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Abstract 

The relationship between some probability distributions and their invariant 

property is discussed. A measure I of uncertainty (informational entropy) of the 

probability distribution p(x) is defined in a variational way by dxxddI −=  which 

makes it possible to derive three entropy forms directly from the distribution laws 

widely observed in nature without postulating a priori the entropy properties such 

as additivity and extensivity.  
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1) Introduction 

It is well known that entropy and information can be considered as measures of 

uncertainty of probability distribution. However, the functional relationship between 

probability distribution and the associated entropy has since long been a question in statistical 

and informational science. There are many relationships established on the basis of the 

properties of entropy. In the conventional information theory and some of its extensions, these 

properties are postulated, such as the additivity and the extensivity in the Shannon 

information theory. The reader can refer to the references [1] to [9] to see several examples of 

entropies proposed on the basis of different postulated entropy properties. Among all these 

entropies, the most famous one is the Shannon informational entropy ( ppS ii iln∑−= )[2] which 

was almost the only one widely used in equilibrium thermodynamics (Boltzmann-Gibbs 

entropy) and in nonequilibrium dynamics (Kolmogorov-Sinai entropy for example). Recently, 

a nonextensive statistics[6][8][9] (NES) proposed to use other entropies for thermodynamics 

and stochastic dynamics of certain nonextensive systems. NES has given rise to a large 

number of papers in the last decade with very different viewpoints dealing with equilibrium 

and nonequilibrium systems, which have incited more and more debates[10][11] within the 

statistical physics community. In the debates, we can distinguish two kinds of questions. The 

first one is about whether or not NES can be used for some given systems. The discussions 

are rather related to technical aspects of numerical simulation and of the definition of physical 

quantities such as temperature and pressure1. The second one is more fundamental and about 

the physical foundation of the new entropies: whether or not it is necessary to replace 

Boltzmann-Gibbs-Shannon entropy with other ones in different physical situation? what 

should be the possible and useful forms of entropy? The present work is an investigation of 

these questions under a different angle without postulating mathematical properties of entropy 

as usual. We use entropy as a measure of uncertainty of given probability distribution and 

introduce a variational definition of entropy inspired by a thermodynamic relationship 

between entropy and energy. On this basis, three entropy functionals are derived for some 

well known invariant probability distributions.  

One of the objectives of this work is to show that, Shannon entropy is not unique as 

measure of uncertainty. Other forms are possible if we change the rules of reasoning, modify 
                                                 
1 We would like to indicate here that the criticisms raised by R. Balian, M. Nauenberg and R. Luzzi et al about 
the violation of thermodynamic laws by NES due to the absence of temperature and pressure within the NES 
formalisms and about its failure for systems having different q[10] are flawed and misleading. A review of the 
results on these points can be found in [12]. 
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the postulated property of entropy or introduce new criterions as we have done in this work in 

introducing the variational definition of entropy. This definition underlies a new criterion of 

optimization of entropy for corresponding stable probability distribution. We will come back 

to this point in the conclusion of this paper. We notice that this is rather a conceptual work 

tackling in a general way the mathematical form of entropy without considering the detailed 

physics behind the well known and observed distribution laws considered in the calculations.  

2) Invariance and probability distribution laws 

In this section, by some trivial calculations one can find in many textbooks, we want to 

show the invariant properties of some probability distributions. In what follows, by invariance 

of a function f(x), we means that the dependence on x is invariant at transformation of x into 

x’, i.e., f(x’)∝ f(x). We will consider three different invariances corresponding to three 

distribution laws widely observed in nature, i.e., exponential, power law and q-exponential 

distributions.  

a) Translation invariance and exponential law 
Suppose that )(xf  is invariant by a translation of bxx +→ , i.e. 

)()()( xfbgbxf =+  (1) 

where )(bg  obviously depends on the form of f(x). We have 

)()(')(
)()( xfbgbxd

bxdf
db

bxdf =+
+=+  (2) 

Let b=0, we get  

)()0()( ' xfgdx
xdf =  or dxgf

xdf )0()( '=  (3) 

which means 

cxgxf += )0(')(ln  or cexf xg )0(')( = . (4) 

If f(x) gives a probability such as )(1)( xfZxp =  where ∑=
x

xfZ )( , the normalization condition 

1)( =∑
x

xp  will make p(x) strictly invariant versus the transformation bxxx +=→ ' , i.e., 

)()(1)'('
1)'( xpxfZxfZxp ===  since )()()()()'('

'
bZgxfbgbxfxfZ

xxx
=∑=∑ +=∑= . This calculation also 

holds for the following two examples. 



    

 4

b) Scale invariance and power law 
Now suppose that )(xf  is scale invariant, we have 

)()()( xfbgbxf =  (5) 

Where b is the scale factor of the transformation. We make following calculation 

)()(
)(
)()( ' xfbgx

bxd
bxdf

db
bxdf

== . (6) 

Let b=1, we get 

)()1()( ' xfgx
dx

xdf
=  (7) 

which means 

xcxf g )1(')( = . (8) 

This kind of laws is widely observed in nature for different dynamical systems such as 

language systems[13] and scale free networks[14] among many others[15]. The well known 

Levy flight for large x is a good example of power law with α−−= 1)1('g  where 20 <<α . 

c) The q-exponential and its invariance properties 
Here we would like to mention a probability functional which has attracted a lot of 

attention in the last years:  

[ ]axacxf
1

1)( β+= . (9) 

where a and β are some constants. The Zipf-Mandelbrot law [ ] α−+= x1c)x(f  observed in 

textual systems and other evolutionary systems[16] can be considered as a kind of q-

exponential law. Another example of this law is the equilibrium thermodynamic distribution 

for finite systems in contact with a finite heat bath, where a can be related to the number of 

elements N of the heat bath and tends to zero if N is very large[17], which implies 

[ ] → ecxacxf xa
a

ββ
0

1
1)(

→
+= . 

This distribution is not a power law in the sense of Eq.(8). It has neither the scale 

invariance nor the translation invariance mentioned above. The operator on x that keeps f(x) 
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invariant is a generalized addition xbabxbx a β++=+ , i.e. [ ]aa xbabxacbxf
1

)(1)( ββ +++=+  

= [ ] [ ] )()()1)1
11

xfbgxacba aa =++ ββ  where [ ]ababg
1

)1)( β+= . 

3) A definition of entropy as a measure of dynamical uncertainty 

Suppose we have a random (discrete) variable xi with a probability distribution )(1 xfZp ii=  

where i is the state index. The average of xi is given by pxx ii
i∑=  and the normalization is 

1=∑
i ip . The uncertainty in this probability distribution of x can be measured by many 

quantities. For example, the standard deviation σ or the variance 222 xx −=σ  can surely be 

used if they exist. A disadvantage of σ2 is that it may not exist for many probability 

distributions. Here we propose another measure which seems much general. This is a 

variational definition of entropy as a measure of uncertainty given by following relationship 

pdxdxxddI ii
i∑=−= . (10) 

This choice of uncertainty measure has been in a way inspired by the first and second laws of 

thermodynamics in equilibrium statistical thermodynamics. Considering the definition of 

internal energy EpE i
i i∑=  where Ei is the energy of the state i with probability pi, we can 

write EEpEpEpE ii
i ii

i ii
i i δδδδδ +∑=∑+∑= . It can be proved that 

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∑∑ ==
j

j
j

i

i
i

i
iii q

q
E

pEpE δδδ  is the work done to the system by external forces 

)(
j
i

i ij q
EpF ∂
∂∑=  where qj is extensive variables such as volume, distance or electrical 

polarization. According to the first law of thermodynamics, the quantity EEEp ii
i i δδδ −=∑  

must be the heat change in the system, that is, STQEp i
i i δδδ ==∑  for a reversible process, 

where S is the thermodynamic entropy and T the absolute temperature. Hence the 

thermodynamic entropy must satisfy the following variational relation 

( )EETS δδδ −= 1 . (11) 
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This relationship is extended in Eq.(10) to arbitrary random variables x. By this definition, 

it is obvious that if the distribution is not exponential, the entropy functional may not be 

logarithmic. 

The geometrical aspect of the uncertainty measure defined by Eq.(10) can be seen in the 

examples of Figure 1 which shows that dI and I are related to the width of the distributions on 

the one hand, and to the form of the distribution on the other. dI is not an increasing function 

of the distribution width. For example, dI=0 for uniform distribution whatever the width of 

p(x)=constant. This means that I is a constant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4) Entropy functional and probability distribution 
 
In this section, on the basis of the uncertainty measure defined in Eq.(10), we will derive the 
entropy functionals for the three probability laws discussed in section 2.  

a) Translation invariant probability and Shannon entropy 

       The following calculation is trivial. From Eq.(10), for exponential distribution eZp x
i

i−= 1 , 

we have 

Figure 1, Three geometrical representations of the variation dI defined 
in Eq.(10) for some distributions. The hatched areas represent the value 
of the entropy variation pdxdxxddI ii

i∑=−=  for each case. It is easily 

seen that dI=0 if the width (uncertainty) of the distribution is zero or if 
the distribution is uniform. 

x 

p(x) p(x) 

x 

p(x) 
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∑−=∑−=∑−∑−=∑−=
i

i iii ii iii iii i ppdpdppdZpdppdZpdI lnlnlnln)ln(  

We get 

∑−=
i

i ippI ln  

This is Shannon information or, within the conventional statistical mechanics, the Gibbs 
formula for Clausius entropy. Remember that the maximization of this entropy using lagrange 
multiplier assiciated with expectation of x yields exponential distribution law.   
 

b) Scale invariant probability and entropy functional 
 

We have in this case  power law probability distribution pi : 

xZp i
a

i
−= 1 . (12) 

Put it into Eq.(10) to get 

])11/([
11
1)( 1111111 capdZpd

aZpdZpdI
i

i
aa

i
i

aa
i

i
i

a +∑ −−=∑
−

=∑= −−−−−

 

(13) 

where c is an arbitrary constant. We finally obtain 

capI
i

i
a +∑ −∝ − )11/(11  (14) 

In order to determine c, we imagine a system with two states i=1 and 2 with 01 =p  and 
12 =p . In this case, I=0 so that 

0
11

10
=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
+ c

a
 

(15) 

i.e., 

a
c

11
1
−

−=  
(16) 

We finally get 

a

p
I i

a
i

11

111

−

−∑
=

−

 
(17) 
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Let aq 1= , we can write 

∑ −
−

−=−

∑−
−=

−
−

i

q
iii

q
i

q
pp

q

p
I 11

1 11

 
(18) 

Notice that this functional is different from the Tsallis entropy in q-logarithm (see below). It 

does not yield Shannon entropy when 1→q . As a matter of fact, q must be positive and 

smaller than unity. I is negative if q is greater than unity or smaller than zero, which does not 

make sense. For large x Lévy flight for example, 31 <<a , so 13
1 <<q .  

 It can be calculated that  

q
xZ

q

x
Zpq

p
pq

ppI
q

i

q
ii

q
i

ii

q
ii

−
−−∑ =−

−
−=∑ −

−
−=∑ −

−
−=

−−−

1
1

1

11

1
1

1

1
 

(19) 

 

Its variation with probability value is shown in Figure 2. Its maximization with a Lagrange 

multiplier β such as 0)( =− xI βδ  yields the power law of Eq.(12) with ZZ aq /1==β .  

 

 

 
 

 

 

Figure 2, The variation of the scale invariant entropy ∑
−
−

−=
=

−2

1

1

1i

q
ii

q
pp

I   with 

p1=p and p2=1-p for different q values. It can be shown that if q→0, 

0ln1 →∑−−= ppq
qS , and If q→1, ∞→∑+−

∑ −= pqS ln1
11 . 
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c) The entropy for q-exponential probability 

We have seen above that the probability [ ]aii xacp
1

1 β−=  had a special invariant property. Let 

us express x as a function of pi and put it into Eq.(10) to get 

)(
)1(

11)/(1 1 cpd
aca

pdp
ca

pd
a

cp
dI

i

a
iai

i

a
iai

i

i
a

+∑
+

−=∑−=∑
−

= +

βββ  

(20) 

By the same tricks for determining c in the above section, we get c=-1. So we can write 

∑ −
−

−=
−∑

−=

+

i

q
iii

a
i

q
pp

a

p
I 1

11
 

(21) 

Where q=1+a and we have used the normalization 1=∑
i ip . This is the Tsallis entropy which 

tends to the Shannon entropy in the case of 1→q  or 0→a  where [ ]aii xacp
1

1 β−=  tends to an 
exponential distribution. 
 

5) Concluding remarks 

We have derived three entropy functionals directly from three known probability 

distributions. This was done on the basis of a variational definition of uncertainty measure, or 

entropy without postulating entropy property (such as additivity) as in the usual information 

theory. The variational definition dxxddI −=  is valid for any probability distributions of x 

as long as it has finite expectation value. According to the results, the exponential probability 

has Shannon entropy, the power law distribution has an entropy like q

p
I i

q
i

−

∑−
−=

−

1

1 1

 where 

0<q<1, and the q-exponential distribution has Tsallis entropy ∑ −
−

−=
i

q
ii

q
ppI 1

 where q is 

positive.  

It is worth mentioning again that the present definition of entropy as a measure of 

uncertainty offers the possibility of introducing the maximum entropy principle in a natural 

way with Lagrange multipliers associated with expectation of the random variables. It is easy 

to verify, with the above three entropies, that the maximum entropy calculus yields the 

original probability distributions. At first glance this seems an ordinary and fortuitous mutual 
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invertibility. But it is not, since the probability and the entropy are not reciprocal functions 

and the maximum entropy calculus is not a usual mathematical operation. As a matter of fact, 

this invertibility between entropy and probability resides in the variational definition  

dxxddI −= . As discussed in the section 3, dx  can be considered as an extended work 

whatever the nature of x. So to get the “equilibrium state”, we can put 0=dx  just as in the 

mechanical equilibrium condition where the vector sum of all forces acting on an object 

should be 0. We straightforwardly get 0=− xddI β  or 0).( =+∑+ xpId
i i βα  if we add the 

normalization condition. This is the usual maximum entropy principle using Lagrange 

multipliers α and β. That is the entropy I defined by dxxddI −=  goes naturally to 

conditioned maximum for its corresponding probability distribution. This formalism of 

variational method has been applied to stochastic dynamics to develop an extended least 

action principle where we have postulated 0=Aδ  for Lagrange action A on the random 

paths[18]. 
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