Reuss bound" is obtained by applying homogeneous 

stress conditions I* at the boundary of each pattern and by computing the associated stress 

field a� ( x) inside the patterns such that
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a). (x).ii;Ji) = I*.ii;Ji), (3.3) 

with ii;. ( x) denoting the outward unit normal vector to dD;.,; . The optimal choice I* for a

given E leads to the bound sf:,RP such that

(S/:,RPr1 � ceff, sf:,Rp: <a*>=< s: a*>= L � f s;.: a).dw, 'v'I (3.4) 
?. D;., D A. 

It can be checked that C�RP and sftRP have the right required properties of symmetry and
positiveness. In the general case, the computation of the 21 components of these tensors 
requires the (numerical) resolution of as many problems as different patterns under six 
linearly independent homogeneous applied strain and stress tensors. The simplest case has 
been solved in closed form by Hashin for the isotropic C.S.A. (see § 2.4.2.1.) and by 
Hashin and Rosen [26] for the transversely isotropic C.C.A.. 

3.2.1.2 M.R.P.-based Hashin-Shtrikman bounds 
The Hashin-Shtrikman variational procedure can be applied to this pattern approach 

too. It makes use of trial fields derived from the application of an arbitrary polarization stress 
field p(y) to a homogeneous reference medium with the elastic moduli co but with the
same geometry and boundary conditions as the considered inhomogeneous body. This 
polarization field of symmetric second order tensors is defined throughout the body as 

p(y) = LP;.(YJ<P;.,(y) (3.5) 
;., 

where </J;.,(y) is the characteristic function of V;.. As for P;.,(y), we choose it as translated

by X;.,. from some P;., ( x) field to be defined on D ;.,, so that we getI 

P;. (x + X;. J = P;JxJ, x ED;.,. 'v'A., 'v'i. I (3.6) 

Fig. 8 Homologous points of a M.R.P. 

20



In other words, we prescribe identical values of the polarization stress field at "homologous 
points", i. e. at points of the same morphological phase with the same relative position inside 
the phase domains they belong to (Fig.8). 

We start from the classical expression of the Hashin-Shtrikman functional HS0 ( p )
which reads 

2 HS0 ( p )  = E: c0: E + E: < p > + < e ': p > - < p: H0: p > 
(3.7) 

with H0 = ( &0 ;-1 = ( c - Co ;-1

where e' is the (kinematically admissible) strain field deriving fromp. From (3.6) we get:

(3.8) 

where we have used for the strain field e' the following definition of "pattern-averaged"
fields f (x) : 

M - I N;.. - -f:t (x) = - _Lf(x + Xk ) (3.9) 
N;;. i= l I 

From (2.13), we can derive e '  from p and then e�M(x) : 

,M ( -) 1 � '( - X- )e;;. x = - L. e  x +  k 
N;;. i= I  I 

I N;.. 
= e0 - -.rf r0(x + ik . x '):p(x ')dm '

N;.. i=IV I 

= e0  - f rfM(x, x '): p(x ')dm '
v 

= e0 - .r  f rfM <x. x '):pµ (x ')dm '  µ Vµ 
Nµ 

= £0 - .r .r frfM (x, x ' + Xµ ): Pµ (x ')dm ' . I J µ J = Dµ 
= e0 - _LNµ f rf';/M(x, x '): Pµ (x ')dm '  µ Dµ 

( 3 . 1 0) 

In this equation, (3.9) has been applied twice to the Green operator (once for each variable 

x and x '). The auxiliary uniform strain eo has to be determined through the average
property: 

< e ' >= E N;;. fe�M (x)dm = E.!:J_ fe�M(x)dm = E
A. V D A. D;;. D 

so that we have: 
A. A. 

(3.11) 
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L, N;.. f f e0 - L, Nµ f rf:M (x, x '): Pµ (x ')dw ' Jdw = E
). V D;.. µ Dµ 

N N
or e0 = E +  L,L,� J Jrf:M(x, x '): Pµ (x ') dw 'dwµ ). V D;.. Dµ 

(3.12) 

Note that the difference between eO and E stems from the infinite extension of the body and
from the corresponding definition of the Green operator in that case (an equivalent alternative 
treatment would have been to deal with polarization fields deviations, i. e. fields with null 
average) .  

After integration of  (3.10) into (3.8), we get: 

o o � N;.. j ,M O d 2HS (P;..) = E: C : E + £., - P;..: (E +e;.. - H;..: P;..) OJ 
). V D A. 

N = E: C0 : E + L ___J__ f P;..: (E + e0 -Hf : P;..) dw . . .
). V D A. 

N N  . . .  -L L � f P;..(x): f rf:M (x, x '): Pµ (x ')dw 'dw .µ ). V DJ. Dµ 

(3 . 13) 

We know that if co is such that Hf is positive or negative everywhere, then HS0 ( p)
yields bounds for the overall moduli .  Thus, the polarization fields P;.. have to  be  optimized in
order to  get optimal bounds . The stationarity of  the functional HSO is obtained by :

()HSO . s:'P = 0 \j 8P dp . u, ' ). ·  (3 . 1 4) 

From (3 . 1 3 ) and taking account of (3.12) for the dependence of eO on P;.., we get, after some
elementary algebra: 

8�50 : 8p = L N;.. f 8P;,. (xJ: feiM (xJ - Hf (xJ: P;,. (x)Jdw =0. (3. 15) op ;.. V D )._ 
This condition can be satisfied, due to the fact that the patterns are disjoint and the variables 
P;.. are independent on each other, by

eiM (x) = Hf (x): P;..(X) 
(3. 16) 

or P;,. (x) = 8cf (x): eiM (x). 
In other words,  e iM ( i) and P;.. ( x) are the solutions of the fol lowing integral

equations: 

eiM (x) = e0 - L, Nµ f rf:M (x, x '): &Z (x ') : e�M (x ')dw 'µ Dµ 
with the condition (3. 1 1 ) , or

(3 . 17) 
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o - . - - N)..Nµ j j OMM - _ , . _ , , H)..(x) . P)..(x) - E + L .! -- I')..µ (x, x ). Pµ (x )dro dro . . . 
µ ).. V D;. Dµ 

. . .  -.r Nµ f rf:M (i, i '): Pµ (i ') dro '.
µ Dµ 

(3.18) 

Referring to (2.9), we can guess from (3.17) that e;M (i) could be the solution of an
appropriate problem of interacting inhomogeneities D µ in an infinite matrix ,  but such an
interpretation would need additional informations on the spatial distribution of the patterns to 
be made more apparent. 

3.2.1.3 The case of isotropy 
We consider here an isotropic distribution of patterns in the following sense : let 

'¥)..µ (ii )drou be the number of couples of domains DA; and Dµ j such that their centers X A;
and Xµj l ie at a distance ii within drou . The assumption of an isotropic distribution of

patterns then implies that '¥)..µ (ii) depends on u = lliil l · In addition, this implies too that the

external shape of the patterns must be spherical : consider two patterns A and µ such that they 
contain at least two subdomains Dk and Dµ . in contact with each other (such a situationI } 
happens necessarily since the domains have to map the whole space). As two subdomains 
cannot lie at the same place, '¥)..µ ( u) must vanish over a fin ite neighbourhood of 0 (except

for 0 itself for A = µ ). Let umin = JJiimin ll be the minimal (non zero) distance between the

centers of (thus contiguous) subdomains A and µ : due to the isotropic distribution of the 
centers , this  concerns couples of domains with an equiprobable orientation of iimin and it is
easy to prove that such a situation cannot occur unless the subdomains be spherical . 

Thus, taking account also of the translation invariance of the Green operator in an 
infinite medium, we can write 

Nµ f rf:M (i, i '): Pµ (i ')dro ' = Nµ f rf:M (i - i '): Pµ (i ')dro '
Dµ Dµ 

1 � � Jr0(x- x- - _ ,) P ( - ')d ' . . .  = - £.J £.J A; - µ . + x - x : µ x (J) 
N).. i= lj=l D } µ 

. . .  = -1-j drou j 'l')..µ (u)I'0 (ii + i - i '): Pµ (i ')dro '. N).. D µ 

(3. 1 9) 

In this  integral , i and i '  belong to the spheres D ).., with the radius r).., and D µ. with the
radius rµ. respectively so that i - i '  belongs to a sphere with a radius (r;. + rµ) . With use of
Fubini 's theorem, the integration may be performed first on u over spherical concentric
shells with infinitesimal width du where '¥)..µ ( u) is constant. These terms vanish for u ;? 
r).. + rµ due to the well-known property of the Green operator which is responsible for the
uniformity of the solution in the ell ipsoidal inclusion of Eshelby's problem; thc;:y do so too 
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for u � r;;., + rµ when A, ;r µ since 'P;..µ (u) vanishes in this  case (the distance between the

centers of two spheres belonging to two different patterns cannot be smaller than the sum of 

their radii) .  A non zero contribution comes only from A = µ  and u = 0 (with 'Pu (0) = N).) 
so that we are led to the result: Nµ rf';!M (x, x ') = O;.,µ r0 (x, x '), \t x E D;., . x '  E Dµ .

We get finally 

Nµ / rf';!M (x, .x '): Pµ (x ')dm ' = o;.,µ / r0 (x - x '): Pµ (x ')dm 'Dµ Dµ 

so that (3.10) reads now : 

= J r0 ( x - x '): P;., ( x ')dm ' ,D,_ 

£�M (x) = £0 - jr0(x - x '): P;., (x ')dm ' , \tx E D;., D,_ 
and the integral equation (3.17) becomes: 

e�M (x) = t:0 - jr0 (x, x '): &f (x 'J : t:�M (x ')dm ' DA 

(3.20) 

(3.21) 

(3. 22) 

with the condition (3. l l )  to be used for the determination of cO. This proves that, due to the 
assumption of an isotropic distributions of the patterns, the pattern-averaged strain trial fields 

e �M ( x) which can lead to optimal bounds for such an assumption can be derived as the
solution of elementary problems of spherical composite inhomogeneities in an infinite 
homogeneous matrix (Fig .  9). 

: c� : : : : c? : : : : : : :c� : : : : : : : : : : :

Fig. 9 Interpretation of M.R.P.-based Hashin-Shtrikman bounds in terms 
of composite inclusions problems 

The elastic moduli co of the matrix have to be optimized too in order to make the

condition that Hf be positive or negative everywhere "just" satisfied: roughly speaking, this
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means that these moduli must b e  those of the softest or the stiffest mechanical phases 
belonging to the considered composite. This allows finally to derive optimal expressions 

HSopt of the Hashin-Shtrikman functional and then Hashin-Shtrikman-type bounds ct�P 
th gh . HSopt - 1 E ·CHS ·Erou . - - . MRP· .

2 
Note that in the foregoing analysis nothing has been specified about the mechanical 

anisotropy of the constituents and the material content of the patterns :  the analysis is still 
valid when the spherical patterns exhibit no internal spherical symmetry or when elasticity is 
local ly arbitrari ly anisotropic so that, despite the isotropic distribution of the centers of the 
patterns ,  the overal l behaviour may be anisotropic (see examples of such si tuations on 
Fig. 10). Note also that, in such cases ,  the Green operator need not be known in closed 
form: as a matter of fact, we only have to solve composite inclusions I matrix elastic 
problems, which can be performed by other techniques ( including numerical ,  e .g .  F.E.M . ,  
ones) than Green 's  ones. 

Fig. 10 Examples of isotropic distribution of patterns 

3.2 . 1 .4 Going back to the isotropic C.S.A. 
A straightforward application of what precedes concerns the isotropic C.S.A. [27]. We 

can consider the "morphological phases (A) as consisting of the composite spheres S;.. with
given external and internal radii b;..and a;.. respectively, satisfying / =  (a)/'b;..)3). The optimal 
value of the Hashin-Shtrikman functional is ,  from (3.16) and (3.8): 

HS0(e�M ) = !__E: C0: E + -1 I., N;..E: j&0(x):e�M (i)dw (3.23) 
2 2V ;.. s.l 

with e�M (i) given by (3.22) and (3.11) and &0(x) positive or negative everywhere .  If

£i2J and £ii) are respectively the average strain tensors in the core and the shell of S;.. when
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embedded in an infinite matrix with modul i  c0, submitted to tfJ at infinity, we can write
(3 .23) as : 

HSo ( E �M ) = E: Co: E + E : L,. c). [f(c2 - Co Y £i2! + (1 -f )(c 1 - Co Y til)]. (3 .24)2 2 ). 

But we know that ei2! and ei1! do not depend on the size of 5)., so that we have :

HS0 (£1 , E 2) = !_ E: C0: E + !_E.- [f ( c2 - C0 ): E 2 + ( 1 -f)( c 1 - Co): £1 ]
2 2 

with E = f£2 + ( 1 -f)£1 , ei2! = £2, eil) =£1 , \f,1, ( 3 . 25) 

and then HS0 (£1 , £2) = !_ E: [f c2: £2 + (1 -f) ci : Ei}. 
2 

6 �-------·--- -----· 6 ,---------- ·-- -

5 

4 

2 

O�-----;:-:��-b----'-:�-'"-,---� 0 0.2 0.4 0.6 0.8 

Fig I I Comparison between the bounds derived, for the overall shear modulus of an 
isotropic C.S .A. ,  according to Hashin's treatment (continuous lines) or to the present one 

(dotted lines) :  phase 2 included in phase I , µ2/µ1 = 6 ,  (a) incompressibility and (b)
v 1 =. 45 and v 2 = 0. (from [27] )
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With the notations of (2.30) and with 'E and e the deviator and trace of E, we get easily:

So fµ2a2 + ( 1 - f )µ 1a1 fk2b2 + ( 1 - fJk1b1 e
2

(3.26) H = 'E: 'E + ��--....:;..___.__,_ 
fa2 + ( 1 - fJa1 fb2 + ( 1 - fJb1 2 

This leads directly to prove that the two associated bounds for kC.S.A . coincide, with the 

same value as Hashin's one, whereas the bounds for µC.S.A . , say µ HS+ 
and µ Hs- , are

given, with the notations of § 2.4.2.3, by:  

HS+ HS-
_
µ

_ = 1 + f <p(µ2/µ1 ) ,  !:!____ = 1 + f <p(1).
µ ]  µ ]  

(3 .27) 

This result i s  a demonstratation of the guess proposed in § 2.4.2.3. It  allows to bound 
the overall shear modulus of the C .S .A. more efficiently than initial ly proposed by Hashin, 
as i l lustrated on Fig. 11. We can add that, provided that the assumption of an isotropic 
distribution of the pattern centers remains val id, several families of composite spheres, 
representing either local fluctuations of particle volume fractions or different kinds of 
particles, could be considered as wel l ;  especial ly ,  one family of spheres can be constituted 
with the matrix material only . Similarly ,  we can deal with several patterns of multi layered 
spherical inclusions . In addition, the transcription of this  approach to composite (possibly 
coated) cylinders with transverse isotropy is quite straightforward. 

We can also guess that the transcription of Kroner's "graded disorder" theory to the 
present pattern approach could allow us to prove that the three-phase model could be the 
adequate treatment of a "perfectly disordered" C .S .A.  in a way similar to the one which 
allowed Kroner to prove, within the point approach, that the classical self-consistent scheme 
is the adequate treatment of a "perfectly disordered" medium. Nevertheless, the question of a 
proper definition - or even of the stati stical feasibil ity - of such a "perfectly disordered" 
C .S .A.  remains an open one . . . 

3.2. 1 .5 Case of isotropic pattern distribution and cubic overall symmetry : 

Fig. 1 2  Scheme of a composite with isotropically distributed cubic aligned inclusions 
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The above treatment of the case of an i sotropic distribution of the pattern centers can 
also be applied to situations of macroscopic anisotropy, depending on the material content of 
the patterns . Such a situation can be achieved for instance by a composite with cubic aligned 
particles distributed isotropically (Fig. 1 2) .  B oth phases are considered as elastical ly 

isotropic so that the overall behaviour has a cubic symmetry : let  eff, µ�ff and µ�ff the
overall bulk and shear moduli respectively, with the definition 

2µ�ff = < crxx - <Yyy » 2µ';l = < <Yxy > ( 3 .28 )  
< £xx - Eyy > < Exy >

where x, y and z are the directions of the cubic symmetry . 
Of course the M.R.P.-based bounds for these moduli cannot be derived in closed form 

anymore but numerical computations aiming at the solution of the basic matrix/inclusion 
underlying problems can be performed as wel l .  We report here the results of such 
computations [6] for both shear moduli of (3 .28) performed by a 3D F.E.M. technique using 
the mesh represented on Fig. 1 3  (35 1 20-noded quadratic elements and 1 528 nodes) .  The 
M.R.P.-based Voigt-Reuss and Hashin-Shtrikman bounds have beeh computed by using 
moduli of the reference medium either far higher and lower than those of the constitutive 
phases for the former or equal to those of each of these phases for the latter. Meaningful 
comparisons may be made especially with the general bounds derived by Milton and Kohn 
[28 ]  for cubic symmetry in order to appreci ate the advantage of specify ing a 
matrix/inclusion-type morphology. 

Fig. 1 3  Typical 3D mesh used for the solution of the auxiliary inclusion problem 
corresponding to Fig 1 2  (from [6]) 
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In the present case (k2 > k1 and µ2 > µ 1) , Milton and Kahn's bounds read:

fj ( 2 + 3 ) � 5 6fi(k2 +2µ 2 ) 
µ 2 -µ �ff µ 2  - µ'Jff µ 2 -µ 1  µ 2 ( 3k2 + 4µ 2 )

Ji(  2
+ 3 ) � 5 6fJ(k1 +2µ 1 ) 

µ1f - µ 1 µ'Jff -µ l µ 2 - µ 1  µ 2 (3k1 + 4µ 1 ) 

( 3 .29) 

It can be checked on Fig. 14 that the specification of a matrix/inclusion morphology with 
isotropically distributed aligned cubic inclusions leads to a drastic tightening of the bounds 
for the shear moduli .  Note that, in accordance with mechanical intuition, the M.R.P. -based 
bounds for this particle-reinforced composite lie close to the lower Milton-Kahn's one ; 
nevertheless, the lower bounds do not coincide as they do in case of isotropy and "well-

ordered" materials (i. e. with k2 > k1 and µ2 > µ 1) . 

3.5 
- Milton & Kohn 
------ MRP-based Hashln/Shtrikman 

3.0 - - - ·  MRP-based Voigt/Reuss 

2.5 

2.0 

1 .5 

1 .5 2.0 2.5 3.0 3.5 4.0 4.5 

Fig. 14 Comparison between Milton-Kahn's and M.R.P. -based Voigt-Reuss and Hashin­
Shtrikman's bounds for the shear moduli of a composite with isotropically distributed 
aligned cubic inclusions k1 = 3, µ 1 = 1, k2 = 20, µ 2 = JO (arbitrary units) (2) in ( 1) 

(from [6]) 

In what follows, we shall now explore some routes of general ization of the proposed 
approach, especially in view of dealing with anisotropic distributions as well as of building 
up new tools for an improved estimation of the effective behaviour. 

3 .2 .2  Generalization 
The foregoing analysis has been extended according to two different directions : the 

first one is concerned with the possibil ity to deal with more general definitions of patterns ,  
which would not need anymore to be identical within a given family nor to fil l  up the whole 
space; the second one aims at taking better into account the overall anisotropy, especially 
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anisotropic distributions of patterns. These two kinds of extensions are briefly reported in 
what follows within the framework of linear elasticity . 

3 .2 .2 . 1 An extended definition of patterns 
Instead of restricting ourselves to morphological phases both composed of identical 

patterns and forced to map the whole space, we can consider more general situations without 

sensible increase of complexity [5] . First we allow any morphological phase (A,) to be
constituted of patterns which may be slightly different, both geometrically and mechanically .  
Let S;. be the geometrical intersection of such patterns D;.k after translation of their center

X ;.k to the origin: the foregoing definition of the polarization stress fields will be unchanged

inside one part of the patterns, namely the translated of S;., but modified outside . This new
definition will read: 

p A ( x ).k + i) = P;. ( i) if x ).k + i E (A), i E s A '
P;. (X;.k + i) = p;,,0 if X;.k + i E (A-), i � S;. 

( 3 . 30) 

where P ;.0 is a constant symmetrical second order tensor. In addition, the phases (A,) may

not fill  up the whole space: we can consider this part of n where no pattern information is 

available as an additional phase, say (v) , with Sv = 0 .
Referring t o  the expression o f  the Hashin-Shtrikman functional , i t  appears that we 

need an additional definition of "pattern-average" fields f(x) , namely :

ft = -
1
- f f(x)dwv Ao VAO 

( 3 . 3 1 )  

where V;.0 i s  that part of (A) whose points obey the conditions :  X ;.k + x E (A, ), x � S;...
This allows us to write a new version of (3 .8) ,  namely :  

2HS0(p) = E: C0: E + L, N;. j(E + e�M - P;. :HfM): P;. dw . . .A. V s A 
� V;.0 (E 1m . 8om ) · · · · + ,,c., - + e;. -p;,, · ;.. · P;. ;.. V o o 

( 3 . 32) 

Instead of a deterministic Hf ( x) tensor with known identical values at homologous points

x , we have now to deal with pattern-averages Hf M ( i) and Hf m , which have to be

derivable from some statistical knowledge about the material content of the patterns D;.k . 
Eqns (3 . 1 0) and (3 . 1 1 )  now read: 

1M ( -) 0 � N /rOMM( - - 1) P. ( - ')d I � v. rOMm -e;,, X = e  - ,,c., µ A.µ X, X : µ X (J) - ,,c., µ0 )..µ (x):pµ0 
µ � µ 

1m 0 � N  frOmM ( - ') P. ( - ') d I � v. rOmm e;.. = e - ,,c., µ A.µ x : µ x w -,,c., µ0 A.µ : p µ0 µ Sµ µ 
( 3 . 33 )  
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and 

, � ( 1 - a;,, j 'M ( -) d 'm ) E< E >= £., CJ,, -- E;,, x m + a;,,E;,, = 
;,, S;,, s.l 

( 3 . 34) 

with a;,, = V;,,0 /V;,,. The stationarity condition on the Hashin-Shtrikman functional has the

new form: 

aHs0 .. 8p = L 
N;,, j 8P;,, (x): r t:�M (xJ - HfM (xJ: P;,, (xJJdm . . .dp ;,, V D 

which implies 

,l 
v � A.o s: . ( ,,n Hom . ) _ O . . .  + £. - VP;,, . E;,, - ;,, · P;,, -A. v 0 0 

E �M (x) = Hf M ( x) : P;,, (x ) or P ( - ) HoM-1 ( _) 'M ( -);,, x = ;,, X : E;,, X 
c- 'm - Hom · p c A - A. . A.o or - Hom -I . E m1 P;,,o - ;,, . ;,, 

( 3 . 35 )  

( 3 . 36) 

Integration of ( 3 . 36) into (3 . 33 )  shows these equations to stil l  rule (composite)
inclusions I matrix problems through pattern-averaged Green operators which have to be 
derived from the available informations on the pattern distribution. Finally, optimal bounding 

is obtained by choosing co so as to make Hf M ( x) and Hfm (just) positive or negative. In
case of an isotropic distribution, the intersections S;,, must be spherical and the pattern­
averaged Green operators can be determined in closed form: in addition to the result already 

d . d f rOMM ( - _ ,) I N rOMM ( - _ ,) � ro - _ ,  e n v e  or A.µ x . x , n a m e  y µ A.µ x, x = u;,,µ (x . x ). 'v'x E S;,,. x '  E Sµ -
we find with simi lar arguments : 

c,o : : : : : :  :(;o: : : : : : : : : : : :. . . . . . . . . . . . . . : co : : : : : : : : : : : 

. . . . . . . . . . . . . 

Fig. 1 5  Interpretation of generalized M.R.P.-based Hashin-Shtrikman bounds in terms 
of composite and homogeneous inclusions problems 
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rfffm (x) = rf;M (x ') = o, 'v'x e s). , x '  e sµ
I'Omm = _l_ 0 Eo).µ v. ).µ µo 

where EO is the local part of the Green operator r0 ( x, x ') . 

( 3 . 37)  

Now again ,  the problem reduces to  several problems of composite spheres with 

moduli  c0 + HfM-l (x) and homogeneous ones with moduli  c0 + Hfm-l in an infini te
homogeneous matrix ,  so that Fig. 9 is now changed into Fig. 1 5 . Note that it is still more 
apparent on this case that when the patterns reduce to points and the morphological phases to 
the mechanical ones ,  i. e .  when S). = Sr = 0, 'v'A, = r ,  the classical Hashin-Shtrikman
bounds (and their interpretation in terms of homogeneous spherical inclusions by Walpole) 
are recovered soon with p).0 = p).0 = Pr uniform per phase. Note also that the case of

composites with one phase constituting a continuous matrix and with inclusive patterns 
which are identical within each morphological phase has been treated more completely by 
Bornert [29 ] .  

3 . 2 . 2 . 2  Ellipsoidal distributions of  patterns 
Another way of general ization of what has been presented as a " simplified approach"  

in  3 . 2 . 1 i s  the following:  sti l l  considering morphological phases consisting in identical 
patterns, we can deal with more general distributions of the centers than the isotropic one in 
order to explore more completely the sources of anisotropic behaviour of heterogeneous 
media. A simple way to do so refers to Will is 's  original idea [30] of "ell ipsoidal phase 
distribution " ,  here adapted to the pattern approach. To do so, we still make use of the 
distribution function 'P).µ (ii) of section 3 . 2 . 1 . 3 such that 'P).µ (ii)dwu is  the number of

couples of domains D). . and Dµ . such that their Centers x). and Xµ . lie at the distance iiI } I } 
within dwu . The assumption of an ellipsoidal distribution of the pattern centers implies that
tp).µ ( u) can be written as

(3.38) 

where l/f).µ (x) i s  any positive real function of x and B any positive definite symmetric

second order (appropriately normalized) matrix. 
Similarly to what has been shown for an isotropic distribution, it can be proved now 

[6] that ( 3 . 38 )  implies that the outer surface of any pattern obeys the equation l lB. xii =  r 
where r determines the pattern extension : this means that all the patterns must be ell ipsoids 
with the same principal directions (those of the matrix 'B.B, with 'B transposed from B) 
and aspect ratios :  we can imagine the ellipsoidal distribution as resulting from an isotropic 
one which has been stretched along the principal directions of 'B .B (see Fig. 1 6  as an
illustration of such an operation) .  Nevertheless the internal geometry of the patterns is sti l l  
arbitrary and may exhibit quite different anisotropic properties. An interesting possibility of 
thi s  approach l ies in the possibil ity to investigate the competition between the two 
corresponding sources of the overal l anisotropy,  associated with the pattern distribution and 
their material content, respectively .  Examples of such a competi tion are given in the 
fol lowing. 
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(a )  

? \ 1--.i i @

, ,,/•·· ·�{�/\ ,,, 

/''V/� ?,''''· (b) 

Fig. 1 6  Ellipsoidal distribution of patterns :  (a) external shape of the patterns ;  
(b) possible internal content (from [6]) 

The integration of such an information into Hashin-Shtrikman's variational procedure 
is quite straightforward and makes basically use of the same fundamental property of the 
Green operator as before . The pattern-averaged trial strain field (3 . 1 0) can be computed by 
integration on ii over ell ipsoidal shells with infinitesimal width where this property can be 
used, namely 

Nµ f r�:M(x - x '): Pµ (x ')dw ' . . .  
Dµ 

1 � � jr0(x- x- - _ ,) P. ( - ')d '. . .  = - £.. £.. A; - µ . + x - x : µ x W 
NA i= lj=I  D 1 

µ 
. . .  = -1- f dwr f l/IAµ (r)r0 ru + x  - x '): Pµ (x ')dw ' 

NA D µ 

( 3 . 39) 

By permuting the order of integration due to Fubini 's theorem, the contributions vanish as 
long as r c rA + rµ , with rA and rµ denoting the extension of the el l ipsoids DA and Dµ 
(whose equations read l lB. xii .$' rA and l lB. xii .$' rµ respectively) :  this result stems from the
evoked property of the Green integral for concentric similar ell ipsoids. The contributions 
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vanish too when r s 'A. + rµ and A. :;e µ since DA. and Dµ cannot overlap; the only non zero

contribution arises from r = 0 and A. = µ with If/ A.µ ( 0 ) = NA. 8 A.µ . Consequently we get :

Nµ f rf':M (x, x '): Pµ (x 'Jdw ' = 8A.µ f r0 (x - x '): Pµ (x ')dw '  Dµ Dµ 
= jr0 (x - x '): PA. (x ')dw ' , 'v'x E DA. D;. 

(3 .40) 

which is  strictly the same result as (3 .20), derived for an isotropic distribution, except that 
DA. and Dµ are now similar ellipsoids instead of spheres.

The end of the demonstration and the final results and interpretation are unchanged, 
except for the replacement of spheres by ellipsoids. No closed form solution can generally be 
expected, even for simple internal microstructures of the patterns .  But, here again ,  direct 
F.E.M. numerical calculations can be performed in order to solve the elementary underlying 
composite ellipsoidal inclusions problems which give access to the derivation of bounds for 
the overall moduli .  An illustration of the method is reported now for the case of transversely 
isotropic composites [6] . 

3 .2 .2 .3  Case of transversely isotropic materials :  
We consider identically shaped and oriented (along the symmetry axis z) hard isotropic

ellipsoidal inclusions distributed in a continuous weak isotropic matrix according to an 
ellipsoidal symmetry . This case allows us to compare our M.R.P.-based Hashin-Shtrikman 

bounds for the transverse µeg and longitudinal µ�f overall moduli to explicit analytical

Hashin-Shtrikman-type bounds which have been derived recently by Ponte Castaneda and 
Willis [3 1 ]  for particulate composites .  They assumed too an ellipsoidal distribution of the
centers of the inclusions (not of the patterns !) and used piecewise constant polarization
fields in the matrix and the inclusions ;  as for taking the matrix connectedness into account, 
they did not make any explicit assumption and just used average relations in order to make 
the matrix apparently disappear from the equations. We guessed that in fact such a procedure 
implied some assumption on the matrix spatial distribution , which would be unl ikely to 
express the matrix connectedness and we expected our M.R.P. -based Hashin-Shtrikman 
upper bounds to be lower than theirs . 

The Hashin-Shtrikman-type lower bound derived by Ponte Castafieda and Willis is 

c:�- = C1 + hf(C2 - C1r1 + ��� - hPJi�) r1 ( 3 .4 1 )  
with use of the fol lowing uniform tensors : 

��ij =  fr(iJ (x - x ')dw ', 'v'x E !Jinc

P/ifl = f r(i J (x - x ') dw ',
(3 .42) 

ndis 
where (i) refers to the used comparison medium (moduli  C1 for the matrix and C2 for the

inclusions) and .Qinc and .Qdis are the characteristic ell ipsoids for the inclusions and for the
distribution respectively.  The upper bound could be derived in the same way : 

(3 .43)  
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Comparison was made for spheroidal inclusions and distribution with identical aspect 

ratios w = b!a where b denotes the length along z: in this case, Dine and Qdis coincide and so

do lj�j and PJfl . Typical results are reported in Fig. 1 7  and Fig. 1 8  for µ t, and µ 1[ as a

function of F(w) (with F(w) = w for oblate inclusions and F(w) = 2 - l!w for prolate ones in
view of a more symmetrical presentation) .  In both cases the lower bounds coincide whereas 
the upper bounds l ie far apart from each other, w ith definite advantage gained by the 
M.R.P.-based Hashin-Shtrikman bound. This result illustrates the pertinence of generalized 
Hashin's assemblages to the representation of the matrix connectedness. 

4.0 �---�-------�----�-----, 

.2 .g 3.0 0 \ 
E \ 

(Oblate) 

- - - Ponte-Castaneda and Willis (U and L) 
><----->< MRP-based Hashin/Shtrikman (U and L) 

Classical / Hashin/Shtrikman 

I 

(Spherical) (Prolate) 

l.Ol__----�-----'----------'---�-__J 0.0 0.5 1.0 1.5 2.0 Aspect ratio (F( w)) 

Fig. 1 7  Comparison between Ponte Castaneda and Willis 's and M.R.P.-based Hashin­
Shtrikman's bounds for the transverse shear modulus of a composite with aligned ellipsoidal 

inclusions k 1 = 3, µ 1 = 1, k2 = 20, µ 2 = JO  (arbitrary units), f2 =. 3, ( 2) in ( 1) (from [6])

We note that for w = 1 ( isotropic distribution of spheres) Ponte Castafieda-Will is 's  
bounds coincide with the classical Hashin-Shtrikman's ones, which indicates that, at least in 
th is case, the matrix connectedness has not been fully exploited. As for the noticeable 
(numerical) coincidence of the lower bounds, it can easily be justified analytically by solving 

the involved problem of an ell ipsoid Dine with aspect ratio Wine made of material (2) 
embedded in the ellipsoidQdis with aspect ratio Wdis made of material ( 1) which is embedded
itself in an infinite matrix with moduli C 1 : this  is nothing but the classical Eshelby problem 
whose well-known solution leads to (3 .4 1 )  after some simple calculations [6] . 

We end this  chapter by reporting briefly Bornert 's recent developments (7 ,  29] 
concerning the continuation of the foregoing approach towards the definition of M.R.P.­
based self-consistent estimates. 
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Fig. 1 8  Comparison between Ponte Castaneda and Willis 's and M.R.P. -based Hashin­
Shtrikman's bounds for the longitudinal shear modulus of the composite of Fig. 17 ( [6] ) 

3 . 3  A M.R.P. -based self-consistent scheme 
The principle of such a generalization of the so-called "generalized self-consistent 

scheme" is quite straightforward : we already noticed that the three-phase model was an 
extension of the classical self-consistent scheme obtained by replacing the homogeneous 
ell ipsoids representative of the mechanical phases by the composite spheres (or cylinders) of 
the C.S .A. (or of the C .C .A. ) .  We also justified the possibility of deal ing simultaneously 
with different kinds of composite spheres (or cylinders) within an extension of the three­
phase model .  The next step consists in deal ing with several famil ies of morphological 
representative patterns (instead of composite spheres or cylinders) so as to derive an estimate 
of the overall moduli from the numerical resolution of as many composite inclusion I matrix 
problems as representative patterns :  the matrix moduli have to be such that they relate the 
average stress and strain tensors over the different representative patterns embedded in this 
matrix (Fig. 1 9) .  

Another way of  understanding such a procedure is the following [7] : when looking for 
M.R.P . -based Hashin-Shtrikman bounds , we had first to make an optimal choice of the 

polarization field p , say p �pi , for given values of the moduli co of the reference medium,
which led to the relation (see 3 .7 , 3 . 1 3  and 3 . 1 6) :  

o o 1 o 
<Pap1 (Pop1 •  E) =  2E: < Popi >

(3 .44) 
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We had then to chose the modul i  co of the reference medium so as to be sure, at minimal

cost, of the sign of <P�pt ( pgpt > E) in view of bounding the effective modul i .  The self-

consistent point of view aims at minimizing l<P0 ( p, E )I with co = ceff so as to have an

estimate of weff (E) through HS�%r (P�%r. E) , with < p�!r >= 0 . Such a relation is

s:_eff , 0 , - ceff .  , equivalent to < uc; : £opt >= or < a opt >- . < £0p1 > .

H. E. M. H. E.M. 

• • •

Fig. 19 Principle of the M.R.P.-based self-consistent scheme 

From a practical point of view, several difficulties have sti l l  to be overcome. We refer 
to Bornert's work [7,  29] for more detai l s .  Suffice it to say here that consistency of the 
foregoing definition with an energetical one forces the external shape of the patterns to be 
ell ipsoidal . Thus the numerical procedure developed for the derivation of M.R.P . -based 
Voigt-Reuss or Hashin-Shtrikman bounds in case of en ell ipsoidal distribution of patterns 
can sti l l  be used within an iterative procedure which can start from any initial reference 
medium c<OJ to compute a first estimate C(2), then to compute C<4J from C(2) and so on until

some convergence criterion l ie< in ; - er in -2! 1 1 s t: be satisfied. Different pattern geometries

have been considered up to now [7] (including non similar concentric ell ipsoids) in order to 
investigate different sources of anisotropy in particulate composites .  

It can be appreciated that such an approach yields a useful alternative to the "unit cel l"  
or periodic homogenization techniques .  At the price of a numerical treatment somehow 
heavier due the iterative procedure, the assumption of a periodical distribution of patterns 
which may happen to be embarrassing is given up; in addition several families of patterns 
may be considered simultaneously,  which may offer definite advantages in many cases,  
especial ly when local strain or stress investigations are developed, such as in view of 
analyzing plastic localization or damage initiation and growth processes . Nevertheless, this 
approach would need to be extended to nonlinear behaviour, which will  be seen not to be 
quite straightforward in what follows . . .  
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4. BEHA VIORAL ASPECTS

4. 1 Introduction

Up to now linear elasticity only has been considered. A more complete understanding 
of the influence of structural morphology on the overall mechanical properties of 
inhomogeneous materials obviously needs to explore nonlinear constitutive behaviours too. 
The basic difficulty one has to overcome is twofold: 

- on the one hand, most of the micromechanical methods reported hereabove in case of 
linear elasticity make use intensively of the Green techniques which are basically attached to 
linearity . The question i s :  to what extent some l inearization procedures could allow us to 
preserve anything of these techniques when dealing with nonlinearity? 

- on the other hand, nonlinearity implies inhomogeneity of the mechanical properties, 
even in a homogeneous material , as soon as it is stressed or strained in an inhomogeneous 
manner. This means that we have to deal not only , as we did up to now, with interphase 
inhomogeneity but also with " intraphase" inhomogeneity of the material parameters. In other 
words, the morphological description and integration of the phase spatial distribution must 
be somehow complemented by those of the material parameters within each phase, the latter 
beeing basically changing along any given load path (think of the inextricable extension of 
the correlation functions of the elastic moduli to the case of nonlinearity ! . . .  ) .  

That i s  why the question o f  nonlinear continuum micromechanics i s  a matter of 
intensive current research which wil l  not be tried to be reported here . In order to give an 
outline of the difficulties and possible i ssues but sti l l  concentrate on the influence of 
morphology on the overall behaviour, restriction will be made to the extension of two simple 
but basic models in this field, namely the C .S .C .S .  and the G.S .C .S . :  the first one is well­
suited to a "polycrystal-type morphology " and the second one to a "composite-type 
morphology" .  Comparison of their predicted responses to the same loading path can allow to 
draw significant conclusions on the influence of the phase connectedness.  

In view of going from the simpler to the harder, we start with the easiest way to depart 
from elasticity but stil l  preserving the convenience of linearity, namely with the case of linear 
nonageing viscoelasticity . 

4 .2 The case of linear nonageing viscoelasticity 
In this case, obviously the mechanical characteristics will  not be space-dependent 

inside the same phase, due to the l inear behaviour, but the rate-dependence is responsible for 
many new phenomena and properties which are characteristic of the coupling between 
elasticity and viscosity . One of the most important manifestations of thi s  coupling in 
heterogeneous media i s  the so-called " long-range memory effect" which results from the 
complex delayed mechanical interactions between the constituent phases. This effect finds 
expression, for instance, in the fact that the overall behaviour of a mixture of Maxwellian 
constituents does not obey a Maxwell constitutive behaviour anymore. 

Let the local constitutive equations read 

£ = a :a + b: a (4. 1 )  

with a and b fourth order constant tensors . Then the overall behaviour will  obey a different 
law which can be written in the form [32] 

t 
E = A eff: I + Beff: i + j J ( t - s ): i ( s )ds

0 
(4 .2)  
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where the tensorial kernel J i s  directly related to this " long range memory effect " .  Its 
mathematical expression is, of course, model-dependent and then morphology-dependent. 
So, it would be interesting to focus attention on the comparison between its properties as 
predicted, other things being equal , by the C .S .C .S .  and the G.S .C .S .  respectively in order 
to appreciate the influence of the microstructural morphology on this memory effect. 

A convenient way to do so is to derive the relaxation spectrum of a two-phase isotropic 
material according to both these models .  Whereas this spectrum reduces to a single line for 
each constituent phase, it is expected to be more complex for the two-phase material in a way 
which could differ according to the morphology . For the sake of simplicity, we assume 
incompressibil ity and isotropy for each phase ( i) so that ( 4. 1 )  reduces to

e = ais + bis i = 1, 2 (4 . 3 )  

where e and s are the strain and stress deviators and ai and bi are material constants which
define the single relaxation time Ti = bi f ai of each phase . The question i s :  which are the
relaxation times of the two-phase material according to the C.S .C .S .  and the G.S .C .S .  ? 

The answer [8 ]  can be derived easily through the use of the Laplace transform 
technique, since it is well -known , due to the "correspondence principle" [ 33 ] ,  that th is 
transformation allows us to convert l inear (nonageing) viscoelasticity into (symbolical) 
elasticity : suffice it, in order to get the equations of the vi scoelatic problem, to replace the 
elastic moduli and variables of the elastic self-consistent equations by the Laplace-transform 
of their viscoelastic counterpart [34] . Transformation of (4 .3)  yields : 

L I µi (p) = 2bJp + l/Ti ) (4 .4) 

where p i s  the complex variable, f-( p) the Laplace transform of f( t) and µi( t) the shear
relaxation function of phase (i). 

In the elastic case, both considered model s yield the overal l  shear modulus µeff as the
positive root of a quadratic equation which may be written in the following common form: 

L( {3, f )X2 + 2M( {3, f )X + N( {3, f) = 0
where X = µeff !µ1 ,  f3 = µ2!µ1 and f = f2.  For the C .S .C .S . ,  we have, from (2 . 8 ) :

L = 1, 2 - 5! 5f - 3M =
-6 -[3 + -6 - ,  

N = - 2{3
3 

and for the G.S .C .S . ,  with phase (2) included in phase ( 1 ) , from (2 .28) :

L(/3, f) = 4[ 3(/3 - l)x3 - ry3 }( T]1x7 - 2 T]2 ) - 126 T]i (/3 - l)x3 ( l - x2 ) 2
JO 7 129 3 M(/3, f) = 3 T]1 (/3 - l)x + 4T]1T]3x - - T]2 (/3 - l)x + . . .4 

3 3 2 2. . .  + 4 T12 T/3 + 126 T]i (/3 - l)x ( 1 - x  ) 

N(/3, f) = -[� ([3 - l)x3 + T/3 H T/1X7 + l; T]2 ) - 126 TJif3 - J)x3 ( I - x2 )2 ,
x = ! 1/3 , T/1 = 1 9(/3 - 1), T/2 = 1 9{3 + 1 6 ' T/3 = }_ (2/3 + 3).2 2 

(4 . 5 )  

(4 .6)  

(4 .7) 
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The solution of the viscoelastic problem is obtained by replacing in (4 .5 ) ,  (4.6) and 

(4 .7) the quanti ties X by XL(p) = µeffL(p)lµi(p) and f3 by f3l(p) defined by :

f3L (p) = µ I cp) = k p +l/T1 with k = bJ!b2 . (4 . 8 )
µ f (p) p +l/T2 

The solution µeff L(p) can be written as the sum of two terms, Jf ( p) and Jf ( p ) , namely :

ff < p) = -
M(/3L ( p), c) 

2b1  ( p + l/T1 )L( {3L ( p ), c)

Jf ( p) = { M
2 ( {3L ( p ), c) - L( {3L ( p ), c)N(/3L ( p ), c) }

1 / 2

2bi ( p + 1/T1 )L( /3L( p ), c)
We have now to go back into the real space: 

(4 .9 )  

- the Laplace inversion of  ff ( p) is easy and yields directly the sum of two (for the
C . S . C . S . )  or three (for the G .S .C . S . )  exponential functions : in terms of spectral 
representation ,  this  corresponds to two (for the C.S .C .S . )  or three (for the G .S .C .S . )  

discrete lines, at times T1 and T2 for the former and TJ , 81 and 82 for the latter, with 81 and

82 lying between T1 and T2; note that their intensity can be negative for some values of the
volume fraction / 

- the inversion of the second term needs recourse to the inverse Laplace integral 
formula 

(4. 1 0) 

where .1 is a vertical axis which has to leave on its left all the critical points of ff ( p) . This

is  performed after some rewriting of (4 .9b) .  For the C .S .C .S ,  we write !f L ( p) as

!CL ( ) - k Pc ( p/12
2 p 

- c (p +l/T1 )(p +l/T2 )
Pc(p) = (p + 1/r1 )(p + 1/ r2 ) 

k - �(2 - 5f/k2 +2(6 - 5f)(5f +l)k +(5J-3J2
c - 12b1 

k = bJ!b2 

(4 . 1 1 )

where times r1 and r2 lie between T1 and T2, ;  for the G.S .C .S . ,  we write J?L ( p) as

JfL (p) = kc Pc (p/12
,� (p +l/T1 )(p +l/81 )(p +l/82 ) 

Pc (P) = (p + 1/rf)(p + 1/rJ.) (p + 1/rJJ(p + 1/r4J 
(4. 1 2) 

where r'1 and r'2 l ie between T1 and 81 and r'3 and r'4 between 81 and 82 . Application
of ( 4. 1 0) ,  of the theorem of residues and Jordan's lemma and definition of adequate cuts on 
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the real negative axis  (see Fig. 20) lead to the following expressions (with T1<T2 to help
discussion) : 

Jf(t) = ± kc { --�/2 �-Pc(x) ixdx-. . .TC _1/ri (x + l/T1 )(x + l/T2 ) 

�Pc(- l/T1 ) -1/T1 �Pc(- l/T2 ) -1/T2 }. . .  -re e + re  e 
l/T2 - l/T1 l/T1 - l/T2 

Jf (t) = ± kc , -;r2 �-Pc (x) ixdx-. . .  
TC _1; r; ( x  + l/T1 )(x + l/()1 ) (x + 1/()2 ) 

-1/ r4 �-Pc (x) . . .  - j lxdx-. . .  
_1/ rj ( x  + l/T1Hx + l/()1 ) (x + 1/()2 ) 

re [ �Pc (- l/()1 ) 
e-1/91 _ �Pc (- J/()2 ) 

e-1;02 ]}
( 1/ ()2 - 1/()1 ) ( l/T1 - 1/()1 ) ( l/T1 - 1/()2 ) 

- lfft - 1 /'tl - 1�1 - l!f2 
0 

(a) (b) 

(4. 1 3 )  

Fig. 20 Integration paths used for the inversion of  the Laplace transform (from [8]) :
(a)  C .S .C .S . ,  (b)  G.S .C .S .  (with T1 < T2) 

The involved integrals can be written, after putting -r :::: - 1/x, in the form of a spectral
representation, namely 
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� 
µ(t) = j g( 'C) e-tf-rd'C

0 
(4. 1 4) 

which corresponds to the continuous spectrum g('C) , whereas the exponential functions
outside the integrals are associated to discrete lines. 

Addition of Jf (t) for the C . S . C . S .  or of Jf (t) for the G .S .C .S . lead to the
following final results : 

- the shear relaxation spectrum as predicted by the C .S .C .S .  consists of a continuous 

part and additional discrete l ines .  The continuous spectrum extends from 'CJ to 'C2 (with

T1<'C1<'C2< T2) and its intensity is given by

kcT1T2 �( 'C - 'C1 )( 'C2 - 'C) 
gc ( 'C) = r;;:-:;- , 'C E {'CJ> 'C2 }. 

n-v 'C1'C2 r( r - T1XT2 - r) 
(4. 1 5 ) 

The discrete l ines lie at 'C = T1 for f � . 6  (with the intensity ( 3-5f)/6b 1 )  and at 'C = T2 for
f � .4 (with the intensity (5f-2)!6b2) .  

- the shear relaxation spectrum predicted b y  the G.S .C .S .  consists o f  two separate 

continuous parts and additional discrete lines. The continuous spectrum lies between 'C11 and

'C12 and 'C13 and 'C14 respectively,  with the intensity

( 'C) = e ('C) kG T1 81 82 �( r - rj)( r - r;)( r - r;)( r,4 - 'C) gG 
7r�'Cf'C2'C3'C,4 'C( 'C - T1 )(81 - 'C)( 82 - 'C) 

'C E [ rf, r2 J  u [ r;, r,4 ] 
with e( 'C) = l if 'C E [ 'Cf, r2J and e( 'C) = -1 if 'C E [ 'C3, r4 ]. 

( 4 . 1 6) 

The discrete lines l ie at 'C = T1 in a fixed range of volume fraction ! and at 'C = 81 or 82 .or
both according to the value off, T1 , T2, k and b1 .

We can see on Fig. 2 1  and 22 illustrative examples of these results as predicted, for the 
same values of the material parameters a;, b; and f, by the C .S .C .S .  and the G .S .C .S .  
respectively .  Though such results seem hard to  be  corroborated by  direct experimental 
investigation, they yield useful information on several micromechanical aspects : 

- both models predict a non-Maxwel l ian overall behaviour from Maxwell ian 
constituents .  Whether the resultant spectrum is continuous or not, it definitely does not 
reduce to a single line: the " long-range memory effect" may be strong enough to result, even 
for a simplistic two-phase material , in a continuous (bounded) spectrum, which means a 
continuous infinity of relaxation times which are to be related to the mechanical interactions 
between the phases and their viscoelatic nature . This result must be kept in mind in view of 
the future treatment of nonlinear viscoelasticity . 

- obviously morphology does affect the spectrum shape : one the one hand the 
"symmetrical "  morphology associated with the C .S .C .S .  leads to a unique continuous 
spectrum which reflects the underlying intricate phase distribution; on the other hand, the 
unsymmetrical morphology inherent to the G.S .C .S .  is responsible for a clear spectrum 
splitting into two parts and for a spectrum shape which reflects the prominent mechanical 
role played by the connected phase. This  qualitative difference between the spectra might be 
a sensible indicator of morphological changes which can occur during phase transitions, 
such as the glass transition of polymers . 
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The foregoing analysis could be extended to more general constitutive equations than 
Maxwell 's ones without too much efforts [35] or to more complex morphologies :  especially 
the existence of an interphase between the matrix and the particles, which can be taken into 
account with a four-phase model ,  can be shown to be responsible for a specific spectrum 
part which could be used as a "morphological signature" [36] . 

0 . l 

0 .  0 8  

0 .  0 6  

0 .  0 4  

0 .  02  

(a) 

0 .  0 8  

0 .  0 6  

0 .  0 4  

0 '  0 2  

(b) 

Fig. 2 1  Shear relaxation spectrum as predicted by the C .S .C .S .  
(a1 = az = 1 ; T1 = 1 ;  T2 = JO; f  = . 5) (from [8] ) .

I 1 .5 8 36  

o �---:,::--, --t-!7-----:--��-70,':;;T;6::------;--------=!,;�e, T, 

Fig. 22 Shear relaxation spectrum as predicted by the G .S .C.S . 
(a1 = az = I ; T1 = 1 ;  Tz = lO; f = .5) (from [8] ) .
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4.3 Nonl inear classical self-consistent modelling 

4. 3 . 1  Introduction
Let us first stress the fact that the problem of nonlinearity in the context of classical 

self-consistent modelling is still an open question. Though it was first addressed by Kroner 
[37] thirty-five years ago for the case of elastic-plastic polycrystals ,  it can be considered as 
unsolved yet despite the intensive research which has been, and is stil l  beeing, devoted to 
this topic . 

Two main approaches have been developed: 
- the first one has been initiated by Kroner; it is based on the concept of "stress-free 

strain" or "eigenstrain" applied to the plastic or viscoplastic part of the total strain and makes 
extensive use of Eshelby 's  solution of the inclusion problem [ 1 ] .  Strictly speaking, thi s 
problem refers to an ellipsoidal region of an infinite unloaded elastic medium, undergoing a 
uniform eigenstrain,  i. e. a prestrain which could be maintained without stress in an isolated 
volume element. The basic idea consists in deriving the self-consistent equation from the, 
solution of the straightforward extension of Eshelby's problem corresponding to the case 
when the matrix itself undergoes the uniform macroscopic plastic or viscoplastic strain and is 
subjected to the macroscopic strain or stress at infinity : the inclusion is representative of one 
particular phase (usually a .set of identically oriented grains of a polycrystal) while the matrix 
is constituted of the unknown H.E.M. which is searched for (usually the homogenized 
polycrystal ) .  This approach can be extended easily to inhomogeneous elasticity by referring 
to Eshelby's solution of the problem of the " inhomogeneous inclusion" . 

- the second one refers to a new formulation proposed by Hill [9] for rate-independent 
plasticity , starting from the criticism of some aspects of the foregoing approach: it relies 
upon a l inearization procedure along the prescribed macroscopic loading path and on the 
flow theory of plasticity relating the strain and stress rates through the instantaneous 
elastoplastic modul i .  Now the self-consistent equation can be derived from the solution of 
Eshelby's inhomogeneity problem, which is  used within a rate (or incremental) formulation . 
For proportional loadings, the deformation theory of plasticity can be used as well by dealing 
with secant ( instead of tangent) elastoplastic moduli .  This approach has been extended to 
finite strain formulations as well as to rate-dependent plasticity . 

Though Hi l l ' s  approach considerably improved Kroner's one, it wi l l  be shown 
nevertheless to be not fully self-consistent anymore, so that the problem has still to be 
considered as an open one. Before drawing this conclusion, let us go into more detai ls about 
the current state-of-the-art in this field. 

4 .3 .2 Linear classical self-consistent modelling with eigenstrains and Kroner's model 
In order to appreciate better the limits of Kroner's initial approach of elastoplastic self­

consistent modell ing, it is useful to start from apparently a different problem, namely the 

l inear elastic classical self-consistent modelling when fixed eigenstrains eT are present in the
constituent phases. This is a classical question whose solution is well-known as soon as it as 

been solved by any model when no eigenstrains exist. Let A:lf and B:lf be the average
stress concentration tensors for the elastic phase ( r) in this case, so that, according to (2. 1 )
and (2.2) ,  the overall moduli and compliances are given by 

celf = 2, f rcr : A:lf =< c: A elf >
r 

self = 2, frsr: B:lf =< s: Belf > with B:lf = er:  A:lf: < c: A elf > -1 .
( 4 . 1 7) 

r 
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When eigenstrains are present, the local and global constitutive equations read 

a = c: (e - eT ) 

L: = ceff: (E - ET ) (4. 1 8) 

with ET =<1Beff: e T >

or, when eT is piecewise uniform per phase, say e; : 

ET =  I, J/B:ff: e:
r 

( 4 . 1 9) 

If we use the self-consistent scheme, A;csc and B;csc are given by (2 .5 )  and (2.6) with
co = cscsc and the strain concentration relation reads

(4 .20) 

with e0 defined from: < e >= E .
Consider now the case of uniform isotropic elasticity, isochoric eigenstrains denoted 

eP and spherical inclusions. We can see easily that &cscs = 0 and e0 = E ,  whereasr r 
P�scs is given by (2 . 1 9) where the deviatoric part only has to be used, so that (4.20)
becomes 

er = E + /3( ef - EP ) (4 .2 1 )  

with EP = < EP > .  This may be written in the equivalent form

(4 .22) 

This relation is nothing but Kroner's interaction equation [37] which was the first one to 
have been proposed to rule the self-consistent approach to polycrystal plasticity . 

This means that Kroner's approacl;i to elastoplastic self-consistent modelling actually 
reduces to an elastic one with eigenstrains and does not really takes into account the (stress­
dependent) plastic flow of the polycrystal . Instead of expressing the actual elastoplastic 
interactions between the phases ,  this model i s  considering far too strong elastic ones :  this 
stems clearly from the underlying inclusion problem which deals with a uniformly plastified 
matrix whose plastic strain EP is not disturbed by the inclusion . Referring to the set of
estimates reported in section 2, we could say that instead of an elastic (i. e. quasi-rigid) 
matrix, which leads to a Voigt-type overall behaviour, we should have considered a 
plastically flowing matrix, corresponding to the actual polycrystal in the plastic regime. So, it 
is not surprising that the stress-strain curves and textures predicted by this  model are almost 
identical to those derived from the Taylor model which assumes uniform strains. This can be 

understood from the fact that, in ( 4 .22) ,  the stress deviations (a - L,) are of the order of

magnitude of the y ield stress whereas the term 2µ( 1 -/3) is almost equal to µ, i. e. is J02 to
J 03 larger, so that the strain fluctuations from grain to grain cannot exceed J 0-3 to J0-2 ,
which coincides practically with Taylor's assumption.  

The main point open to criticism in the foregoing approach lies in the fact that the 
relations ( 4. 1 8) have been considered ( 4 . 1 8) as constituve equations for a plastically flowing 
inhomogeneous body . As a matter of fact, these equations rule the elastic part of the 
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constitutive behaviour only and do not express at all the stress-dependence of the (local as 
well as global) plastic flow in the plastic regime. From this  point of view, it could be 
dangerous to consider the plastic strain as an eigenstrain .  On the other hand, stress­
independent eigenstrains can be dealt with according to the foregoing approach even if they 
are time-dependent, such as, for instance, thermal strains under variable temperature (we will 
make use of this comment later) . 

Note that for such actual eigenstrains which do not depend on the purely mechanical 
loading, Kroner's approach can be applied to l inear viscoelasticity as well ,  with use of the 
correspondence principle and the Laplace-transform technique. Suffice it for that to replace in 
eqns ( 4. 1 7) to ( 4. 22) the real elastic variables by their Laplace-transformed viscoelastic 
counterpart. Use of such a possibil ity will be made later when deal ing with nonlinear 
viscoelasticity . 

4 .3 .3  Elastoplasticity and viscoplasticity 
An alternative treatment of elastoplastic self-consistent modelling was proposed by 

Hill, making use of the flow theory of plasticity . Instead of (4. 1 7) ,  the constitutive equations 
were written in the form 

a = zw· i
t = L;;cs: E

(4 .23 ) 
Such a l inearization procedure, using the local elastoplastic instantaneous moduli lep and the

overall ones L;;cs and still keeping in mind that these are multi-branched quantities, al lows
us to convert the elastoplastic problem into a (pseudo)elastic one : at any step of a given 
loading path, the elastoplastic phases of the inhomogeneous material may be considered as 
elastic ones for the infinitesimal coming step with moduli lep . Instead of the inclusion
problem with stepwise un iform plastic strains, the corresponding elementary problem is
Eshelby's problem of an ellipsoidal inhomogeneity with uniform moduli lep embedded in an

infinite matrix with uniform moduli  L;gcs submitted to the prescribed homogeneous stress

t or strain E rate at infinity (Fig. 23) .

E E ' 'CillV' ' . . . · · · · ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . ·C, t: P  . . . . .  .. . . . . . . . . . . . . . . 
. . . . . . . . . . .  

H. E.M. 

�) w 
Fig. 23 Kroner's (a) and Hill 's  (b) reference Eshelby's problems 
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The resulting self-consistent equations are nothing but the elastic ones (2.  7) where c 
and ccscs are to be replaced by lep and L<;Jcs respectively .  As for the interaction (or
concentration) rule, its reads from (2.5) or (2.6) : 

fr = (I + p;scs .. 81;scs rl: < (I + pCSCS: 8/cscs rl >-] .. E (4.24) 

where P;scs has been defined from the Green operator associated with L<;Jcs and with

81;scs = lep r - L<;Jcs . In case of ell ipsoids with the same shape and orientations, this
expression reduces to 

fr = (I + p;scs .. 81;scs rl: E 
which has been put by Hill in the equivalent form: 

a = i + L*: (E - £) 

(4.25) 

(4.26) 

where the "constraint tensor" L *, depending on L<;Jcs and on the shape and orientation of
the ellipsoids, is given by 

L* = Lcscs . (Scscs-1 _ I) ep · Esh 
8cscs = pcscs . LcscsEsh · ep 

with help of Eshelby 's  tensor sffhCS .

(4.27) 

Note that, for proportional monotonic loading, the deformation theory could be used as 
well [3 8 ] :  for isotropic plasticity , it yields an interaction law which only differs from 

K.roner's one ( 4.22) by the fact that the term 2µ( 1 -/3) is multiplied by a scalar "elastoplastic 

secant accommodation factor" a ep which can be shown to be equal to 1 only in the elastic 
regime and to rapidly decrease towards J 0- 1 to J 0-2 as soon as the overal l plastic flow
occurs . This allows the plastic strain deviations to be larger and this model to yield 
predictions which can strongly differ from Taylor's ones, frequently in far better agreement 
with experimental results. A quite similar treatment can be used for the case of viscoplasticity [39] by simply 

r�placing in (4 .23) lep and L�Jcs by their viscoplastic counterpart hvp and H�scs and the

first strain time derivatives E and E by the second ones f.' and E .  Both approaches have
been extended to finite strain formulations and have successfully predicted the formation of 
crystallographic textures in a number of metal forming situations. 

4 .3 .4 Rate-dependent plasticity and nonlinear viscoelasticity 
Any extension of Hill 's formulation to rate-dependent elastoplasticity has to deal with 

the difficult coupling between elasticity and viscosity : such a coupling makes stress and 
strain time-derivatives of different orders appear simultaneously in the constitutive equations. 
So, Hill 's linearization procedure cannot be used anymore . Some authors [40] argued that 
Hill 's criticism of Kroner's approach should not apply anymore to rate-dependent plasticity 
since the viscoplastic strain rate depends at any time on the current stress and not of the 

stress rate so that, dislike the plastic strain ,  the viscoplastic one EYP could be treated as an 
eigenstrain :  as we have seen before, this question refers to the mechanical dependence or 
independence of the considered strain whatever the mechanical variable may be concerned. 
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Other authors [4 1 ,  42] did not explicitly discussed this point but they used eqns (4. 1 8) 
as basic constitutive equations (with ET = EvP) in a Green analysis at finite strain :  i t  is easy to 
see [43 ]  that, in the special case of linear viscoelasticity , this would correspond to the 
presumption that a mixture of Maxwellian constituents obeys a Maxwellian overall behaviour 
too,  which we know to be wrong. By doing so, one is led directly to Kroner's model 
(eventually extended to finite strain) . For reasons similar to the previous ones , one would 
expect from such models predictions hardly different from Taylor's ones : Fig 24 gives an 
illustration of this  quasi-coincidence . . .  

• • •  + + + .. + + + . + 

. . . .  ·� . . . . . . . . . . . . . . 
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\ ... ... .: 

. . . . . .  - - ...... - - - -
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0 rn "·o ...___ � 3.0 
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l:�3 

...··· ··.\ T.M. 

Fig. 24 Comparison of Harren's (S .C . )  and Taylor's (T.M. )  model predictions (from [4 1 ] ) 

On the other hand, we cannot deal with the elastic-viscous coupling as we did in the 
l inear case since nonlinearity prevents to use the convenient Laplace transform technique . 
Nevertheless ,  by use of Hill 's linearization procedure, this technique can still be util ized . Let 
us first consider [ 1 0] a simple local nonlinear viscoelastic behaviour obeying the equation 

i = s: a + g(a) (4 .28)  

where s are the elastic compliances . Starting from time t = 0, we are supposed to  have
determined already the local and overall responses to some prescribed macroscopic loading 
path up to t = tn ;  now we look for these responses during the subsequent infinitesimal time
interval ftn, tn + dt]. So we can approximate (4 .28) by :

o ag i (t) = s: a(t) + mn: a(t) + in ( t, tn ), mn = -[  a(tn )l 
aa 

E� ( t, tn )  = g[ <J(tn ) }  - mn : <J( tn )+ . . . ( 4.29) 
. . .  +{ g[ a(t)]  - g[ a(tn )l - mn :  [ a(t) - a(tn ) l  }[ 1 - H(t - tn ) J, 
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where H(t - r) is  the unit step function at time r. These equations show unambiguously that

the considered linearized behaviour is a Maxwellian one with the eigenstrain rate £� ( t, tll ) . 
Such a strain is actually a (variable) eigenstrain because its variation is completely known a 
priori and does not depend on the external loading which is appl ied beyond tll ;  its time
derivative is constant beyond tll and variable but known on [0, t11]. Thus we may use the
method suggested hereabove for this case by using the Laplace or Laplace-Carson transform 
technique. The latter is defined by: 

f* ( p) = p J f ( t )e -pt dt
0 

(4. 30) 

It can apply to E� ( t, tll ) as well so as to convert the problem into a (symbolical) elastic one
with eigenstrains.  As already proved, the whole set of equations is the following : 

* * * O*E = s : CJ + Ell 

* m s (p) = s + ___..!l_, 
p 

or * * * O* CJ = c : ( E - E11 ), 

*-
]

c * ( p) = s ( p ), 

or £*  = Ceff* : (E* - E,�* ),

ceff* ( p) =< c * ( p): A * ( p) > or self* ( p) =< s * ( p): B* ( p) >, 

B * ( p) = c * ( p ): A *  ( p ): < c * ( p ): A * ( p) >-I , 

EO* ( ) t * ) O* ll p =< B ( p : Ell ( p) >. 

( 4 . 3 1 )  

Due to the nonlinearity , we need an additional interaction relation between the local and 
global variables ,  dependent on the chosen model, in order to determine at each step the 
mechanical state of each phase . For the C .S .C .S . ,  this can be made easily from what 
precedes by applying the Laplace-Carson transformation to (2.5) and (4 .20) :  

Acscs· ) [ cscs· s: cscs· -1 ,. ( p = I + P,. ( p ): UC ,. ( p) ] : . . .

. . .  : < [I + Pcscs· (p): &cscs* (p);-1 >-1 .

* cscs* s: cscs* -1 * E,. (p) = [l + P,. (p): uc,. (p)] : {E0 (p)+ . . .  
cscs· * o* cscs· o· . . .  + P,. ( p ): [ c,. ( p ): E 111• ( p) - C ( p ): Ell ( p)] }, 

< E * ( p) >= E* ( p). 

(4 . 32) 

When the ellipsoids have the same aspect ratios and orientation, pcscs is independent of the

phase and the "normalization term" < [I + pcscs* ( p): &cscs* ( p )F1 >-I reduces to unity .
An illustrative example of the application of this method is reported on Fig. 25 and 26 

for a shear relaxation test performed on the two-phase material which has been already 
studied in the linear case, but now with the local constitutive equations 

(4. 3 3 )  
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with aequ the von Mises equivalent stress; in this particular case, the problem reduces to a 

scalar one for which we derive the global stress response S(t) to a stepwise strain loading
E(t) = Ea H(t) .  Note that use has been made at each step of the closed form solution of the
l inear case reported hereabove but that collocation and FFT techn iques are also necessary . 
The results clearly show both the nonlinearity of the response (Fig. 25) and the variation of 

the overall eigenstrain rate E�(t, tn) at each step (Fig 26) .

s 
Ea  

o.s Ea : 1 0  

0.0 �-�--�--�--�--�·--�--�--.._. 0.0 1 .0 2 .0  3 .0 4 .0 
Fig. 25 Normalized shear stress relaxation for a two-phase material 

according to the C .S .C. S .  (m = 2 ,f  = .5, b1 = b2 = 1 , a1 = 1 , a1 = 5) (from [44] )
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Fig. 26 Time variation of the overall eigenstrain rate at different steps tn 
for the case of Fig. 25 (from [44]) 

t 
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This method can be extended [45 ]  to more general rate-dependent elastoplastic 
constitutive equations such as the ones which are used frequently in crystall ine plasticity, 
namely 

s 
· _ ·O (_EL) v"Ys - Ys O • 'f s 

· O  � Hst · 'fs = £,,, Yr
(4. 34) 

where iis and ms are the unit normal and the unit vector of the slip system ( s) , is is  the
shear rate on this system and Hst is the so-called "hardening matrix" which may depend on
stress and strain .  Such constitutive equations can be put in the form: 

e = s: a + g( a, a) 
ci = h( a, a),

(4 . 35 )  

where the internal parameters a have been given the form of  vectors , with components ( a1)
with I = I to N, for the sake of simplicity : they could be the N reference shear stresses -r? of

( 4.34 ). The same l inearization procedure as before has now to be applied to both e and a ,
which yields: 

and 

e(t) = s : a(t) + g(tll ) + m(ll ) : [ a(t) - a(tll ) ]  + n(n) · f  a(t) - a(tll ) ]+ . . .
. . .  +{ g(t) - g(t11 ) - m<11 l :  [ a(t) - a(t,)] - n< 11 l . [ a(t) - a(t11 )] }[ 1 - H(t - t11 ) ]  (4 .36)

with: 

ci(t) = h(t11 ) + p1 1 1 J :  [ a(t) - a(t11 )] + q1 11 1 •  [ a(t) - a(t11 )]+ . . .
. . .  + {  h(t) - h(t,) - p1 11 , :  [ a(t) - a(t,1 ) ]  - q1 11 1 . [ a(t) - a(t11 ) ]  }[I - H(t - t11 ) ]  (4 . 37) 

with :  

We then apply the Laplace-Carson transform to these equations and eliminate a* ( p) through
the relation: 

r • 
. . .  + j {h(t) - h(t11 )  - Pin > :  [ a(t) - a(t11 ) ]  - q111 ) ' [  a(t) - a(t11 )]} exp(-pt) dt.

0 

(4. 38 )  

where I is the second order unit tensor in a NxN space. This leads to  the final relation: 
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* * * 0 * 
E (p) = s (p): a (p) + E(n )  (p) 

* 1 1 -1 with : s ( p) = s + -m(n) + -n(n) · ( pl - q(n» · P(n )p p 

tn 

efn/ (p) = n(n ) · (pl - q(n) r1 . &(n/P) + f(n/ p) 

f(n/ p) = .!_ [ g(tn J - m(n) : a(tn ) - n(n) · ii(tn ) ]+ . . .
p 

(4. 39) 

. . .  + J { g(t) - g(tn ) - m(n) : [ a(t) - a(tn )l - n(n) · [ ii(t) - ii(tn )l} exp(-pt) dt.
0 

So,  with another definition of s * (p) and efn/ (p) , the nature of the local constitutive

equations is  the same as before : the auxil iary strain function efn/tJ can be considered as a
true eigenstrain and the homogenization treatment is unchanged. 

To illustrate the proposed method, we go back to the same simple example except that 
the number of phases is arbitrary and that the local constitutive equations depend on one 
scalar internal parameter [45 ] :  

· . b ( (Jequ )m -1 e = as + -- sa 
(J a = h ( -�!l!!.f a 

(4.40) 

where a, b, h, m and v are material constants which may differ from phase to phase . For a
proportional loading,  the problem reduces to a scalar one: we look for some macroscopic 

stress relaxation function µSCSC(t, tn) and the macroscopic eigenstrain Eij (t, tn ) to be

defined at each step tn . The overall stress relaxation function µcscs at time tn can be derived
by an iterative scheme with the recursive formula: 

( J ( J-
1

CSCS* _ frµ; fr µ(i+J) - L cscs* * · L cscs* * r Jµ(i ) 
+ 2µr r Jµ(i) 

+ 2µr 

with: 2µ; ( p) = p , ar ( p + l/Tr ) 
whereas the interaction law reads 

T = arr b r 

* - 5µ; s* 6µ;µsc * (Eo * o * )Sr - * 
+ 

* (n) - e(n)r 3µ cscs + 2µ; Jµcscs + 2µ;

with: B * = 5µ; r 
JµCSCS* + 2µ;

.

( 4 .4 1 )  

(4.42) 
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Typical results are given on Figure 27 for a shear test with the prescribed constant shear

strain rate Ea . The normalized stress response S/ Ea depends clearly on the strain rate
amplitude, as expected from the nonlinear local behaviour. 

S imilar computations applied to rate-dependent elastoplastic polycrystals are now in 
progress .  Extensions are developed too when instantaneous plasticity is simultaneously 
present. We conclude by remarking that the above proposed formulation of the rate­
dependent elastoplastic self-consistent scheme reduces, when elasticity is neglegted, to the 
one already proposed (at finite strain) by Molinari et al [46] for v iscoplastic polycrystals ;  
whereas this treatment does not coincide with Hutchinson ' s  [39] one, it i s  in  better 
agreement with Ponte Castai'ieda's recent one [47] . 
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.fa' t o.o ����������������������--' 
0.0 1 .0 2.0 3.0 Fig. 27 : normal ized stress evolution at constant strain rate "edot" (time unit arbitrary) 

(2 phases ;  mr = Vr = 2; ar = a,{0) = l ; f  = .5 ; b1 = h 1=  I ;  b2 = hi = 5) (from [45]) .

4 .3 .5  Going back to Hil l ' s  assumption 
Hill 's treatment of the nonlinear classical self-consistent scheme, including its former 

extension to viscoplasticity and its latest developments for rate-dependent elastoplasticity,  
can be considered as the most advanced approach to polycrystal plasticity . Nevertheless, one 
must keep in mind that it is still an approximate one which cannot be thought as fully self­
consistent. Replacing the original Kroner's assumption of piecewise uniform plastic 
straining for the solution of the reference inclusion problem by the one of piecewise uniform 
instantaneous moduli (or secant ones, or the correspondant Laplace-transformed viscoelastic 
moduli for rate-dependent plasticity) allows Hill 's treatment to take far better nonlinearity 
into account, but this is not beyond reproach: when we have to solve any given boundary­
vatue problem in elastoplasticity , we know that the instantaneous (or secant) moduli vary 
from point to point according to the local stress and strain state . . .  

There is some consistency in considering the ellipsoidal inclusion tangent (or secant) 
moduli as uniform when the matrix ones have been considered so, since the mechanical state 
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of the inclusion is homogeneous in that case. But the reverse is not true: even if the inclusion 
is uniformly strained and stressed, the matrix cannot be so, neither can its modul i .  And 
conversely, if the matrix has not uniform moduli ,  the inclusion, even if ell ipsoidal , is not 
uniformly deformed and so its moduli are no more uniform. 

A ful ly self-consistent treatment would have needed to embed the inclusion in the 
Homogeneous Equivalent Medium whose constitutive behaviour, as resulting from self­
consistent modelling, should make its instantaneous (or secant) elastoplastic modul i  vary 
from point to point in any non trivial B .V.P.  problem (and so differently according to the 
inclusion under consideration- and to its current mechanical state too . . .  ). As we can 
appreciate , such a treatment would need at each step a tremendous number of overlapping 
iterative procedures which, despite the exponential increase in time of the numerical potential 
and computing power, still seems disheartening. 

Nevertheless, we have to make progress in this direction and imagine better and better 
approximations .  One practical objective could be to force an improved nonlinear self­
consistent approximation to abide by bounds in the simple problems for which it has been 
proved to violate them [48 ] ;  such improved "variational estimates" could be derived from 
bounding approaches by building them up from the self-consistent elastic ones [49, 47] . 
This suggests that nonlinear improved estimates ·would take advantadge of improved 
nonlinear bounding theories (and vice versa ?).  

4.4 Nonlinear generalized self-consistent modelling 
When dealing with nonlinear generalized self-consistent model, the foregoing problem 

becomes quite . . .  generalized: even if Hill 's approximation of uniform moduli in the matrix is 
adopted, it can obviously not be so in the composite inclusion. So,  the problem must be 
faced. Several approximations have been proposed: many of them rel ie on the use of 
plasticity deformation theory and secant elastoplastic moduli so as to preserve an isotropic 
formulation and to avoid the additional complexity attached to anisotropy . Whether the 
deformation or the flow theory is used, it  can be combined with the approximation of 
stepwise uniform elastoplastic moduli in phase subdomains as small as possible. 

Let us quote for instance the approximate treatment of the elastoplastic three-phase 
model [23 , 50, 5 1 ]  by decomposing the core and the shell into as many as wished concentric 
(or coaxial) spherical (or cylindrical) shells inside which the secant moduli are assumed 
uniform: use is then made of the solution [24, 25] of the elastic so-called "n-phase spherical 
(or cylindrical) model"  with different possible definitions of the secant moduli [50, 5 1 ,  52] . 
In such treatments, the stress or strain definition of the three-phase model [23] has rather to 
be used instead of the energetical one. Finite element numerical computations may be 
developed as well [50] . The main difficulty indeed is the same as in the case of the classical 
self-consistent scheme and is concerned with the way to take the inhomogeneity of the matrix 
into account since it is made of the (a priori unknown) H.E.M .. Iterative procedures dealing 
with successive known approximations of the H.E.M. could be a possible approach to this 
additional difficulty . 

5 . CONCLUSION 

To sum up, we can appreciate that the integration of structural morphology into 
micromechanical approaches is still a widely open question. Despite some progress has been 
achieved in this field for the last thirty years , many questions sti l l  remain unsolved. The 
future expected developments are concerned both with improved treatments of nonlinear 
behaviour and with efficient practical means to quantify experimentally and to represent 
conveniently the main morphological characteristics of inhomogeneous material as well as 
their evolution under straining. 
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What i s  at stake with these efforts i s  not so much to be able to predict better the 
macroscopic behaviour of given materials as to do so at the mesoscale:  several studies [e.g. 
50] have shown that morphology plays a major role at this  mesoscale in inducing local stress
or strains concentrations which rule damage initiation and evolution, so that one can guess 
that any damage micromechanical theory will have to take to the best morphological 
parameters into account. In addition, invention of new materials as well improvement of the 
existing ones in view of optimized properties for a given use obv iously have to get 
morphological aspects under control . 
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