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Thermomechanical Description of Moving Discontinuities, Appli
cation to Fracture and Wear 
C. Stolz 

The propagation of moving surface inside a body is analysed within the framework of thermomechanical 

couplings, when the moving surface is associated with an irreversible change of mechanical properties. 

The moving surface is a surface of heat sources and of entropy production, intensities of which are related 

to particular energy release rates defined in terms of Hamiltonian gradients. As examples, we analyse 

the evolution of partial damage in a composite sphere and a model for study the contact wear phenomena 

between two bodies. 

1 Introduction 

In the recent past, the propagation of damage has been studied in connection with fracture mechanics, 
and different approaches based on macroscopic or microscopic descriptions of mechanical degradation 
properties have been proposed. 

During a loading history damage in continuum mechanics can be induced by the initiation and the 
growth of micro-cracks and micro-cavities. These descriptions, which are based on the evolution of the 
microscopic properties, propose to take the growth of pores or micro-cracks into account, through the 
idea that when some threshold value is reached, the material can not support further tensile loading. 

Variational formulations were performed to describe the evolution of the surface between the sound and 
damaged material (Bui et al., 1 981; Pradeilles-Duval and Stolz, 1995). In the framework of thermome
chanical coupling as in fracture mechanics the analysis defines two different energy release rates associated 
with heat production and entropy production. (Stolz, 1995 ; Stolz and Pradeilles-Duval, 1996). 

This paper is concerned mostly with the description of damage involved on the evolution of a moving 
interface along which mechanical transformation occurs. Some connections can be made with the notion 
of configurational forces, (Gurtin, 1995 ; Maugin, 1995 ; Truskinovski, 1987 ; Grinfeld, 1980,1991). 

2 General Features 

The domain D is composed of two distinct volumes .111, .112 of two materials with different mechanical
characteristics . The bond between the two phases is perfect and the interface is denoted by r, (r = 

8.111n8.112). The external surface 8.11 is decomposed in two parts 8Du and 8Dr on which the displacement
ud and the loading Td are prescribed respectively. 

The material 1 changes into material 2 along the interface r by an irreversible process. Hence r moves
with the normal velocity c = cj>N in the reference state, N is the outward .112 normal, then cp is positive.
When the surfacer is moving, all the mechanical quantities f can have a jump denoted by [!] = Ji - h,
and any volume average has a rate defined by 

:t ( f dw = ( j dw - ( [!] c.N da ln(r) ln(r) lr 
The state of the system is characterized by the displacement field u, from which a strain field c is derived. 
The other parameters are the temperature e and the spatial distribution of the two phases given by the
position of the boundary r. We analyse quasistatic evolution of r under a given loading prescribed on
the boundary 8.11. 
The behaviour of the phase i is given by the free energy density wi , function of the strain c and of the
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temperature B. The mass density of the two phases is the same p. The state equations of each phase are 

where ai is the reversible stress and si the entropy. If the materials have no viscosity then O"i is the 
stress satisfying the momentum equation. If each Wi is a quadratic form, the two phases are linear elastic 
materials. The potential energy of the structure 0 (01 u 02) has the following form

P(u,r, Td) = 
i�2fn ; 

pwi(c(u),B) dw - lanr 
Td.u da

- ' 

The potential energy represents the global free energy in a thermodynamical description ; we can notice 
that the position of the interface r becomes an internal parameter for the global system. The character
ization of an equilibrium state is given by the stationarity of the potential energy 

ap '"' r awi r d 7J.8u = � Jr: p 8: c(8u) dw - JA T .8u da = O
U i=l,2 D.;. c · &Dr 

for all 8u kinematically admissible field satisfying 8u = 0 over 80u. This formulation is equivalent to the
set of local equations : 

• local constitutive relations

OWi 
O"i = p--

Oc 

• momentum equations

div a= 0, [a].N = 0 over r, a.n = yd over 80r

• compatibility relations

2c = \Ju+ vtu, [u] = 0 over r, u = ud over 80u

At a given state of equilibrium for a given value of the prescribed loading (ud, Td), the position of the 
interface r is kown. At this time we apply a variation of the loading, the mechanical quantities evolve and 
propagation of the interface can occur according to a given evolution law. For a prescribed history of the 
loading, we must determine the rate of all mechanical fields and the normal propagation efJ to characterize 
the position of the interface r at each time. 

Let us introduce the convected derivative Dq, of a function f ( x r , t) defined along r as

D f = lim J(x + efJN 6.t, t + 6.t) - J(x, t)
<f> .0.t->O 6.l 

As the contact is perfect between the phases the displacement and the stress vector are continuous along r. 
Their rates have discontinuities according to the general compatibility equations of Hadamard, rewritten 
with the convected derivative : 

Dq,[u]r 
[Dd>(a.N) lr 

[v]r - efJ[Vu]r .N = 0
[0-Jr .N + div r([efJa]) = 0

where divrF = div F - N.\JF.N. The discontinuities of a and Vu have a property of orthogonality as
pointed by Hill (1986): [a] : [Vuj = 0.
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3 Dissipation Analysis 

The mass conservation leads to the continuity of the mass flux m = pcf> . The first law and the second
law of thermodynamics give rise to local equations inside the volume and along the moving surface r : 

pe O" : io - di v q, over n
0 m[e] + N.O".[v] - N.[q], on r 

where e is the internal energy density (e = w+es), and q is the heat flux associated to the heat conduction.
Thanks to the Hadamard compatibility equations, the heat power supply is given in terms of a release 
rate of the internal energy as an objective quantity defined along r 

N.[q] = Gthcf>, with Gth = p[e] - N.O".[V'u].N = p[e] - O": [c-]
The value Gth is obtained by considering the orthogonality condition of Hill. When 

cjJ = 0, in the reference
state, the interface r does not move, and the normal flux is continuous. When the transformation occurs 
the moving interface is a surface of heat sources, the intensities of which are given by Gthcf>· The total
internal energy of the structure is 

For a quasistatic evolution, the first law of thermodynamics is written as follows : 

dE 8E ·d { dt - 8Td .T = - Jen q.n da

and taking into account of the momentum conservation, we have 

Then the derivative of the total energy relatively to the position of the interface is the source of heat due 
to the irreversible process. 

The entropy production is given by 

l div q ve 1 q (ps + -8- - q.-2 )dw + (-m[s] + N.[-])da;::: On e r e 
Under the assumption of separability of the two dissipations, the term inside the volume is reduced to 
the conduction and the term along the surface is then 

Dr= p[w] - N.O".[V'u].N cjJ = Gs cjJ
e e 

where Gs is the release rate of free energy. This quantity has an analogous form to the driving traction
force acting on a surface of strain discontinuity proposed by Abeyaratne and Knowles (1990). The criteria
which guide the evolution of the interface may be written as function of this quantity. 

In a thermomechanical coupling, two different release rates must be distinguished. One, defined in terms 
of variation of the total internal energy with respect to the position of the interface, determines the heat 
source associated with the moving surface ; the second one describes the production of entropy. In the 
case of an isothermal evolution, the total dissipation is given in terms of the derivative of the potential 
energy relatively to the position of the interface 

where Gs = p [w] - O" : [V'c-] . In this case, there is only one energy release rate to characterize the
propagation. It gives the sources of heat production and the dissipation. 
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These relations can be generalized in the dynamical case, by replacing the internal energy of the system 
by its Hamiltonian, (Stolz, 1 995, Stolz and Pradeilles-Duval 1996,1997). 

4 Quasistatic Evolution 

In isothermal evolution, complementary relations must be considered to describe irreversibility. An energy 
criterion is chosen as a generalized form of the well known theory of G1·iffith. Then, we assume 

efJ 2 0, if G s = Ge on r, and efJ = 0, otherwise 

This is a local energy criterion. At each equilibrium state, the interface r can be decomposed into two
subsets where the propagation is either possible or not. Let us denotP by r+ the subset of r where the
critical value Ge is reached. The evolution of the interface is governed by the consistency condition,
during the evolution of r ; if at the geometrical point xr(t) the criterion is reached

Gs(xr(t), t) =Ge 

then the derivative of Gs following the moving surface vanishes D</>Gs = 0. This leads to the consistency
condition written for all points inside r+ 

otherwise efJ = 0. With Hadamard relations the derivative defined above takes the final form 

[t.a].\7v1.t - N.a2-[\7u].N - efJK 
t.divra2-[\7u].N - t.a2.V'([V'u].N) + [a: V's.N] - N.a.(\7\7u.N).N]

In that case, the evolution is determined by the functional 

. d) 1 1 a2w 1 . 
d f, efJ2 

F(v, efJ, T = -2s(v): � : s(v) dw - T .v da + (efJ[t.a].V'v1.t + -K) dan us us anT r 2 

Then the evolution is given by : 

for all v* kinematically admissible fields, and efJ* ( s) 2 0 along r+. The discussion of the stability and
bifurcation along an evolution process can be investigate as presented in the paper Pradeilles-Duval and 
Stolz (1995).We consider the rate of the displacement v which is solution of the local equations :

div a 82w 
0, a= OEOc : c(v), inside n 

v vd on 8Du, a.n = 'fd on 8Dr 

and satisfying non-classical boundary conditions on r, for any given velocity efJ :

We define the value W of F for such a field v( efJ, vd, 'fd), then W ( efJ, vd, 'fd) = F( v( efJ, vd, 'fd), efJ, 'fd). The
stability of the actual state is determined by the condition of the existence of a solution 

and the condition of uniqueness or non-bifurcation is given by 
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5 Composite Spheres Assemblage 

In this section, the composite spheres assemblage of Hashin is analyzed, (Christensen and Lo, 1979). The 
system is composed by the compact assemblage of spheres with external radii in order to fill the whole 
domain. The microscopic structure is constituted by composite spheres with a core made of material 2 
and the shell of material 1, both materials are linear elastic and homogeneous. As in the general case, 
materials 1 transforms into material 2 ; the transformation is irreversible and the criterion is a generalized 
Griffith's criterion based on the energy release rate of the transformation. Applying the same method 
than in (Herve and Zaoui, 1991), the assemblage is considered as well-disordered. Using the particular 
three phase model, the homogeneous equivalent medium denoted by material 0 is unknown. In phase i, 
the local characteristics are the bulk modulus ki and shear modulus µi. In what follows, k1 is assumed 
to be larger than k2. 

5.1 Macroscopic Behavior with One Family of Spheres 

There exists only one family of composite spheres in the structure ; c is the concentration of material 2. 
Using analytical results obtained in (Herve and Zaoui, 1991 ) , one gets the bulk modulus of the material 
0, denoted by ka 

On the interface, the energy release rate is 

G= e�(4µ1 +3k1)(4µ1 +3k2)(k1 -k2)
2(4µ1 + 3k2 + 3c(k1 - k2))2 

where e0 represents the uniform strain (c: = e0I) given at the infinity. When a generalized Griffith 
criterion is taken into account for the damage transformation, as G reaches the critical value Ge, the 
ratio c increases such that G equals to Ge. The behavior takes the form plotted in the following figures. 

p 

u 

The composite sphere The response of the composite sphere 

5.2 Macroscopic Behavior with Two Families of Spheres 

In what follows, we consider the macroscopic evolution of a composite spheres assemblage when two 
different families (J and I I) coexist in the structure. They are supposed to be perfectly disordered. CJ 

(respectively cu) denotes the volume fraction of material 2 in the first family (in the second one) . If 
we denoted by Gr (resp. Gu) the release rate of energy for the family I (resp. II), we can shown the 
inequality 
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So, the global behavior of the system is the following one : at the beginning the macroscopic behaviour 
is linear elastic, until the energy criterion is reached and at this moment 

• If µ1 > µ2, the difference between the two concentrations (CJ - CJ J) increases until the larger reaches 
1. 

• If µ1 < µ2, the difference between the two concentrations decreases until there are identical. That 
means that the two different families become only one. 

• If µ1 = µ2, both concentration could increase. 

When whole volume is transformed, the behavior is the mechanical behavior of material 2. Even if the 
system is composed by only one family, the local response to the loading increment is non-unique. In fact, 
there can exist many kinds of bifurcations: one part of the structure can be damaged, that is some kind of 
damage localization ; or very well-ordered configurations can appear for which specific space distributions 
of the constituents phases are obtained 

One gets order among disorder. If µ1 > µ,2 then a new perfectly disordered family can appear along the 
first one. In that case there is more disorder in the structure. 

Here, it is to be underlined that the total dissipation is only due to the change of mechanical characteristic 
along a moving surface. The macroscopic behavior is dissipative while the components are always in a 
reversible process. The transformation between the two material corresponds to a volume damage at the 
macroscopic scale. 

6 Dissipation Analysis in Dynamical Case 

Now, we take the inertia effects into account. Thus the two thermodynamic principles must be rewritten. 
The mass conservation leads to the continuity of the mass flux m = pr/J. The first law and the second Jaw 
of thermodynamics give rise to local equations inside the volume and along the moving surface r : 

pe 
0 

a-: E: - div q, in S1 
v2 

m[e + 2] + N.[o-.v] - N,[q], on r

Then taking the conservation of the momentum and the continuity of the displacement into account : 

[u] = 0, [o-] .N = m[v]

we obtain the heat power supply defined by the internal release rate Gth (er =  �(o-1 + o-2)):

N[q] = Gthr/J, Gth = p[e] - N.a.[Vu].N

The total Hamiltonian of the structure is the sum of the kinetic energy and the total internal energy, the 
potential energy is defined as above : 

r 1 2 1 H= Jr 2,pv dw+P+ ps8dwn n 
The momentum conservation is then defined by the set of equations 

aH j aH d j --;:;---•Op = v,Op dw, --;:;--- o Ou= -- p,Ou dwup n uu dt n 
where p is the momentum. These equations lead to the classical equations of motion. The first law of 
thermodynamics can be written as follows : 

dH oH .d ( 
--;Ji - ()Td .T =Jan -q.n da
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and taking into account of the momentum conservation, we have 

aH . r r 
or .r = - Jr[q] .N da = - Jr Gthef> da

The second law has the same form as previously. The interface is perfect at each time. Under the 
assumption of separability of the two dissipations, the term inside the volume is reduced to the conduction 
and the term along the surface is then : Dr = ef>Gs/B where Gs has the form of a release rate of energy. 

Gs = p[w] - N.0-.[V'u].N

In a thermomechanical coupling, two different release rates must be distinguished, one defined in terms of 
variation of the Hamiltonian gives rise for the heat source associated with the moving surface, the second 
one describes the production of entropy. 

In the case of an isothermal evolution, we can define another Hamiltonian 

and the total dissipation is then given by : 

dH 8H ·d 8H · { 
dt - 8Td .T = 

ar .r = - Jr GdynefJda

where Gdyn = p[w] - N.0-.[V'u].N.

7 Contact - Wear Phenomena 

Wear phenomena are due to contact and relative motion between two solids and characterized by a loss 
of material from at least one of them. In the contact area the products of wear or lost particles and the 
damaged subsurfaces of both solids define an interface. Particles detache, asperities are cracked, failure 
occurs in this interface making its description difficult. Many works on wear are based on experimental 
observations which depend closely on operating conditions (for example the Archard law, Archard, 1953)
and can not provide enough information for studying the wear of a structure (Meng and Ludema, 1995).
We propose to characterize the continuous evolution of the boundary separating both solids from their 
common interface. These surfaces between sound and damaged materials are moving surfaces according 
with the loss of material due to wear phenomena. In the present work, we propose to derive a criterion 
for wear of both contacting bodies describing in a more fundamental manner the local quantities involved 
in the wear process. 

We analyse a system of two contacting bodies. The two bodies are decomposed into a sound part D1 
(resp. D2) and a damaged part Di (resp. D2) separated by a perfect interface r1 (resp. r2). Along the 
contact area a third body appears D3 composed by the area of contact, the detached particles, the two 
damaged materials Di. The sound materials are characterized by known constitutive laws defined by a 
given free energy and a potential of dissipation. Damaged materials Di correspond to the process zone 
where the wear takes place. They are transition zones between sound material to granular system. When 
the wea1· occurs, each r; moves with a normal velocity efJiNi where the normal N; is oriented inward Di. 
All the conservation laws are written as previously 

• the conservation of mass over ri is reduced to 

• the conservation of the energy is 

mi[w + sT]r; - Ni.0-.[v]r; + [q].Ni = 0 
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• the second law gives us the production of entropy as 

mi[w] - N.i7.[v] 0 D = > r.; T -

Each interface ri is a perfect bond, the displacement is continuous. If the mass flux mi is null, the jump 
of the velocity vanishes. Then the dissipation Dr, is characteristic of the loss of material associated with 
the wear phenomenon. 

The third body n3 has a small thickness and it's average surface r defines the contact area between 
the bodies. An element of n3 is defined by a small cylinder with area dS of r and a length h for the 
thickness. By unit area of contact dS, the total dissipation of the interface is then 

where D3 is the volumetric contribution to the dissipation of the interface r : 

VT 1 . 
D3 = -q3.-+ -(a: gradv - p(w + sT))

T T 

This total dissipation contains two contributions, one due to friction associated to the relative motion 
of the two solids and the other related to the loss of mass mi. The internal structure of f23 could be 
analyzed by considering some mechanical characteristics. The solution of the problem of films of thickness 
h submitted to a uniform loading and shear gives information on the level of the two contributions. 

On each ri, the displacement is continuous. The mass flux is mi = p<fii, where <Pi is small relatively to the 
gliding motion between the two bodies. Then the stress vectors are continuous between the two bodies. 
The Hadamard compatibility equations give 

[v]r + ef>[Vu]r .N = 0 

the dissipation can now be rewritten as 

where the quantities 

In the expression of the dissipation the nature of the two terms are different. The first is a dissipation 
inside the interface along the surface of contact r, which is essentially the term of friction, the condition 
of friction depends on the behaviour of the interface material. The others are those due to wear. 

Assume now that the temperature is uniform and the evolution is isothermal. Moreover assuming that 
the behaviour of the interface is perfect plastic. When the shear reaches the yield stress Tc, the rate v is 
approximated by v = -tzex so the dissipation is reduced to 

the first term takes the form of a friction law. A wear criterion is defined by a law between the propagation 
<Pi and the thermodynamical force Ii = Gi - Gy. If a potential of dissipation is given as a convex function 
of /i, applying the normality law ensures the positivity of the production of entropy. This gives rise to 
a local definition of wear. The identification of a law for wear, or such a potential remains still now the 
main difficulty. 
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8 Conclusion 

We have considered the transformation of a material to another one with different mechanical character
istics along a moving interface as an irreversible process. This point of view can describe many situations 
corresponding to the transition between sound materials and damage materials. 

The application of this idea for the description of wear-contact phenomena gives a definition of the 
mechanical characteristics associated to wear description. The description is local and makes in the 
dissipation the part due to friction and the part due to wear. 
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