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A modal computation of a complete clarinet is presented by the association of finite-element models of the reed and of part of the

pipe, and a lumped-element model of the rest of the pipe. This is a continuation of an initial work by Pinard and Laine (unpublished

reports of the Ecole Polytechnique) on isolated reeds. The eigenmodes of the complete system are computed and the results lead to a

discussion of the following points: flexion and torsion modes of the reed, their coupling to the acoustical field, plane wave hypothesis,

equivalent volume approximation in the mouthpiece, and alignment of resonance peaks.
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FIGURE 1. Lumped elements model for the pipe, FEM for the

barrel, the mouthpiece, and the reed of the clarinet.

INTRODUCTION

The classical view of a clarinet associates a linear res-

onator - the pipe - and a nonlinear excitor - the reed. The

purpose of our approach is to include the reed in the linear

part and to restrict the nonlinear aspects to boudary con-

ditions: the air flow from the mouth to the pipe through

the reed-slit and contact forces between the reed and the

curved lay of the mouthpiece. The present analysis deals

with the linear aspects of the ensemble of the reed cou-

pled to the pipe by means of a modal investigation of the

instrument.

The simplest reed model - a spring - has been ap-

proached experimentally [1, 2, 3] and used in numeri-

cal simulations which were successful in describing basic

features of the dynamics of a clarinet [4, 5, 6]. The fur-

ther step in complexity is that of a single oscillator with

various possible sophistications [7, 8, 9, 10]. Modeling

the reed as a true continuous system is the current state

of research. Several examples of modal analysis of iso-

lated clarinet reeds have been presented over the recent

years using holographic interferometry [11, 12, 13, 14].

Two examples of finite-element modeling based on mea-

surements of the mechanical properties of cane have been

reported [15, 16]. The present model treats the reed as a

complex continuous system in association with the air-

column: fluid and solid finite element models (FEM) for

the reed and the beginning of the pipe associated with

a lumped elements model for the main part of the pipe

(Fig. 1).

MODELS AND RESULTS

The reed geometry has been carefully measured. Reed

cane is considered as an elastic transversely isotropic, ho-

mogeneous material. Since we are concerned with in-

dividual modes of the reed, losses are ignored. They

would have to be taken into account in the actual dy-

namics of the instrument. Five parameters are needed

to describe the material (in parenthesis, the values used

in the computation): density ρ (450 kg=m3), longitudinal

and transverse Young’s moduli EL (10 000 MPa) and ET

(400 MPa), transverse to longitudinal shear modulus G LT

(1 300 MPa), and longitudinal-transverse Poisson coeffi-

cient νLT (0.22). The reed is considered rigidly clamped

on the section corresponding to the ligature and having a

stress-free boundary elsewhere. This model has been im-

plemented using linear Love-Kirchoff plate elements in

the Castem finite-element code (www.castem.org:8001).

Three of the first modes of a reed are presented in Fig. 2.

Acoustical studies of the clarinet have so far repre-

sented the mouthpiece of a wind instrument by its equiv-

alent volume. To go beyond this approximation and to

compute the 3-D distribution of the pressure in the upper

part of the instrument, a coupled fluid-solid model has

been used. The air volume inside the mouthpiece and the

barrel is modeled with linear tetrahaedric and prismatic

finite elements of compressible elastic fluid. The acous-

tic pressure at points of the open air surfaces is considered

to be zero as well as the normal derivative of the acoustic

pressure (corresponding to air flow) on the walls of the

mouthpiece and the barrel. The boundary condition cou-

pling the reed and the mouthpiece involves the stress in

the solid and the velocity of the fluid. The precise for-

1



FIGURE 2. Modes at 2417, 4158, and 7020 Hz of an isolated reed.

mulation is given in [17]. Computed modes in the cou-

pled situation match well the modal shapes on real reeds

as measured by holographic interferometry. The modal

acoustic pressure at an eigenfrequency of 4119 Hz is dis-

played in Fig. 3. In this mode, the reed undergoes torsion

with a characteristic distance smaller than the half the

wavelength in air at that frequency (λ � 10 cm); the re-

sulting acoustical short-circuit prevents any efficient cou-

pling of the reed to the air in the mouthpiece. This ex-

plains the fairly uniform acoustic pressure for this mode,

except very near to the reed.
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FIGURE 3. Computed eigenmode at 4119 Hz in a mixed solid-

air situation - Acoustic pressure inside the mouthpiece and bar-

rel.

In order to simulate the modal behavior of the com-

plete clarinet, the FEM of the top of the pipe is associated

with lumped elements representing the rest of the pipe.

Simulations such as presented in Fig. 3 show that the

acoustical field consists essentially of plane waves. The

rest of the pipe can therefore be adequately represented

by its acoustic input impedance. The lumped-element os-

cillators are coupled to the finite elements by means of a

rigid plate with negligible mass. We used measurements

provided by Vincent Gibiat. Each impedance peak is as-

sociated with an oscillator represented in its generic form

in Fig. 1. The eigenmodes and eigenfrequencies have

been computed for several fingerings of the instrument.

We have then revisited the classical question of the har-

monicity of the eigenfrequencies. The traditional model

of the mouthpiece is that of a cylinder of equivalent vol-

ume. It appears that variations in eigenfrequencies due to

the model change are significant with regard to the align-

ment of resonances, even at low frequencies. In other

words, the misalignment of peaks in either model is of

the same order of magnitude as the frequency shifts due

to the presence of the reed and the prismatic shape of the

mouthpiece.
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