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Abstract

We describe the Hamiltonian structures, including the Poisson

brackets and Hamiltonians, for free boundary problems for incom-

pressible fluid flows with vorticity. The Hamiltonian structure is used

to obtain variational principles for stationary gravity waves both for

irrotational flows as well as flows with vorticity.

1 Introduction

In 1933 Friedrichs [9] proposed the functional

J(ψ) =

∫∫∫

0≤ψ≤1

[
(∇ψ)2 + v2(x, y)

]
d2x,

where ψ is the stream function for an incompressible flow, as a variational
method of obtaining solutions to free boundary value problems. Critical
points of J are harmonic functions which satisfy the condition

(∇ψ)2 = v2

on the free boundary, given by ψ = 1. The free boundary condition relevant
to theory of gravity waves, however, is the Bernoulli equation

(∇ϕ)2

2
+ gζ = constant,
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where ϕ is either the velocity potential for irrotational flow, or the stream
function in the case of flows with vorticity. Thus some other variational
principle is needed for the study of gravity waves.

Recently, a variational principle for gravity waves with vorticity was given
by Constantin et. al. [7], using a direct, ”hands on” approach. More gener-
ally, a variational principle for a stationary wave may be obtained for systems
possessing a Hamiltonian structure by minimizing the Hamiltonian computed
in a Galilean frame moving with the wave. We illustrate that approach in
this study.

We begin with a brief review of Euler’s equations of incompressible flows,
and the associated free boundary value problems; in §3 we describe the Hamil-
tonian structure of these problems, for irrotational flows and flows with vor-
ticity, as given by Lewis et.al. [15]. All the functions under consideration in
this article, including the free boundaries, are assumed to be smooth.

2 Incompressible fluid flows

Let the velocity field of an incompressible fluid in a fixed region D be denoted
by v. The incompressibility of the fluid is expressed by the condition div v =
0. We must have v · ν = 0 on the boundary of D, where ν is the outward
unit normal at the boundary. Euler’s equations of motion for the flow of an
inviscid, incompressible fluid are

dx

dt
= v, ρ

dv

dt
= ρ(vt + (v · ∇)v) = −∇( p− g · x), (2.1)

div v = 0,

where ρ is the density, p is the hydrodynamic pressure, and g · x is the
gravitational potential. Henceforth we take ρ = 1.

Given a manifold D ∈ R
3 with smooth boundary, we denote by L2(D)

the Hilbert space of vector fields on D with the inner product

〈v,w〉 =

∫∫∫

D

v · w d3x.

We denote by Lπ the closed subspace of L2(D) generated by vector fields;
of the form w = ∇ p for some function p with finite Dirichlet norm. The
orthogonal complement Lσ = L⊥

π is the space of all vector fields v for which
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〈v,∇ p〉 = 0 for all p ∈W 1,2(D). By applying the Gauss divergence theorem,
we see that if v ∈ L2(D) and is smooth, say C1, then div v = 0 and v ·ν = 0
on Σ = ∂D, where ν denotes the outward unit normal on Σ. The Hilbert
space Lσ is the space of weakly divergence-free vector fields. We denote the
orthogonal projections onto Lσ and Lπ by Pσ and Pπ respectively.

In many applications the fluid is not confined to a fixed region, but instead
carries the region with it. In such cases, the region D occupied by the fluid
must also be determined. Such problems are called free boundary problems
and occupy a substantial part of the literature on incompressible flows.

Given an irrotational flow (curl v = 0) on a simply connected domain,
there is velocity potential ϕ for which v = ∇ϕ. The velocity potential is
defined only up to an arbitrary function of time; the transformation ϕ 7→
ϕ+k(t) is called a gauge transformation, and will play a role in what follows.

The equation div v = 0 implies that ϕ is harmonic. Substituting v = ∇ϕ
into the second equation in (2.1) we obtain

∇

(
ϕt +

1

2
(∇ϕ)2 + gz + p

)
= 0,

hence

ϕt +
1

2
(∇ϕ)2 + gz + p = k(t)

for some function of time, which can be eliminated by a gauge transformation
of the velocity potential. We always choose the gauge to be such that

ϕt +
1

2
(∇ϕ)2 + gz + p = 0

everywhere in the fluid.
An interface between the fluid and another medium, for example air, is

called a free surface. If the pressure is constant in the air, then it is also
constant at the surface of the fluid, and we may normalize the pressure to
be zero at the free surface. Hence we obtain Bernoulli’s equation

ϕt +
1

2
(∇ϕ)2 + gz = 0,

where gz is the gravitational potential on the free surface.
The free surface is given in space-time by φ = 0, where φ(x, y, z, t) =

z − ζ(x, y, t). The free surface moves with the fluid, hence the material
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derivative of φ vanishes, and

0 =
dφ

dt
=

d

dt
(z − ζ) = v3 − ζt − v1ζx − v2ζy;

hence
ζt + v1ζx + v2ζy − v3 = 0.

This is called the kinematic condition on the free surface.
This collection of equations for gravity waves on a free surface is known as

Euler’s equations for waves on the surface of an inviscid, incompressible fluid
with irrotational flow in the region D = {(x, y, z) : 0 ≤ z ≤ h + ζ(x, y, t)}.
They are

∆ϕ = 0 0 ≤ y ≤h + ζ,

ζt + ϕxζx + ϕyζy = ϕz on S; (2.2)

ϕt +
1

2
|∇ϕ|2 + g z = 0 on S; (2.3)

ϕz = 0 on z =0.

Here, ϕ is the velocity potential of the flow, and ζ(x, y, t) the displacement
of the fluid surface from equilibrium. We have neglected surface tension. The
second equation is known as the kinematic equation; the third equation is
Bernoulli’s equation. At rest, the fluid lies in the region 0 ≤ z ≤ h; g is the
acceleration due to gravity. The free surface is denoted by S = {(x, y, z) :
z = h+ ζ(x, y, t)}.

The two physical constants in the theory are g and h. Let c denote a
characteristic velocity (e.g. the velocity of a gravity wave); then h/c is a
characteristic time. We introduce dimensionless variables

(x, y, z) = h(x′, y′, z′), t = ht′/c, ϕ = chϕ′.

The equation (2.3) now becomes

ϕ′
t′ +

1

2
(∇′ ϕ′)2 + λ ζ = 0, λ =

gh

c2
, (2.4)

where λ is the inverse square of the Froude number. The other equations in
Euler’s system are unchanged under the rescaling. From now on we drop the
primes and understand that we are working in non-dimensional variables.
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The Euler equations are invariant under the one-parameter subgroup of
Galilean boosts along the x axis, given by

(x′, y′, t′) = (x− ct, y, t), v′(x′, y′, t′) = v(x, y, t) − (c, 0).

The velocity potential, however, is determined only up to a function of time.
Thus the Galilean boosts on the velocity potential are given by

ϕ′(x′, y′, t′) = ϕ(x, y, t) − cx+ q(t).

Under these Galilean boosts,

∂ϕ′

∂t′
+

1

2
(∇′ ϕ′)2 =

∂ϕ

∂t
+

1

2
(∇ϕ)2 + q′(t) −

1

2
c2. (2.5)

The result follows by direct calculation, noting that

∂

∂t′
=

∂

∂t
+ c

∂

∂x
,

∂

∂x′
=

∂

∂x
.

Proposition 2.1. Suppose the solutions of Euler’s equations are stationary
in a Galilean frame moving with speed c. Then ζt′ = ϕ′

t′ = 0; and, choosing
q(t) = c2t, the conditions on the free surface are (dropping the primes)

ϕxζx = ϕy,
ϕ2
x + ϕ2

y

2
+ λ ζ =

c2

2
. (2.6)

Proof. By (2.5) the Bernoulli equation in the moving frame is

ϕ′
t′ +

1

2
(∇′ ϕ′)2 + λζ ′ = q′(t′) −

1

2
c2.

As x → ±∞ ζ ′ → 0 while (∇′ ϕ′)2 → c2. Moreover, ϕ′
t′ = 0 by the assump-

tion of stationarity. These conditions force the choice q′ = c2, and the result
follows. The kinematic equation in the moving frame is immediate.

Proposition 2.2. Let v be a divergence-free vector field in a domain D.
There is a unique orthogonal decomposition, known as the Weyl-Hodge de-
composition,

v = w + ∇ϕ, (2.7)

∆ϕ = 0, ϕν = v · ν; div w = 0, w · ν = 0. (2.8)

The proof is left to the reader.
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3 Poisson structures

Let M be a C∞ manifold of dimension n, and let F,G ∈ C∞(M). A bilinear
form {F,G} is said to be a Poisson bracket if

• {F,G} = −{G,F};

• {F,GH} = {F,G}H +G{F,H}.

• {{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0;

The second property implies that the Poisson bracket is a derivation in each
of its entries. Hence any H ∈ C∞(M) generates a vector field XH , called a
Hamiltonian vector field on M , defined by XHF = {H,F}. The Hamiltonian
vector field XH generates a flow on M ; if xi are a set of local coordinates on
M , then the time evolution of the xi on that chart is given by the ordinary
differential equations

ẋi = {H, xi}.

Due to the fact that the bracket acts as a derivation on each of its entries,
we may represent a Poisson bracket in the form

{F,G} =
n∑

j,k=1

W jk ∂F

∂xj
∂G

∂xk
,

where W jk(x) is a skew-symmetric matrix.
If detW 6= 0 then it is easily seen that n must be even. A classical

theorem of Darboux states that in this case it is always possible to find a
set of local coordinates, called canonical coordinates qi, pi, (1 ≤ i ≤ n/2) in
which the Poisson brackets take the form

{F,G} =

n∑

j=1

∂F

∂pj
∂G

∂qj
−
∂F

∂qj
∂G

∂pj
.

A manifold with a Poisson bracket is called a Poisson manifold ; if the
brackets are non-degenerate, the manifold is called a symplectic manifold.
On a symplectic manifold, the Hamiltonian flow takes the form

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
.
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In this paper we shall restrict ourselves to the case in which M is a linear
vector space with an inner product 〈 , 〉; and we shall write the Poisson
brackets in the form

{F,G} = 〈∇F, Jx∇G〉,

where Jx is a skew-symmetric linear transformation on M and ∇F is the
gradient of the function F . The gradient is characterized as follows. Differ-
entiating F (x(t)) along a curve x(t) on M , we have

d

dt
F = 〈∇F, ẋ〉.

If Jx is non-singular, then the Poisson brackets are non-degenerate and
have locally a canonical system of coordinates. In many problems of physical
interest, however, the Poisson brackets are degenerate, i.e. det Jx = 0. For
example, in the study of rigid motions about a fixed point in R

3, the Poisson
bracket is

{F,G} = 〈∇F, x ×∇G〉. (3.1)

The operator J
x

is defined by J
x
v = x × v; hence ker(J

x
) = Rx.

The bracket (3.1) vanishes for all regular functions G whenever F is spher-
ically symmetric. Such a function F is called a Casimir. It is invariant under
any Hamiltonian flow generated by these brackets.

Any Poisson bracket on an odd-dimensional manifold must be degenerate
and therefore have Casimirs. The bracket (3.1) is an example of a non-
canonical Poisson bracket.

The formalism of Poisson brackets and Hamiltonian flows can be extended
to infinite dimensions, for example, in the study of continuum mechanics,
though a number of technical difficulties arise. In particular, Poisson struc-
tures play a useful role in the theory of the Euler equations for an incompress-
ible fluid. Two important such brackets are the Poisson bracket introduced
by Arnold [3, 4, 5] in his study of incompressible fluids on fixed domains, and
the Poisson bracket implicit in Zakharov’s fundamental discovery [18] of the
Hamiltonian structure of the Euler equations of gravity waves.

3.1 Arnold’s Poisson brackets

Arnold observed that Euler’s equations for an incompressible fluid in a fixed
domain D are directly analogous to his equations for rigid body motion, and
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that they have a Hamiltonian structure with the Hamiltonian and Poisson
brackets given respectively by

H =

∫∫∫

D

1

2
v · v d3x, (3.2)

and

{F,G } =

∫∫∫

D

δF

δv
·

(
curl v ×

δG

δv

)
d3x. (3.3)

Here, F and G are functionals on Lσ with gradients in Lσ. The gradient
of F is δF/δv, the Euler-Lagrange derivative of F with respect to v. For
example, δH

δv
= v. The operator J

v
in this case is

J
v
w = Pσ(curl v × w).

Let us show that (2.1) are the Hamiltonian equations generated by (3.2)
and (3.3). We have

Ḟ =

∫∫∫

D

δF

δv
· vt d

3x,

{H,F} =

∫∫∫

D

δH

δv
· (curl v ×

δF

δv
) d3 x =

∫∫∫

D

δF

δv
· (v × curl v) d3 x.

The Hamiltonian flow Ḟ = {H,F} implies that
∫∫∫

D

δF

δv
· (vt + (curl v) × v) d3x = 0 (3.4)

for all admissible F on Lσ.
All linear functionals of the form F

w
(v) = 〈w,v〉 are admissible, and

the gradient of F
w

is the vector w. Therefore vt + (curl v) × v belongs to
L⊥
σ = Lπ. Hence it is a gradient, and

vt + (curl v) × v = ∇ f

for some function f . The Euler momentum equations (2.1) follow from this
and the vector identity

(curl v) × v = (v · ∇)v −
1

2
∇ |v|2, (3.5)
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if we let f = −p+ 1

2
∇ |v|2.

Just as in the case of rigid motion, the Arnold bracket is degenerate. This
degeneracy is related to the action of the (formal) group of volume preserving
diffeomorphisms acting on D. Arnold’s Poisson bracket is an example of a
Lie-Poisson bracket.

3.2 Zakharov’s Poisson brackets

In 1968, Zakharov made a striking observation: Euler’s equations for irrota-
tional gravity waves have a canonical Hamiltonian structure. The Hamilto-
nian (in non-dimensional variables) is

H =
1

2

∫∫∫

D

(∇ϕ)2 d3x +
1

2
λ

∫∫

R2

ζ2(x, y, t) d2x.

The Poisson brackets implicit in Zakharov’s observation are the canonical
brackets

{F,G} =

∫∫

R2

(
δF

δϕ

δG

δζ
−
δF

δζ

δG

δϕ

)
d2x;

the Hamiltonian flow is then the canonical flow

ζt =
δH

δϕ
, ϕt = −

δH

δζ
.

The Hamiltonian H is regarded as a functional of (ϕ̃, ζ) where ζ =
ζ(x, y, t) is the height of the free surface, and ϕ̃ = ϕ|S is the trace of the
harmonic function ϕ on the free surface, with ϕν = 0 on the bottom. The
evolution takes place in the space of harmonic functions on D.

Zakharov’s result is verified by calculating the gradients of H with respect
to ζ and ϕ. Now

d

dε
H(ϕ, ζε)

∣∣∣
ε=0

=

∫∫

R2

[
1

2
(∇ ϕ̃)2 + λζ

]
δζ d2x,

where ∇ ϕ̃ denotes ∇ϕ
∣∣
R2
. By identification,

δH

δζ
=

1

2
(∇ ϕ̃)2 + λζ.
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Similarly,

d

dε
H(ϕ̃ε, ζ)

∣∣∣
ε=0

=

∫∫∫

D

∇ϕ · ∇ δϕ d3x

= −

∫∫∫

D

δϕ∆ϕd3x +

∫∫

Σ

δϕ
∂ϕ

∂ν
dS =

∫∫

Σ

δϕ
∂ϕ

∂ν
dS,

since ϕ is harmonic in D and ϕν = 0 on the bottom.
On the free surface

ϕ̃νdS = ∇ ϕ̃ ·
(−ζx,−ζy, 1)√

1 + ζ2
x + ζ2

y

√
1 + ζ2

x + ζ2
yd

2x;

so
δH

δϕ̃
= ϕ̃z − ϕ̃xζx − ϕ̃yζy.

The free boundary equations (2.2) and (2.3) are thus precisely the Hamilto-
nian equations for this system.

Remark. The effects of surface tension can be obtained by simply adding
the boundary integral

σ

∫∫

Σ

dS

to the Hamiltonian, where σ is the coefficient of surface tension, and dS is
the element of surface area on the free surface S. The inclusion of surface
tension leads to an additional term in the Bernoulli equation; when the free
surface is a graph z = ζ(x, y, t), it is

ϕt +
1

2
|∇ϕ|2 + g z = σ div

∇ ζ√
1 + (∇ ζ)2

, ∇ ζ = (ζx, ζy).

The potential energy can also be written as the integral of the gravitational
potential over the fluid domain, so that the Hamiltonian for gravity waves
including the effects of surface tension is

H =

∫∫∫

D

[
(∇ϕ)2

2
+ λU+(x)

]
d3x + σ

∫∫

S

dS, (3.6)
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where U+(x) is the gravitational potential, truncated in such a way that
the integral over the unbounded domain D converges. When the fluid is a
horizontal layer and the gravity field is constant in the negative z direction,
we take U+ = (z − 1)+, where z+ denotes the function given by z when
z > 0 and by 0 when z < 0. The factor g has been absorbed into the pure
parameter λ.

4 Free boundary flows with vorticity.

Free boundary value flows with vorticity, with both gravitational forces and
surface tension included, are generated by the Hamiltonian

H =

∫∫∫

D

E d3x + σ

∫∫

Σ

dS, E =
v · v

2
+ λU+(x) (4.1)

The corresponding Poisson brackets are [15]

{F,G } =

∫∫∫

D

δF

δv
·

(
curl v ×

δG

δv

)
d3x

+

∫∫

Σ

(
δF

δϕ

δG

δΣ
−
δF

δΣ

δG

δϕ

)
dS, (4.2)

where Σ is the free boundary and dS is the element of surface area on Σ.
Admissible functionals are regarded as functions of v and Σ, the free

boundary of D, and their gradients are defined implicitly by the relation

d

dε
F (vε,Σε)

∣∣∣
ε=0

=

∫∫∫

D

δF

δv
· δv d3x +

∫∫

Σ

δF

δΣ
δΣ dS.

Variations with respect to the free surface are restricted to normal variations,
in a sense explained below. Admissible functionals F are those for which
δF/δv is a divergence free vector field. We require that

∫∫
D
δΣdS = 0,

reflecting the fact that only volume preserving variations are allowed. This
means that the gradient of a functional with respect to Σ is determined only
up to a constant.
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Let Ld(D) be the space of divergence free L2 vector fields on D. Let P1

and P2 be the orthogonal projections defined by P1v = w and P2v = ∇ϕ in
the Weyl-Hodge decomposition.

Lemma 4.1. Let

F (v,Σ) =

∫∫∫

D

F(v,x)d3x + σ

∫∫

Σ

dS

be an admissible functional. Then

δF

δw
= P1

δF

δv
∈ L2(D, d3x).

The gradients with respect to ϕ and Σ lie in L2(Σ, dS) and are given by

δF

δϕ
=
δF

δv

∣∣∣
Σ

· ν,
δF

δΣ
= F(v,x) + σκ

∣∣∣
Σ

mod constant,

where κ is the mean curvature function on Σ.

Proof. Applying the Weyl-Hodge decomposition to both δv and δF/δv we
obtain

〈
δF

δv
, δv

〉
=

∫∫∫

D

δF

δv
· δv d3x =

∫∫∫

D

P1

δF

δv
· δw + P2

δF

δv
· δ∇ϕd3x.

By the uniqueness of the Weyl-Hodge decomposition, we may conclude

δF

δw
= P1

δF

δv
,

δF

δϕ
= P2

δF

δv
.

Since δF/δv is divergence free, we have, by the divergence theorem,

∫∫∫

D

P2

δF

δv
· δ∇ϕd3x =

∫∫∫

D

δF

δv
· ∇ δϕ d3x =

∫∫

∂D

δF

δv
· ν δϕ dS,

and the second relation follows.
Let Σε be a one parameter family of surfaces parameterized by a vector

valued map
X(u, v, ε) = X0(u, v) + ε δΣN(u, v),
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where N is the normal vector field to Σ. For ε sufficiently small, the sym-
metric difference Dε∆D of the domains bounded respectively by Σε and Σ is
contained in a tubular neighborhood of Σ. In this neighborhood, the volume
element of the 3-space can be written as d3x = drdS where dS is the area
element on Σ and dr corresponds to the normal coordinate in the tubular
neighborhood. We get

δ

∫∫∫

D

F(v,x) d3x = lim
ε→0

1

ε

∫∫∫

Dε∆D

F(v,x) d3x

=

∫∫

Σ

(
lim
ε→0

1

ε

∫ εδΣ

0

F(v,x) dr

)
dS =

∫∫

Σ

F(v,x)δΣ dS.

On the other hand, by classical differential geometry,

δ

∫∫

Σ

dS =

∫∫

Σ

κδΣ dS,

where κ is the mean curvature function on Σ. This completes the proof of
Lemma 4.1.

Let us derive the equations of motion from the Hamiltonian structure.
We have

δH

δv
= v,

δH

δϕ
= v · ν,

δH

δΣ
= E

∣∣∣
Σ

+ σκ.

¿From Ḟ = {H,F }, we get

∫∫∫

D

δF

δv
· vt d

3x +

∫∫

Σ

δF

δΣ
Σt dS =

∫∫∫

D

(v × (curl v)) ·
δF

δv
d3x +

∫∫

Σ

(
v · ν

δF

δΣ
− (E + σκ)

δF

δϕ

)
dS. (4.3)

Since
∫∫

Σ

E
δF

δϕ
dS =

∫∫

Σ

E
δF

δv
· ν dS =

∫∫∫

D

∇E ·
δF

δv
d3x
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and δF/δv is divergence free, we get from (4.3), using functionals for which
δF/δϕ = 0,

vt + (curl v) × v = ∇ (−p + E), Σt = v · ν
∣∣∣
Σ

.

The boundary condition on the bottom is v · ν = 0, where ν is the outward
normal.

The first equation, together with (3.5) imply that ∆p = − div (v · ∇)v.
Substituting the two equations above into (4.3), we obtain

∫∫∫

D

∇ p ·
δF

δv
d3x −

∫∫

Σ

σκ
δF

δϕ
dS = 0

for all admissible functionals F . Applying the divergence theorem to the
integral over D we obtain

∫∫

Σ

(p− σκ)
δF

δϕ
dS = 0,

for all admissible functionals F . But
∫∫

Σ

δF

δϕ
dS =

∫∫

Σ

δF

δv
· ν dS =

∫∫∫

D

div
δF

δv
d3x = 0;

and therefore
p
∣∣∣
Σ

= σκ+ constant. (4.4)

Thus the Hamiltonian approach yields the dynamic conditions on the free
boundary in the case of surface tension. [7, 15, 12].

Remark. In the general theory one considers normal variations of the free
surface, whereas in the theory of gravity waves on a free surface over a hori-
zontal bottom, it is customary to use the height of the free surface, ζ . More
generally, if the surface Σ is a graph over a fixed manifold M, we may rep-
resent Σ by a “height” function ζ defined on M. In that case we refer to δζ
as the “vertical” variation and δΣ as the “normal” variation.

Proposition 4.2. Let δΣ and δζ denote the normal and vertical variations
of a surface Σ in the case when Σ is a graph over a fixed manifold. Let Σ be
given in local coordinates by φ = 0, where φ = z − ζ. Then δζ = | ∇φ| δΣ.
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Proof. Let X : U 7→ R
3 be a local embedding of Σ in R

3; and let Xε be a
one parameter family of embeddings, with X0 = X. Then

δΣ =
d

dε

∣∣∣
ε=0

(Xε(u, v)) · ν.

Let Σ be defined by φ = 0, φ = z − ζ . Then Xε = (u, v, ζε(u, v); and

δΣ =
d

dε

∣∣∣
ε=0




u
v

ζε(u, v)


 · ν =




0
0
δζ


 ·

∇φ

| ∇φ|
=

δζ

| ∇φ|
.

5 Variational principles for traveling waves

The Hamiltonian structure of the equations for gravity waves can be used to
obtain variational principles for traveling waves – waves of constant speed and
shape. Such a wave is a stationary solution of the Hamiltonian system in a
Galilean frame moving with the wave; thus the wave is a critical point for the
Hamiltonian, computed in such a reference frame. We apply the method here
to the general case of gravity waves on a horizontal surface. The variational
principle for irrotational flows given below appears to be new.

A variational approach, if successful, would permit a global treatment of
the existence of traveling waves by the direct methods of the calculus of vari-
ation; but so far, the existence of traveling waves for potential flows of low
amplitude have been proved by perturbation methods. The first existence
theorems were given independently for periodic wave trains by Levi-Civita
[14] and Struik [17] in the case of finite depth. The existence of the solitary
wave, which is a more difficult problem, was first proved by Friedrichs and
Hyers [10], since the bifurcation problem in this case is a singular pertur-
bation problem (see the discussion by Sattinger [16]). These authors used
conformal mapping techniques. A dynamical systems approach to the exis-
tence of traveling waves has been developed by Kirchgässner [13]; Amick and
Toland [2] have shown that periodic wave trains tend to a solitary wave in
the limit as the period tends to infinity.

In the direct method, one first uses compactness properties of the func-
tional to obtain a minimum from a minimizing sequence. In general, this
guarantees only a weak solution of the associated Euler-Lagrange equations.
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In many cases, these are elliptic equations, and it is possible to prove sufficient
regularity of the weak solution to show that in fact it is a classical solution to
the problem. (See Alt and Caffarelli [1] for functionals of Friedrichs’ type.)
For the present, we simply indicate the method for the problems discussed
here in the theorems below.

Theorem 5.1. Euler’s equations for gravity waves are the Euler-Lagrange
equations for the functional

H(ϕ, ζ) =

∫∫

Dζ

[
1

2

[
(∇ϕ)2 − 1

]
+ λ(y − 1)+

]
d2x , (5.1)

where

y+ =

{
0, y ≤ 0;
y, y ≥ 0.

Dζ = {(x, y) : −∞ < x <∞, 0 ≤ y ≤ 1 + ζ(x)} ;

and the minimum is taken over all functions ϕ for which
∫∫

D

[
(ϕx − 1)2 + ϕ2

y

]
d2x < +∞.

If (ϕ, ζ) is a local minimum of H, then ϕ is harmonic on the interior of Dζ ;
if ζ is C1 and ϕ ∈ H2(D), then the kinematic and Bernoulli equations hold
on the free surface.

Remark. The Hamiltonian (5.1) is the renormalization of the Hamiltonian
in the moving frame. By carrying out the integration in y we obtain

∫∫

D

(y − 1)+ d
2x =

1

2

∫ ∞

−∞

ζ2 dx;

thus H can also be written

H(ϕ, ζ) =

∫∫

D

1

2

[
(∇ϕ)2 − 1

]
d2x +

λ

2

∫ ∞

−∞

ζ2(x) dx.

If ϕ ∈ H2(D) and ζ ∈ C1, then ∇ϕ has an L2 trace on the boundary y = ζ ,
and Stokes theorem applies.
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Proof. Let (ϕ, ζ) be a minimizer of H and suppose that ζ is C1 and ϕ ∈
H2(D). Let (ϕε, ζε) be a one parameter family of admissible functions and
denote the corresponding domains by Dε. By the calculations in §3.2 we have

δH(δϕ, δζ) =
∂H(ϕε, ζε)

∂ε

∣∣∣
ε=0

= −

∫∫

D

∆ϕδϕ d2x +

∮

∂D

ϕνδϕ ds+

∫ +∞

−∞

[
1

2
(∇ϕ)2 −

1

2
+ λζ

]
δζ dx

= 0,

for all admissible δϕ, δζ .
Since the bottom is fixed, ϕν = 0 on y = 0. We first restrict ourselves to

variations for which δζ = δϕ
∣∣
S

= 0. Then the double integral must vanish for
a set of variations δϕ which are dense in L2(D); it follows that ϕ is harmonic
in the interior of D. As before, ϕνds = ∇ϕ · (−ζx, 1)dx = (ϕy − ζxϕx)dx;
and so

δH =

∫ +∞

−∞

[(
(∇ϕ)2 − 1

2
+ λζ

)
δζ + (ϕy − ϕxζx) δϕ

]
dx.

Setting first δζ = 0 and letting δϕ vary on Σ, we obtain the kinematic
equation on the free surface. Therefore the second term always vanishes.
Now allowing δζ to vary, we see that Bernoulli’s equation holds on Σ.

6 A variational problem with constraint

Whereas Friedrich’s paper shows that Bernoulli’s equation is not obtained
when the functional J is minimized with respect to the stream function,
Constantin et. al. showed in [7] that traveling gravity waves in the rota-
tional case are obtained as extremals of a variational problem for the stream
function with constraints. The existence of traveling water waves with vor-
ticity was established in [8] for the periodic case. In a recent PhD thesis at
Brown University, V. Hur [11] has constructed solitary waves with non-zero
vorticity. Some of their qualitative properties were investigated in [6].

In the irrotational case we have
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Theorem 6.1. Define the set of admissible functions K = {ψ, ζ} with the
following properties

i)

∫ +∞

−∞

ζ(x)dx = m;

∫ +∞

−∞

ζ2 dx <∞;

ii) ψ(x, 0) = 0; ψ(x, 1 + ζ(x)) = 1,

iii)

∫∫

D

[
ψ2
x + (ψy − 1)2

]
d2x < +∞.

Consider the variational problem

λ = inf
K

∫∫
D

[(∇ψ)2 − 1] d2x
∫ +∞

−∞
ζ2 dx

.

Let (ψ, ζ) be a minimizer in K of the above variational principle. Then ψ is
harmonic in the interior of D. If ζ is C1, and ψ ∈ H2(D), then the Bernoulli
equation is satisfied on the free surface ψ = 1. Hence minima of the above
variational problem provide an irrotational flow for the gravity wave problem.

Proof. Let (ψ, ζ) be a minimizer, and let ψε, ζε be a family of admissible
functions with ψ0 = ψ and ζ0 = ζ . Then J(ε) ≥ 0 and J(0) = 0, where

J(ε) =

∫∫

Dε

[
(∇ψε)

2 − 1
]
d2x − λ

∫ +∞

−∞

ζ2
ε dx.

Then δJ(δψ, δζ) = 0 for all admissible variations, where

δJ =

∫∫

D

2∇ψ · ∇ δψ d2x +

∫ +∞

−∞

[
(∇ψ)2 − 1 − 2λζ

]
δζ dx

= −2

∫∫

D

∆ψ δψ d2x + 2

∮

∂D

δψψν ds+

∫ +∞

−∞

[
(∇ψ)2 − 1 − 2λζ

]
δζ dx.

The integral over the bottom of the flow domain vanishes, since ψν = 0
there. On the free surface (see δ(2), p. 65 [9])

δψ + ψyδζ = 0.
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This follows immediately by differentiating the relation ψε(x, 1 + ζε(x)) ≡ 1
with respect to ε and setting ε equal to zero. Similarly, differentiating the
expression ψ(x, 1 + ζ(x)) ≡ 1 with respect to x we find that ψx/ψy = −ζx;
hence

ψν = ∇ψ · ν = ∇ψ ·
∇ψ

|| ∇ψ||
=

(∇ψ)2

√
ψ2
x + ψ2

y

=
(∇ψ)2

|ψy|
√

1 + ζ2
x

.

Hence δJ reduces to

δJ = −2

∫∫

D

∆ψ δψ d2x −

∫ +∞

−∞

[
(∇ψ)2 + 1 + 2λζ

]
δζ dx. (6.1)

First restrict the variations to fixed domains, δζ = 0, and the first integral
must vanish for all variations δψ which vanish on ∂D. Hence ψ is harmonic
in the interior of D, and the double integral vanishes.

We next consider variations of the domain. Since
∫
ζε dx = m, for all

variations, we have
∫
δζ dx = 0; then the condition

∫ +∞

−∞

((∇ψ)2 + 1 + 2λζ)δζ dx = 0

for all such δζ implies that the integrand is a constant. We therefore have
(∇ψ)2 + 2λζ + 1 = C = const. on the line; letting x → ∞ and noting that
ζ → 0 while (∇ψ)2 → 1 we see that C = 2, and the Bernoulli equation is
satisfied.
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