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Abstract 

The relationship between three probability distributions and their optimal 

entropy forms is discussed without postulating entropy property as usual. For this 

purpose, the entropy I is defined as a measure of uncertainty of the probability 

distribution p(x) of a random variable x by a variational relationship dxxddI −= , a 

definition assuring the optimization of entropy for corresponding distribution. 
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1) Introduction 

It is well known that entropy and information can be considered as measures of 

uncertainty of probability distribution. However, the functional relationship between 

probability distribution and the associated entropy has since long been a question in statistical 

and informational science. There are many relationships established on the basis of the 

properties of entropy. In the conventional information theory and some of its extensions, these 

properties are postulated, such as the additivity and the extensivity in the Shannon 

information theory. The reader can refer to the references [1] to [8] to see several examples of 

entropies proposed on the basis of different postulated entropy properties. Among all these 

entropies, the most famous one is the Shannon informational entropy ( ppS ii iln∑−= )[2] which 

was almost the only one widely used in equilibrium thermodynamics (Boltzmann-Gibbs 

entropy) and in nonequilibrium dynamics (Kolmogorov-Sinai entropy for example). But the 

question remains open in the scientific community about whether or not Shannon entropy is 

the unique measure of statistical uncertainty or information[9].  

Recently, a nonextensive statistics[6][7][8] (NES) proposed to use other entropies for 

thermodynamics and stochastic dynamics of certain nonextensive systems. NES has given rise 

to a large number of papers in the last decade with very different viewpoints dealing with 

equilibrium and nonequilibrium systems, which have incited more and more debates[10][12] 

within the statistical physics community. Some of the key questions in the debates are: 

whether or not it is necessary to replace Boltzmann-Gibbs-Shannon entropy with other ones in 

different physical situation? what is the useful forms of entropy? It should be remembered 

that all the known entropy forms have been either postulated directly or derived from some 

postulated properties of entropy[1-8]. The correctness of these entropies is often verified 

through their application in the inference and the probability assignment.  

The present work inverts the reasoning and investigates entropy form under a different 

angle without postulating the properties of entropy. Inspired by a thermodynamic relationship 

between entropy and energy, we introduce a variational definition of entropy as the measure 

of probabilistic uncertainty. One of the objectives of this work is to show that, Shannon 

entropy is not unique as uncertainty measure. Other forms are possible if we change the rules 

of reasoning and introduce new criterions, as we have done in this work in introducing the 

variational definition which underlies a criterion for the entropy: the uncertainty measure is 

optimal for the corresponding stable probability distribution. We indicate that this work is a 
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conceptual one tackling the mathematical form of entropy without considering the detailed 

physics behind the distribution laws used in the calculations. In what follows, we first talk 

about three invariant probability distributions and their invariant properties. Their optimal 

entropy forms are then derived from the variational entropy definition. 

2) Three probability laws and their invariance 

In this section, by some trivial calculations one can find in textbooks, we want to 

underline the fact that a probability distribution may be derived uniquely from its invariance. 

By invariance of a function f(x), we means that the dependence on x is invariant at 

transformation of x into x’, i.e., f(x’)∝ f(x). We consider three invariances corresponding to 

exponential, power law and q-exponential distributions, respectively, which are the most 

interesting for our work.  

a) Translation invariance and exponential law 
Suppose that )(xf  is invariant by a translation of bxx +→ , i.e. 

)()()( xfbgbxf =+  (1) 

where )(bg  depends on the form of f(x). We have )()(')(
)()( xfbgbxd

bxdf
db

bxdf =+
+=+  and 

)()0()( ' xfgdx
xdf =  or dxgf

xdf )0()( '= ( b=0). This means 

cxgxf += )0(')(ln  or cexf xg )0(')( = . (2) 

If f(x) gives a probability such as )(1)( xfZxp =  where ∑=
x

xfZ )( , the normalization condition 

1)( =∑
x

xp  will make p(x) strictly invariant versus the transformation bxxx +=→ ' , i.e., 

)()(1)'('
1)'( xpxfZxfZxp ===  since )()()()()'('

'
bZgxfbgbxfxfZ

xxx
=∑=∑ +=∑= .  

b) Scale invariance and power law 
Now suppose that )(xf  is scale invariant, we should have 

)()()( xfbgbxf =  (3) 

where b is the scale factor of the transformation. We make following calculation 

)()(
)(
)()( ' xfbgx

bxd
bxdf

db
bxdf

==  to get )()1()( ' xfgx
dx

xdf
= , which means 
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xcxf g )1(')( = . (4) 

This kind of laws is widely observed in nature for different dynamical systems such as 

language systems[13] and scale free networks[14] among many others[15]. The well known 

Levy flight for large x is a good example of power law with α−−= 1)1('g  where 20 <<α . 

c) The q-exponential and its invariance properties 
Here we would like to mention a probability which has attracted a lot of attention in the 

last years:  

[ ]axacxf
1

1)( β+= . (5) 

where a and β are some constants. The Zipf-Mandelbrot law [ ] α−+= x1c)x(f  observed in 

textual systems and other evolutionary systems[16] can be considered as a kind of q-

exponential law. Another example of this law is the equilibrium thermodynamic distribution 

for finite systems in equilibrium with a finite heat bath, where a can be related to the number 

of elements N of the heat bath and tends to zero if N is very large[17], which implies 

[ ] → ecxacxf xa
a

ββ
0

1
1)(

→
+= . 

This distribution is not a power law in the sense of Eq.(4). It has neither the scale 

invariance nor the translation invariance mentioned above. The operator on x that keeps f(x) 

invariant is a generalized addition xbabxbx a β++=+ [18], i.e. [ ]aa xbabxacbxf
1

)(1)( ββ +++=+  

= [ ] [ ] )()()1)1
11

xfbgxacba aa =++ ββ  where [ ]ababg
1

)1)( β+= . 

3) A definition of entropy as a measure of dynamical uncertainty 

Suppose we have a random (discrete) variable xi with a probability distribution )(1 xfZp ii=  

where i is the state index. The average of xi is given by pxx ii
i∑=  and the normalization is 

1=∑
i ip . The uncertainty in this probability distribution of x can be measured by many 

quantities. For example, the standard deviation σ or the variance 222 xx −=σ  can surely be 

used if they exist. A disadvantage of σ2 is that it may not exist for many probability 

distributions. Here we propose another measure which seems much general. This is a 

variational definition of entropy as a measure of uncertainty given by following relationship 
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pdxdxxddI ii
i∑=−= . (6) 

This choice of uncertainty measure has been in a way inspired by the first and second laws of 

thermodynamics in equilibrium statistical thermodynamics. Considering the definition of 

internal energy EpE i
i i∑=  where Ei is the energy of the state i with probability pi, we can 

write EEpEpEpE ii
i ii

i ii
i i δδδδδ +∑=∑+∑= . It can be proved that 

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∑∑ ==
j

j
j

i

i
i

i
iii q

q
E

pEpE δδδ  is the work done to the system by external forces 

)(
j
i

i ij q
EpF ∂
∂∑=  where qj is extensive variables such as volume, distance or electrical 

polarization. According to the first law of thermodynamics, the quantity EEEp ii
i i δδδ −=∑  

must be the heat change in the system, that is, STQEp i
i i δδδ ==∑  for a reversible process, 

where S is the thermodynamic entropy and T the absolute temperature. Hence the 

thermodynamic entropy must satisfy the following variational relation 

( )EETS δδδ −= 1 . (7) 

This relationship is extended in Eq.(6) to arbitrary random variables x. By this definition, 

it is obvious that if the distribution is not exponential, the entropy functional may not be 

logarithmic. 

The geometrical aspect of the uncertainty measure defined by Eq.(6) can be seen in the 

examples of Figure 1 which shows that dI and I are related to the width of the distributions on 

the one hand, and to the form of the distribution on the other. dI is not an increasing function 

of the distribution width. For example, dI=0 for uniform distribution whatever the width of 

p(x)=constant. This means that I is a constant.  
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4) Three probability distribution laws and their entropy 
 
In this section, on the basis of the uncertainty measure defined in Eq.(6), we will derive the 
entropy functionals for the three probability laws discussed in section 2.  

a) Translation invariant probability and Shannon entropy 

       The following calculation is trivial. From Eq.(6), for exponential distribution eZp x
i

i−= 1 , 

we have 

∑−=∑−=∑−∑−=∑−=
i

i iii ii iii iii i ppdpdppdZpdppdZpdI lnlnlnln)ln(  

and 

∑−=
i

i ippI ln +c. 

This is Shannon information if the constant c is neglected. Within the conventional statistical 
mechanics, this is the Gibbs formula for Clausius entropy. Remember that the maximization 

Figure 1, Three geometrical representations of the variation dI defined 
in Eq.(6) for some distributions. The hatched areas represent the value 
of the entropy variation pdxdxxddI ii

i∑=−=  for each case. It is easily 

seen that dI=0 if the width (uncertainty) of the distribution is zero or if 
the distribution is uniform. 

x 

p(x) p(x) 

x 

p(x) 
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of this entropy using lagrange multiplier assiciated with expectation of x yields exponential 
distribution law.   
 

b) Scale invariant probability and entropy functional 

We have in this case power law probability distribution pi : 

xZp i
a

i
−= 1 . (8) 

where ∑= −

i

a
ixZ . Put it into Eq.(6) to get 

])11/([
11
1)( 1111111 capdZpd

aZpdZpdI
i

i
aa

i
i

aa
i

i
i

a +∑ −−=∑
−

=∑= −−−−−

 

(9) 

where c is an arbitrary constant. Since we are addressing a given system to find its entropy 
form, Z can be considered as a constant for the variation in x (the reader will find below that 
this constant can be given by the Lagrange multiplier in the maximum entropy formalism). 
Hence we can write 

capI
i

i
a +∑ −∝ − )11/(11 . (10) 

In order to determine c, we imagine a system with two states i=1 and 2 with 01 =p  and 
12 =p . In this case, I=0 so that 

0
11

10
=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
+ c

a
 

(11) 

i.e., 

a
c

11
1
−

−=  
(12) 

We finally get 

a

p
I i

a
i

11

111

−

−∑
=

−

 
(13) 

Let aq 1= , we can write 

∑ −
−

−=−

∑−
−=

−
−

i

q
iii

q
i

q
pp

q

p
I 11

1 11

 
(14) 
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Notice that this functional does not yield Shannon entropy for 1→q . As a matter of fact, q 

must be positive and smaller than unity. I is negative if q is greater than unity or smaller than 

zero, which does not make sense. For large x Lévy flight for example, 31 <<a , so 13
1 <<q .  

 

 
 

 

 

 

 

 

 

It can be calculated that  

q
xZ

q

x
Zpq

p
pq

ppI
q

i

q
ii

q
i

ii

q
ii

−
−−∑ =−

−
−=∑ −

−
−=∑ −

−
−=

−−−

1
1

1

11

1
1

1

1
 

(15) 

 

Its behavior with probability is shown in Figure 2. The maximization of I conditioned with a 

Lagrange multiplier β such as 0)( =− xI βδ  directly yields the power law of Eq.(8) with 

ZZ aq /1==β . 

Figure 2, The variation of the scale invariant entropy ∑
−
−

−=
=

−2

1

1

1i

q
ii

q
pp

I   with 

p1=p and p2=1-p for different q values. It can be shown that if q→0, 

0ln1 →∑−−= ppq
qS , and If q→1, ∞→∑+−

∑ −= pqS ln1
11 . 
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c) The entropy for q-exponential probability 

We have seen above that the probability [ ]aii xacp
1

1 β−=  had a special invariant property. Let 

us express x as a function of pi and put it into Eq.(6) to get 

)(
)1(

11)/(1 1 cpd
aca

pdp
ca

pd
a

cp
dI

i

a
iai

i

a
iai

i

i
a

+∑
+

−=∑−=∑
−

= +

βββ  

(16) 

By the same tricks for determining c in the above section, we get c=-1. So we can write 

∑ −
−

−=
−∑

−=

+

i

q
iii

a
i

q
pp

a

p
I 1

11
 

(17) 

Where q=1+a and we have used the normalization 1=∑
i ip . This is the Tsallis entropy which 

tends to the Shannon entropy for 1→q  or 0→a . In this case [ ]aii xacp
1

1 β−=  tends to an 
exponential distribution. 
 

5) Concluding remarks 

We have derived the entropy functionals for three probability distributions. This was done 

on the basis of a variational definition of uncertainty measure, or entropy without postulating 

entropy property (such as additivity) as in the usual information theory. The variational 

definition dxxddI −=  is valid for any probability distributions of x as long as it has finite 

expectation value. According to the results, the exponential probability has Shannon entropy, 

the power law distribution has an entropy q

p
I i

q
i

−

∑−
−=

−

1

1 1

 where 0<q<1, and the q-exponential 

distribution has Tsallis entropy ∑ −
−

−=
i

q
ii

q
ppI 1

 where q is positive.  

It is worth mentioning again that the present definition of entropy as a measure of 

uncertainty offers the possibility of introducing the maximum entropy principle in a natural 

way with Lagrange multipliers associated with expectation of the random variables. It is easy 

to verify, with the above three entropies, that the maximum entropy calculus yields the 

original probability distributions. This is not an ordinary and fortuitous mutual invertibility, 

since the probability and the entropy are not reciprocal functions and the maximum entropy 

calculus is not a usual mathematical operation. As a matter of fact, this invertibility between 

entropy and probability resides in the variational definition  dxxddI −= . As discussed in the 
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section 3, dx  can be considered as an extended work whatever the nature of x. So to get the 

“equilibrium state” or stable probability distribution, we can put 0=dx  just as in the 

mechanical equilibrium condition where the vector sum of all forces acting on an object 

should be 0. We straightforwardly get 0=− xddI β  or 0).( =+∑+ xpId
i i βα  if we add the 

normalization condition. This is the usual maximum entropy principle using Lagrange 

multipliers α and β. The entropy I defined by dxxddI −=  goes naturally to the conditioned 

maximum for its corresponding probability distribution.  
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