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Abstract. We determine completely the Borel hierarchy of the class of
context free ω-languages, showing that, for each recursive non null ordi-
nal α, there exist some Σ0

α
-complete and some Π0

α
-complete ω-languages

accepted by Büchi 1-counter automata.
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1 Introduction

Languages of infinite words accepted by finite automata were first studied by
Büchi to prove the decidability of the monadic second order theory of one suc-
cessor over the integers. The theory of the so called regular ω-languages is now
well established and has found many applications for specification and verifica-
tion of non-terminating systems; see [Tho90,Sta97,PP04] for many results and
references. More powerful machines, like pushdown automata, Turing machines,
have also been considered for the reading of infinite words, see Staiger’s survey
[Sta97] and the fundamental study [EH93] of Engelfriet and Hoogeboom on X-
automata, i.e. finite automata equipped with a storage type X. A way to study
the complexity of ω-languages is to study their topological complexity, and
particularly to locate them with regard to the Borel and the projective hierar-
chies. On one side all ω-languages accepted by deterministic X-automata with
a Muller acceptance condition are Boolean combinations of Π0

2-sets hence ∆0
3-

sets, [Sta97,EH93]. This implies, from Mc Naughton’s Theorem, that all regular
ω-languages, which are accepted by deterministic Muller automata, are also ∆0

3-
sets. On the other side, for non deterministic finite machines, the question, posed
by Lescow and Thomas in [LT94], naturally arises: what is the topological com-
plexity of ω-languages accepted by automata equipped with a given storage type
X? It is well known that every ω-language accepted by a Turing machine (hence
also by a X-automaton) with a Muller acceptance condition is an analytic set. In
previous papers, we proved that there are context free ω-languages, accepted by
Büchi or Muller pushdown automata, of every finite Borel rank, of infinite Borel
rank, or even being analytic but non Borel sets, [DFR01,Fin01b,Fin03a,Fin03b].



In this paper we determine completely the Borel hierarchy of ω-languages ac-
cepted by X-automata, for every storage type X such that 1-counter automata
can be simulated by X-automata. In particular, we show that, for every recur-
sive non-null ordinal α, there are some Σ0

α-complete and some Π0
α-complete

ω-languages accepted by real time 1-counter Büchi automata, hence also in the
class CFLω of context free ω-languages.
We think that the surprising result obtained in this paper is of interest for both
logicians working on hierarchies arising in recursion theory or in descriptive set
theory, and also for computer scientists working on questions connected with
non-terminating systems, like the construction of effective strategies in infinite
games, [Tho02,Wal00].
The paper is organized as follows. In Section 2 we define multicounter automata
which will be a useful tool in the sequel. Recall on Borel hierarchy is given in
Section 3. In Section 4 is studied the Borel hierarchy of ω-languages accepted
by real time 8-counter automata. Our main result is proved in Section 5.

2 Multicounter automata

We assume the reader to be familiar with the theory of formal (ω)-languages
[Tho90,Sta97]. We shall use usual notations of formal language theory.
When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak , where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length
of x is k, denoted by |x|. The empty word has no letter and is denoted by λ; its
length is 0. For x = a1 . . . ak, we write x(i) = ai and x[i] = x(1) . . . x(i) for i ≤ k
and x[0] = λ. Σ? is the set of finite words (including the empty word) over Σ.
The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ is an ω-word over Σ, we write
σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ Σ, and σ[n] = σ(1)σ(2) . . . σ(n)
for all n ≥ 1 and σ[0] = λ.
The prefix relation is denoted v: a finite word u is a prefix of a finite word v
(respectively, an infinite word v), denoted u v v, if and only if there exists a
finite word w (respectively, an infinite word w), such that v = u.w. The set of
ω-words over the alphabet Σ is denoted by Σω. An ω-language over an alphabet
Σ is a subset of Σω.

Definition 1. Let k be an integer ≥ 1. A k-counter machine (k-CM) is a 4-
tuple M = (K, Σ, ∆, q0), where K is a finite set of states, Σ is a finite input
alphabet, q0 ∈ K is the initial state, and the transition relation ∆ is a subset of
K × (Σ ∪ {λ}) × {0, 1}k ×K × {0, 1,−1}k. The k-counter machine M is said
to be real time iff: ∆ ⊆ K ×Σ × {0, 1}k ×K × {0, 1,−1}k, i.e. iff there are not
any λ-transitions.
If the machine M is in state q and ci ∈ N is the content of the ith counter Ci
then the configuration (or global state) of M is the (k + 1)-tuple (q, c1, . . . , ck).

For a ∈ Σ ∪ {λ}, q, q′ ∈ K and (c1, . . . , ck) ∈ N
k such that cj = 0 for j ∈

E ⊆ {1, . . . , k} and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q′, j1, . . . , jk) ∈ ∆ where



ij = 0 for j ∈ E and ij = 1 for j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk)

7→?
M is the transitive and reflexive closure of 7→M. (The subscript M will be

omitted whenever the meaning remains clear).
Thus we see that the transition relation must satisfy:
if (q, a, i1, . . . , ik, q′, j1, . . . , jk) ∈ ∆ and im = 0 for some m ∈ {1, . . . , k}, then
jm = 0 or jm = 1 (but jm may not be equal to −1).

Let σ = a1a2 . . . an be a finite word over Σ. An sequence of configurations
r = (qi, c

i
1, . . . c

i
k)1≤i≤p, for p ≥ n + 1, is called a run of M on σ, starting

in configuration (p, c1, . . . , ck), iff:

1. (q1, c
1
1, . . . c

1
k) = (p, c1, . . . , ck)

2. for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi, c
i
1, . . . c

i
k) 7→M

(qi+1, c
i+1
1 , . . . ci+1

k )
3. a1.a2.a3 . . . an = b1.b2.b3 . . . bp

Let σ = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations r =
(qi, c

i
1, . . . c

i
k)i≥1 is called a run ofM on σ, starting in configuration (p, c1, . . . , ck),

iff:

1. (q1, c
1
1, . . . c

1
k) = (p, c1, . . . , ck)

2. for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi, c
i
1, . . . c

i
k) 7→M

(qi+1, c
i+1
1 , . . . ci+1

k ) such that either a1a2 . . . an . . . = b1b2 . . . bn . . .
or b1b2 . . . bn . . . is a finite prefix of a1a2 . . . an . . .

The run r is said to be complete when a1a2 . . . an . . . = b1b2 . . . bn . . .
For every such run, In(r) is the set of all states entered infinitely often during
run r.
A complete run r of M on σ, starting in configuration (q0, 0, . . . , 0), will be
simply called “a run of M on σ”.

Definition 2. A Büchi k-counter automaton is a 5-tupleM = (K, Σ, ∆, q0, F ),
where M′ = (K, Σ, ∆, q0) is a k-counter machine and F ⊆ K is the set of
accepting states. The ω-language accepted by M is

L(M) = {σ ∈ Σω | there exists a run r of M on σ such that In(r) ∩ F 6= ∅}

Definition 3. A Muller k-counter automaton is a 5-tupleM = (K, Σ, ∆, q0,F),
where M′ = (K, Σ, ∆, q0) is a k-counter machine and F ⊆ 2K is the set of ac-
cepting sets of states. The ω-language accepted by M is

L(M) = {σ ∈ Σω | there exists a run r of M on σ such that ∃F ∈ F In(r) = F}

The class of Büchi k-counter automata will be denoted BC(k).
The class of real time Büchi k-counter automata will be denoted r-BC(k).
The class of ω-languages accepted by Büchi k-counter automata will be denoted



BCL(k)ω .
The class of ω-languages accepted by real time Büchi k-counter automata will
be denoted r-BCL(k)ω.

It is well known that an ω-language is accepted by a (real time) Büchi k-counter
automaton iff it is accepted by a (real time) Muller k-counter automaton [EH93].
Notice that it cannot be shown without using the non determinism of automata
and this result is no longer true in the deterministic case.
Remark that 1-counter automata introduced above are equivalent to pushdown
automata whose stack alphabet is in the form {Z0, A} where Z0 is the bottom
symbol which always remains at the bottom of the stack and appears only there
and A is another stack symbol. The pushdown stack may be seen like a counter
whose content is the integer N if the stack content is the word Z0.A

N .
In the model introduced here the counter value cannot be increased by more
than 1 during a single transition. However this does not change the class of ω-
languages accepted by such automata. So the class BCL(1)ω is equal to the class
1-ICLω, introduced in [Fin01c], and it is a strict subclass of the class CFLω of
context free ω-languages accepted by Büchi pushdown automata.

3 Borel hierarchy

We assume the reader to be familiar with basic notions of topology which may
be found in [Mos80,LT94,Kec95,Sta97,PP04]. There is a natural metric on the
set Σω of infinite words over a finite alphabet Σ which is called the prefix metric
and defined as follows. For u, v ∈ Σω and u 6= v let δ(u, v) = 2−lpref(u,v) where
lpref(u,v) is the first integer n such that the (n + 1)st letter of u is different from
the (n+1)st letter of v. This metric induces on Σω the usual Cantor topology for
which open subsets of Σω are in the form W.Σω, where W ⊆ Σ?. A set L ⊆ Σω

is a closed set iff its complement Σω − L is an open set. Define now the Borel
Hierarchy of subsets of Σω:

Definition 4. For a non-null countable ordinal α, the classes Σ0
α and Π0

α of
the Borel Hierarchy on the topological space Σω are defined as follows:
Σ0

1 is the class of open subsets of Σω, Π0
1 is the class of closed subsets of Σω,

and for any countable ordinal α ≥ 2:
Σ0

α is the class of countable unions of subsets of Σω in
⋃

γ<α Π0
γ .

Π0
α is the class of countable intersections of subsets of Σω in

⋃
γ<α Σ0

γ.

For a countable ordinal α, a subset of Σω is a Borel set of rank α iff it is in
Σ0

α ∪Π0
α but not in

⋃
γ<α(Σ0

γ ∪Π0
γ).

There are also some subsets of Σω which are not Borel. In particular the class of
Borel subsets of Σω is strictly included into the class Σ1

1 of analytic sets which are
obtained by projection of Borel sets, see for example [Sta97,LT94,PP04,Kec95]
for more details. The (lightface) class Σ1

1 of effective analytic sets is the class of
sets which are obtained by projection of arithmetical sets. It is well known that



a set L ⊆ Σω, where Σ is a finite alphabet, is in the class Σ1
1 iff it is accepted

by a Turing machine with a Büchi or Muller acceptance condition [Sta97].
We now define completeness with regard to reduction by continuous functions.
For a countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0

α (respectively,
Π0

α, Σ1
1)-complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0

α

(respectively, E ∈ Π0
α, E ∈ Σ1

1) iff there exists a continuous function f : Y ω →
Σω such that E = f−1(F ). Σ0

n (respectively Π0
n)-complete sets, with n an

integer ≥ 1, are thoroughly characterized in [Sta86].

4 Borel hierarchy of ω-languages in r-BCL(8)ω

It is well known that if L ⊆ Σω is accepted by a Turing machine with a Büchi
acceptance condition and is a Borel set of rank α, then α is smaller than ωCK

1 ,
where ωCK

1 is the first non-recursive ordinal, usually called the Church-Kleene
ordinal. Moreover for every non null countable ordinal α < ωCK

1 , there exist
some Σ0

α-complete and some Π0
α-complete sets in the class Σ1

1 of ω-languages
accepted by Turing machines with a Büchi acceptance condition.
On the other hand it is well known that every Turing machine can be simulated
by a (non real time) 2-counter automaton. Thus for every non null countable
ordinal α < ωCK

1 , there exist some Σ0
α-complete and some Π0

α-complete ω-
languages in the class BCL(2)ω . We shall prove the following proposition.

Proposition 5. For every non null countable ordinal α < ωCK
1 , there exist some

Σ0
α-complete and some Π0

α-complete ω-languages in the class r-BCL(8)ω.

In order to prove this result, we first state the two following lemmas.

Let Σ be an alphabet having at least two letters, E be a new letter not in Σ, S
be an integer ≥ 1, and θS : Σω → (Σ ∪ {E})ω be the function defined, for all
x ∈ Σω, by:

θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n + 1).ESn+1

. . .

Lemma 6. Let Σ be an alphabet having at least two letters and let L ⊆ Σω be a
Σ0

α-complete (respectively, Π0
α-complete) subset of Σω for some ordinal α ≥ 2.

Then the ω-language θS(L) is a Σ0
α-complete (respectively, Π0

α-complete) subset
of (Σ ∪ {S})ω.

Lemma 7. Let Σ be an alphabet having at least two letters and let L ⊆ Σω be
an ω-language in the class BCL(2)ω. Then there exists an integer S ≥ 1 such
that θS(L) is in the class r-BCL(8)ω.

5 Borel hierarchy of ω-languages in r-BCL(1)ω

We shall firstly prove the following result.



Proposition 8. Let k ≥ 2 be an integer. If, for some ordinal α ≥ 2, there is
a Σ0

α-complete (respectively, Π0
α-complete) ω-language in the class r-BCL(k)ω,

then there is some Σ0
α-complete (respectively, Π0

α-complete) ω-language in the
class r-BCL(1)ω.

To simplify the exposition of the proof of this result, firstly, we are going to
sketch the proof for k = 2. Next we shall explain the modifications to do in
order to infer the result for the integer k = 8 which is in fact the only case we
shall need in the sequel. (However our main result will show that the proposition
is true for every integer k ≥ 2).
For that purpose we define first a coding of ω-words over a finite alphabet Σ by
ω-words over the alphabet Σ ∪ {A, B, 0} where A, B and 0 are new letters not
in Σ. We shall code an ω-word x ∈ Σω by the ω-word h(x) defined by

h(x) = A.06.x1.B.062

.A.062

.x2.B.063

.A.063

.x3.B . . .B.06n

.A.06n

.xn.B . . .

This coding defines a mapping h : Σω → (Σ ∪ {A, B, 0})ω. The function h is
continuous because for all ω-words x, y ∈ Σω and each positive integer n, it
holds that δ(x, y) < 2−n → δ(h(x), h(y)) < 2−n.

Lemma 9. Let Σ be a finite alphabet and (h(Σω))− = (Σ∪{A, B, 0})ω−h(Σω).
If L ⊆ Σω is Σ0

α-complete (respectively, Π0
α-complete), for a countable ordinal

α ≥ 2, then h(L)∪h(Σω)− is a Σ0
α-complete (respectively, Π0

α-complete) subset
of (Σ ∪ {A, B, 0})ω.

In order to apply Lemma 9, we want now to prove that if L(A) ⊆ Σω is accepted
by a real time 2-counter automaton A with a Büchi acceptance condition then
h(L(A))∪h(Σω)− is accepted by a 1-counter automaton with a Büchi acceptance
condition. We firstly prove the following lemma.

Lemma 10. Let Σ be a finite alphabet and h be the coding of ω-words over Σ
defined as above. Then h(Σω)− = (Σ∪{A, B, 0})ω−h(Σω) is accepted by a real
time 1-counter Büchi automaton.

We would like now to prove that if L(A) ⊆ Σω is accepted by a real time 2-
counter automaton A with a Büchi acceptance condition then h(L(A)) is in
BCL(1)ω. We cannot show this, so we are firstly going to define another ω-
language L(A) accepted by a 1-counter Büchi automaton and we shall prove
that h(L(A)) ∪ h(Σω)− = L(A) ∪ h(Σω)−.
We shall need the following notion. Let N ≥ 1 be an integer such that N =
2x.3y.N1 where x, y are positive integers and N1 ≥ 1 is an integer which is
neither divisible by 2 nor by 3. Then we set P2(N) = x and P3(N) = y. So
2P2(N) is the greatest power of 2 which divides N and 2P3(N) is the greatest
power of 3 which divides N .
Let then a 2-counter Büchi automaton A = (K, Σ, ∆, q0, F ) accepting the ω-
language L(A) ⊆ Σω. The ω-language L(A) is the set of ω-words over the
alphabet Σ ∪ {A, B, 0} in the form

A.u1.v1.x1.B.w1.z1.A.u2.v2.x2.B.w2.z2.A . . . A.un.vn.xn.B.wn.zn.A . . .



where, for all integers i ≥ 1, vi, wi ∈ 0+, ui, zi ∈ 0?, |u1| = 5, |ui+1| = |zi|
and there is a sequence (qi)i≥0 of states of K and integers ji, j

′
i ∈ {−1; 0; 1}, for

i ≥ 1, such that for all integers i ≥ 1:

xi : (qi−1, P2(|vi|), P3(|vi|)) 7→A (qi, P2(|vi|) + ji, P3(|vi|) + j′i)

and
|wi| = |vi|.2

ji .3j′i

Moreover some state qf ∈ F occurs infinitely often in the sequence (qi)i≥0.
Notice that the state q0 of the sequence (qi)i≥0 is also the initial state of A.

Lemma 11. Let A be a real time 2-counter Büchi automaton accepting ω-words
over the alphabet Σ and L(A) ⊆ (Σ∪{A, B, 0})ω be defined as above. Then L(A)
is accepted by a 1-counter Büchi automaton B.

Lemma 12. Let A be a real time 2-counter Büchi automaton accepting ω-words
over the alphabet Σ and L(A) ⊆ (Σ ∪ {A, B, 0})ω be defined as above. Then
L(A) = h−1(L(A)), i.e. ∀x ∈ Σω h(x) ∈ L(A)←→ x ∈ L(A).

Proof. Let A be a real time 2-counter Büchi automaton accepting ω-words over
the alphabet Σ and L(A) ⊆ (Σ ∪ {A, B, 0})ω be defined as above. Let x ∈ Σω

be an ω-word such that h(x) ∈ L(A). So h(x) may be written

h(x) = A.06.x1.B.062

.A.062

.x2.B.063

.A.063

.x3.B . . .B.06n

.A.06n

.xn.B . . .

and also

h(x) = A.u1.v1.x1.B.w1.z1.A.u2.v2.x2.B.w2.z2.A . . .A.un.vn.xn.B.wn.zn.A . . .

where, for all integers i ≥ 1, vi, wi ∈ 0+, ui, zi ∈ 0?, |u1| = 5, |ui+1| = |zi|
and there is a sequence (qi)i≥0 of states of K and integers ji, j

′
i ∈ {−1; 0; 1}, for

i ≥ 1, such that for all integers i ≥ 1:

xi : (qi−1, P2(|vi|), P3(|vi|)) 7→A (qi, P2(|vi|) + ji, P3(|vi|) + j′i)

and
|wi| = |vi|.2

ji .3j′i

some state qf ∈ F occurring infinitely often in the sequence (qi)i≥0.
In particular, u1 = 05 and u1.v1 = 06 thus |v1| = 1 = 20.30. We can prove
by induction on the integer i ≥ 1 that, for all integers i ≥ 1, |wi| = |vi+1| =
2P2(|wi|).3P3(|wi|). Moreover, setting ci

1 = P2(|vi|) and ci
2 = P3(|vi|), we can prove

that for each integer i ≥ 1 it holds that

xi : (qi−1, c
i
1, c

i
2) 7→A (qi, c

i+1
1 , ci+1

2 )

But there is some state qf ∈ K which occurs infinitely often in the sequence
(qi)i≥1. This implies that (qi−1, c

i
1, c

i
2)i≥1 is a successful run of A on x thus

x ∈ L(A).
Conversely it is easy to see that if x ∈ L(A) then h(x) ∈ L(A). This ends the
proof of Lemma 12. �



Remark 13. The simulation, during the reading of h(x) by the 1-counter Büchi
automaton B, of the behaviour of the real time 2-counter Büchi automaton A
reading x, can be achieved, using a coding of the content (c1, c2) of two counters
by a single integer 2c1 .3c2 and the special shape of ω-words in h(Σω) which
allows the propagation of the counter value of B. This will be sufficient here,
because of the previous lemmas, and in particular of the fact that h(Σω)− is in
the class r-BCL(1)ω. and we can now end the proof of Proposition 8.

End of Proof of Proposition 8. Let α ≥ 2 be an ordinal. Assume that there
is a Σ0

α-complete (respectively, Π0
α-complete) ω-language L(A) ⊆ Σω which

is accepted by a real time 2-counter Büchi automaton A. By Lemma 9, h(L) ∪
h(Σω)− is a Σ0

α-complete (respectively, Π0
α-complete) subset of (Σ∪{A, B, 0})ω.

On the other hand Lemma 12 states that L(A) = h−1(L(A)) and this implies
that h(L(A)) ∪ h(Σω)− = L(A) ∪ h(Σω)−. But we know by Lemmas 10 and
11 that the ω-languages h(Σω)− and L(A) are in the class BCL(1)ω thus their
union is also accepted by a 1-counter Büchi automaton. Therefore h(L(A)) ∪
h(Σω)− is a Σ0

α-complete (respectively, Π0
α-complete) ω-language in the class

BCL(1)ω.

We can now easily show that there is a Σ0
α-complete (respectively, Π0

α-complete)
ω-language in the class r-BCL(1)ω, using the two following facts. (1) h(Σω)−

is accepted by a real time 1-counter Büchi automaton; (2) L(A) is accepted by
a (non real time) 1-counter Büchi automaton B but at most 5 consecutive λ-
transitions can occur during the reading of an ω-word x by B (see the proof of
Lemma 11 in the full version of this paper).

In order to prove Proposition 8 for the integer k = 8, we reason in a similar
way. We first replace the integer 6 = 2.3 by the product of the eight first prime
numbers:

K = 2.3.5.7.11.13.17.19 = 9699690

and the mapping h by the mapping hK , defined for all x ∈ Σω, by:

hK(x) = A.0K .x1.B.0K2

.A.0K2

.x2.B.0K3

.A.0K3

.x3.B . . .B.0Kn

.A.0Kn

.xn.B . . .

We define also, for every 8-counter Büchi automaton A, an ω-language L(A),
accepted by a 1-counter Büchi automaton, such that L(A) = h−1

K (L(A)).
The essential change is that now the content (c1, c2, . . . , c8) of eight counters is
coded by the product 2c1 .3c2 . . . . .(17)c7 .(19)c8 .
Details will be included in the full version of this paper. �

From the results of Section 4 and Proposition 8, we can now state the following
result.

Theorem 14. Let C be a class of ω-languages such that:

r-BCL(1)ω ⊆ C ⊆ Σ1
1 .



(a) If L ∈ C is a Borel set of rank α, then α is smaller than ωCK
1 .

(b) For every non null countable ordinal α < ωCK
1 , there exists some Σ0

α-
complete and some Π0

α-complete ω-languages in the class C.

The Wadge hierarchy is a great refinement of the Borel hierarchy, [Dup01,Wad83].
Looking carefully at the proofs given in this paper, we can easily show the fol-
lowing strengthening of Theorem 14 (see the proof in the full version of this
paper).

Theorem 15. The Wadge hierarchy of the class r-BCL(1)ω, hence also of the
class CFLω, or of every class C such that r-BCL(1)ω ⊆ C ⊆ Σ1

1 , is the Wadge
hierarchy of the class Σ1

1 of ω-languages accepted by Turing machines with a
Büchi acceptance condition.

6 Concluding remarks

We have completely determined the Borel hierarchy of classes r-BCL(1)ω and
CFLω and showed that their Wadge hierarchy is also the Wadge hierarchy of
the class Σ1

1 . The methods used in this paper are different from those used
in previous papers on context free ω-languages [Fin01b,Fin01a,Fin03a,Fin03b],
where we gave an inductive construction of some ∆0

ω context free ω-languages
of a given Borel rank or Wadge degree, using work of Duparc on the Wadge
hierarchy of ∆0

ω Borel sets, [Dup01]. However it will be possible to combine both
methods for the effective construction of ω-languages in the class r-BCL(1)ω,
and of 1-counter Büchi automata accepting them, of a given Wadge degree among
the εω degrees obtained in [Fin01a] for ∆0

ω context free ω-languages.
Finally we mention that in a forthcoming paper we apply similar methods to the
study of topological properties of infinitary rational relations and we prove that
their Wadge and Borel hierarchies are equal to the corresponding hierarchies of
of the classes r-BCL(1)ω, CFLω or Σ1

1 , [Fin04].
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