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Abstract 

Starting from a variational definition of entropy as a measure of dynamical 

uncertainty, we discuss possible entropy forms for the probability distributions in 

exponential law, power law and Zipf-Mandelbrot law by consideration of their 

invariant properties. In this approach, other entropy forms different from the 

Shannon formula are possible for nonexponential probability distribution.  
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1) Introduction 

The relationship between probability distribution and the associated entropy as a measure 

of the dynamical uncertainty has always been a question in statistical and informational 

science. There are many relationships established from postulated properties of entropy. The 

reader can refer to the references [1] to [9] to see several examples of entropies proposed in 

the past decades. Among all these entropies, the most famous one is the Shannon 

informational entropy ( )ppS ii iln∑−= [2] which was almost the only one widely used in 

equilibrium thermodynamics (Boltzmann-Gibbs entropy) and in nonequilibrium dynamics 

(Kolmogorov-Sinai entropy for example). Recently, a nonextensive statistics[6][8][9] (NES) 

proposed to use other entropies for thermodynamics and stochastic dynamics of certain 

nonextensive systems. NES has given rise to a large number of papers in the last decade with 

very different viewpoints dealing with equilibrium and nonequilibrium systems, which have 

incited more and more debates[10][11] within the statistical physics community. In the 

debates, we can distinguish two kinds of questions. The first one is about whether or not NES 

can be used for some given systems. The discussions are rather related to technical aspects of 

numerical simulation and of the definition of physical quantities such as temperature and 

pressure1. The second one is more fundamental and about the physical foundation of the new 

entropies: whether or not it is necessary to replace Boltzmann-Gibbs-Shannon entropy with 

other ones in different physical situation? what should be the possible and useful forms of 

entropy? The present work is an investigation of these questions under a different angle 

without postulating mathematical properties of entropy as usual. We use entropy as a measure 

of uncertainty of given probability distribution and introduce a variational definition of 

entropy inspired by a thermodynamic relationship between entropy and energy. Then from the 

consideration of the invariant properties of certain observed probability distributions, we 

derive the entropy functionals. One of the objectives of this work is to show that, within the 

variational approach to stochastic dynamics, Shannon entropy may be replaced by other ones 

having different invariant properties and capable of yielding non-exponential probability 

distribution by their optimization with appropriate constraints.  
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1 We would like to indicate here that the criticisms raised by R. Balian, M. Nauenberg and R. Luzzi et al about 
the violation of thermodynamic laws by NS due to the absence of temperature and pressure within the NS 
formalisms and about its failure for systems having different q  are flawed and misleading. A review of the 
results on these points can be found in . 

[10]
[12]



    
2) Invariance and probability distribution laws 

In this section, by some trivial calculations, we want to recall the invariant properties of 

some probability distributions and to relate these properties to the corresponding entropies. 

a) Translation invariance and exponential law 
Suppose that  is invariant by a translation of )(xf bxx +→ , i.e. 

)()()( xfbgbxf =+  (1) 

where  depending on b renormalizes )(bg )( bxf +  if the latter is a probability. We have 

)()()(
)()( ' xfbgbxd

bxdf
db

bxdf =+
+=+  (2) 

Let b=0, we get  

)()0()( ' xfgdx
xdf =  or dxgf

xdf )0()( '=  (3) 

which means 

cxgxf += )0(')(ln  or  cexf xg )0(')( = (4) 

 

b) Scale invariance and power law 
Suppose that  is scale invariant, we must have )(xf

)()()( xfbgbxf =  (5) 

Where b some factor,  is a function of b. We make following calculation )(bg

)()(
)(
)()( ' xfbgx

bxd
bxdf

db
bxdf

== . (6) 

Let b=1, we get 

)()1()( ' xfgx
dx

xdf
=  (7) 

which means 

xcxf g )1(')( = . (8) 

The Levy flight is a good example of power law with  where α−−= 1)1('g 20 <<α . 
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c) The q-exponential and its invariance properties 
Here we would like to mention a probability functional which has attracted a lot of 

attention in the last years:  

[ ]axacxf
1

1)( β−= . 
(9) 

where a and β are some constants. The Zipf-Mandelbrot law  can be 

considered as a kind of q-exponential law. Another example of this law is the equilibrium 

thermodynamic distribution for finite systems in equilibrium with a finite heat bath, where a 

can be related to the number of elements N of the heat bath and tends to zero if N is very 

large

[ ] α−+= x1c)x(f

[13].  

This distribution is not a power law in the sense of Eq.(8). It has neither the scale 

invariance nor the translation invariance mentioned above. The operator on x that keeps f(x) 

unchanged is a generalized addition axbbxbx a ++=+ .  

3) A definition of entropy as a measure of dynamical uncertainty 
Suppose we have a random (discrete) variable x with a probability distribution pi=f(xi) 

where i is the state index. The average of x is given by pxx ii
i∑=  and the normalization is 

. The uncertainty in this probability distribution of x can be measured by many 

quantities. For example, the standard deviation σ or the variance 

1=∑
i ip

222 xx −=σ  can surely be 

used if they exist. A disadvantage of σ2 is that it may not exist for many probability 

distributions. Here we propose another measure which seems much general. This is a 

variational definition of entropy as a measure of uncertainty given by following relationship 

pdxdxxddI ii
i∑=−= . (10) 

This choice of uncertainty measure has been in a way inspired by the first and second laws of 

thermodynamics in equilibrium statistical thermodynamics. Considering the definition of 

internal energy EpE i
i i∑=  where Ei is the energy of the state i with probability pi, we can 

write EEpEpEpE ii
i ii

i ii
i i δδδδδ +∑=∑+∑= . It can be proved that 

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∑∑ ==
j

j
j

i

i
i

i
iii q

q
E

pEpE δδδ  is the work done to the system by external forces 
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)(

j
i

i ij q
EpF ∂
∂∑=  where qj is extensive variables such as volume, distance or electrical 

polarization. According to the first law of thermodynamics, the quantity EEEp ii
i i δδδ −=∑  

must be the heat change in the system, that is, STQEp i
i i δδδ ==∑  for a reversible process, 

where S is the thermodynamic entropy and T the absolute temperature. Hence the 

thermodynamic entropy must satisfy the following variational relation 

( )EETS δδδ −=1 . (11) 

This relationship is extended in eq.(10) to arbitrary random variables x. By this definition, 

it is obvious that if the distribution is not exponential, the entropy functional may not be 

logarithmic. 

4) Scale invariance and entropy functional 

In this case, as shown above, we have power law probability distribution pi : 

xZp i
a

i
−= 1 . (12) 

So that: 

])11/([
11
1)( 1111111 capdZpd

aZpdZpdI
i

i
aa

i
i

aa
i

i
i

a +∑ −−=∑
−

=∑= −−−−−  (13) 

where c is an arbitrary constant. We finally get 

capI
i

i
a +∑ −∝ − )11/(11  (14) 

In order to determine c, we imagine a system with two states i=1 and 2 with  and 
. In this case, I=0 so that 

01 =p
1=p2

0
11

10
=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
+ c

a
 

(15) 

i.e., 

a
c

11
1
−

−=  (16) 

We finally get 

 5



    

a

p
I i

a
i

11

111

−

−∑
=

−

 
(17) 

Let aq 1= , we can write 

∑ −
−

−=−

∑−
−=

−
−

i

q
iii

q
i

q
pp

q

p
I 11

1 11

 
(18) 

Notice that this functional is different from the Tsallis entropy in q-logarithm (see below). It 

does not yield Shannon entropy when . As a matter of fact, q must be positive and 

smaller than unity. I may be negative if q is greater than unity, which is not possible. For Lévy 

flight for example, 

1→q

31 <<a , so 13
1 <<q .  

 It can be easily shown that the entropy in Eq.(18) is scale invariant. Its variation with 

probability value is shown in Figure 1. Its maximization with a Lagrange multiplier β such as 

0)( =− xI βδ  yields the power law of Eq.(12) with .  ZZ aq /1==β

 

 

 
 

Figure 1, The variation of the scale invariant entropy ∑
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with p1=p and p2=1-p for different q values. 

 

 

 6



    
5) The entropy for q-exponential probability 
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]We have seen above that the probability [ aii xacp
1

1 β−=  had a special invariant property. 

Let us express x as a function of pi and put it into Eq.(10) to get 

)(
)1(

11)/(1 1 cpd
aca

pdp
ca

pd
a

cp
dI

i

a
iai

i

a
iai

i

i
a

+∑
+

−=∑−=∑
−

= +

βββ  

(19) 

By the same tricks for determining c in the above section, we get c=-1. So we can write 

∑ −
−

−=
−∑

−=

+

i

q
iii

a
i

q
pp

a

p
I 1

11
 

(20) 

Where q=1+a and we have used the normalization 1=∑
i ip . This is the Tsallis entropy which 

tends to the Shannon entropy in the case of  or  where 1→q 0→a [ ]aii xacp
1

1 β−=  tends to an 
exponential distribution. 
 

6) Concluding remarks 

We have proposed an entropy as a measure of dynamical uncertainty with a single random 

variable x. This entropy has a variational definition such as dxxddI −=  which can stem 

from the relation between energy and entropy in equilibrium thermodynamics and can be used 

for probability distributions of x as long as it has finite expectation value. On this basis, we 

have discussed the possible entropy forms for the probability distributions with three kinds of 

invariance: two translation invariances and scale invariance. The translation invariance of 

probability is associated with Shannon entropy, scale invariance with an entropy like 

q

p
I i

q
i

−

∑−
−=

−

1

1 1

 where 0<q<1, and the invariance for a generalized translation 

 with Tsallis entropy xbqbxbx q )1(1 −++=+ − ∑ −
−

−=
i

q
ii

q
ppI 1

 where q is positive.  

We would like to mention that the present definition of entropy as a measure of dynamical 

uncertainty is in accordance with the variational approach in statistical and information 

theory, i.e., the determination of probability distribution from the optimization of entropy or 

uncertainty. It is easy to verify this with the three entropies above. Therefore they make sense 

and are particularly important from the point of view of variational approach. However, they 

are by no means the only forms of uncertainty measure even in these particular cases. We 



    
would like also to mention that, in the present formalism, the entropy variational method 

using Lagrange multipliers can be written in a more concise form like  0=xδ  for a single 

random variable, as shown in the context of an extended least action principle where we have 

0=Aδ  for Lagrange action A on the random paths of stochastic dynamics[14]. 
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