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[1] A method based on the wavelet transform is used to localize the causative sources of
potential field anomalies. In previous studies we introduced a particular class of analyzing
wavelets belonging to the Poisson semigroup and such that the analyzed anomaly has a
conical signature in the wavelet domain with its apex pointing at the location of the
causative homogeneous source. In the present paper we apply this formalism to the special
case of anomalies produced by elongated sources like faults and dikes. We show that, for
this particular type of anomalies, the two-dimensional (2-D) wavelet transform
corresponds to the ridgelet analysis and reduces to the 1-D wavelet transform applied in
the Radon domain. A complete synthetic example is used to illustrate all steps of the
analysis method: Radon transform of the anomaly map, selection of the Radon signature
of elongated anomalies, complex wavelet transform, and source localization with the
conical signature in the wavelet domain. The azimuthal filtering performed in the Radon
domain leads to high signal-to-noise ratio and good localization of the sources both
horizontally and vertically. The synthetic example is completed by an application of the
method to a real aeromagnetic survey acquired in Britanny (France) and the results are
compared with source depth determinations made with the Euler deconvolution method.

Citation: Boukerbout, H., and D. Gibert (2006), Identification of sources of potential fields with the continuous wavelet transform:

Two-dimensional ridgelet analysis, J. Geophys. Res., 111, B07104, doi:10.1029/2005JB004078.

1. Introduction

[2] The characterization and the localization of the sour-
ces of geophysical potential fields (electrical, magnetic,
gravitational, thermal, etc.) measured at the surface of the
Earth continues to motivate numerous methodological stud-
ies resulting in a number of inversion and analysis tech-
niques [e.g., Blakely, 1996]. Inversion methods are aimed at
recovering the source distribution by inverting an integral
equation linking the source distribution to the measured
potential field [e.g., Cuer and Bayer, 1980; Tarantola,
1987; Parker, 1994; Li and Oldenburg, 1996], leading to
more or less sophisticated algorithms depending on their
ability to tackle with geological prior constrains to reduce
nonuniqueness [Pilkington, 1997; Bosch et al., 2001].
Analyzing methods, which do not belong to the inverse-
methods family defined above, do not necessarily directly
look for the source distribution but, instead, bring the
information carried by the measured field in dual spaces
where things may, hopefully, become easier to understand.

For instance, the dual target space is the Fourier domain
where the information is statistically processed to give clues
to the depth to top of the causative sources [Spector and
Grant, 1970; Green, 1972].
[3] Other analyzing methods are the well-known trans-

formation techniques like downward continuation, reduc-
tion to the pole and oblique derivatives which produce
transformed fields, fT, where features of the original field,
f0, are enhanced [Paul et al., 1966; Bhattacharyya, 1972;
Baranov, 1975; Gibert and Galdéano, 1985; Sowerbutts,
1987; Pilkington et al., 1994]. In symbolic form, this reads

fT ¼ O1 * . . . *ON *f0; ð1Þ

where the asterisk stands for convolution over the horizontal
plane, and Oi represents various transformation operators.
The relationship between the measured field f0(h, z) and the
distribution of its sources, s(h, z), may be written as a sum
of convolution products,

f0 hð Þ ¼
Z 0

�1
dz s �; zð Þ *G �; zð Þ½ 	 hð Þ; ð2Þ

where G(h, z) is a suitable Green function, and h is the
horizontal vector representing the position in the horizontal
plane. Inserting this expression into (1), we obtain

fT hð Þ ¼
Z 0

�1
dzO1* . . . *ON * s �; zð Þ *G �; zð Þ½ 	 hð Þ: ð3Þ
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[4] Most transformation operators Oi are derived in the
framework of potential field theory, and their action makes
sense only with respect to potential fields whose partial
derivatives are linked through the Laplace equation. Such is
the case of the continuation operators which act along the
vertical direction, z, through a convolution restricted to the
horizontal plane. However, the action of some operators
keeps its sense even when applied to functions which are
not potential fields. This is the case of the operators acting
as combinations of horizontal derivatives which may be
applied to the source function s(h, z) without loosing their
physical sense. If a number M 
 N of such operators are
present in the transformation equation (3), their actions may
be decoupled from those of the remaining operators and
equation (3) may be rewritten as

fT hð Þ ¼ Of *

Z 0

�1
dz sT �; zð Þ *G �; zð Þ½ 	 hð Þ; ð4Þ

where Of represents the N � M operators whose actions are
limited to potential fields, and

sT ¼ O1 * . . . *OM * s �; zð Þ ð5Þ

represents the transformed source distribution obtained by
applying the M operators O1, . . ., OM to the initial source
function s.
[5] Owing to equation (4), the transformed field fT may

now be seen as being produced by the transformed sources
sT. This is one of the main properties which make the
transformation methods so useful to localize the edges of
the sources of the measured field. For instance, assuming
that the causative sources are prismatic bodies with constant
parameters (density, magnetization, etc.) and applying a
simple horizontal derivative operator we get a transformed
source function sT which vanishes everywhere excepted at
the edges of the prismatic bodies where the relevant
physical parameters display abrupt changes in the direction
of the applied horizontal derivative. Consequently, the
transformed field fT may be interpreted as being the field
produced by localized sources (possibly positive or nega-
tive) restricted to the edges of the prisms.
[6] Because of the sparsity of the transformed source

function whose support is limited to the disjoint edges of the
source bodies, the anomalies of the transformed field often
decoalesce, enabling an easier localization of the limits of
the source units. This, however, does not allow to localize
the sources along the vertical dimension as easily as for the
horizontal dimensions, and the depth to the source must be
determined by analyzing the whole shape of the anomalies.
This approach may be traced back to the graphical methods
where the depth of the sources is obtained from remarkable
geometrical features of the anomalies like horizontal dis-
tances between half-width maximum, inflexion points and
so on [e.g., Dobrin and Savit, 1988]. A general mathemat-
ical framework may be constructed from the homogeneity
properties of the potential field anomalies produced by
homogeneous point sources like monopoles, dipoles, etc.
To our knowledge, these properties were first used in
geophysics by Negi [1967] and Roy [1967] who linked
the divergence rate of downward continuation to the depth

of the causative sources. A more systematic approach, based
on the discrepancy between analytical continuation and
truncated series developments, was subsequently proposed
by Galdéano [1974]. A local-analysis method, also based
on the shape of anomalies, is the Euler deconvolution
[Thompson, 1982] which however needs regularization
and filtering to eliminate strong noise effects [e.g.,
Mikhailov et al., 2003].
[7] The wavelet approach independently proposed by

Moreau et al. [1997] and Hornby et al. [1999] also exploits
the homogeneity properties of the potential field to both
detect, localize and characterize the sources. Further devel-
opments [Moreau et al., 1999; Sailhac and Gibert, 2003]
revealed that the wavelet approach is particularly efficient to
deal with noise as shown through applications to aeromag-
netic data [Sailhac et al., 2000; Boschetti et al., 2004],
spontaneous electrical potential [Gibert and Pessel, 2001;
Sailhac and Marquis, 2001], gravity data [Martelet et al.,
2001; Fedi et al., 2004], and electromagnetic data
[Boukerbout et al., 2003]. Further work remains to be done
to develop the 2-D wavelet method in order to account for
the variety of shapes of the potential field anomalies which
may be encountered in practice. In the present study, we
consider the special case of elongated anomalies produced
by geological features like dikes and faults. This particular
class of anomalies may be efficiently analyzed with a
special form of the wavelet analysis based on the use of
the so-called ridgelet functions [Candès, 1998]. We first
recall the basics of the wavelet analysis of potential fields.
Next, we show how the method may be extended to the 2-D
case and how ridgelet functions may be used to analyze
anomalies caused by elongated source distributions. Finally,
we present and discuss an application to a part of the
aeromagnetic survey of Brittany, France.

2. Ridgelet Transform of Potential Field
Anomalies

[8] In this section we recall the main mathematical
background necessary to make the paper self-consistent. A
general presentation of the wavelet theory may be found in
the book by Holschneider [1995] and a detailed discussion
of the wavelet transform applied to potential field theory is
given by Moreau et al. [1997, 1999], Sailhac et al. [2000],
and Sailhac and Gibert [2003]. We only write the equations
for both the 1-D and 2-D cases relevant in the present study,
and we use the same mathematical notations as in the paper
by Sailhac and Gibert [2003] where further developments
for the 2-D case may be found.

2.1. The 1-D Continuous Wavelet Transform

[9] We define the 1-D continuous wavelet transform,
W[g, f0] (b, a), of a function f0(x 2 R) as the convolution
product,

W g;f0½ 	 b; að Þ 
Z
R

1

a
g

b� x

a

� �
f0 xð Þdx

¼ Dag *f0ð Þ bð Þ; ð6Þ

where the function g(x) is called the analyzing wavelet, a 2
R+ is the dilation parameter, b is the translation parameter,
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and the dilation operator Da is defined by the following
action [Goupillaud et al., 1984]:

Dag xð Þ  1

a
g

x

a

� �
: ð7Þ

To be an admissible analyzing wavelet the function g must
belong to the class of the zero-mean oscillating functions
with a compact (or quasicompact) support restricted to a
finite interval Sx containing the origin [Holschneider,
1995]. The analyzing wavelet is therefore a bandpass filter.
Several wavelets are shown in Figure 1.
[10] The wavelet transform possesses many nice mathe-

matical properties, and, in the present study, we are partic-
ularly interested by the properties of the wavelet transform
with respect to homogeneous functions. The fundamental
formula we need is the covariance of the wavelet transform
with respect to a dilation l >0 of the transformed function,

W g;Dlf0½ 	 b; að Þ ¼ 1

l
W g;f0½ 	 b

l
;
a

l

� �
: ð8Þ

The geometrical meaning of this equation is that the wavelet
transform of a dilated function, Dlf0, is the wavelet
transform of the nondilated function f0 rescaled on both the
a and b axes. We now consider the particular class of the
homogeneous functions such that their dilated versions
verify

f0 lxð Þ ¼ laf0 xð Þ; ð9Þ

where a 2 R is the homogeneity degree. An homogeneous
function is such that its appearance remains unchanged
when the function is observed at different scales. The
homogeneity degree controls the aspect ratio between the
horizontal and the vertical scales. For such a function,
equation (8) simplifies to

W g;f0½ 	 lb;lað Þ ¼ laW g;f0½ 	 b; að Þ: ð10Þ

The important result brought by equation (10) is that the
entire wavelet transform of a homogeneous function can be
obtained from the wavelet transform taken at a single
dilation:

W g;f0½ 	 b; a0ð Þ ¼ a0

a

� �1þa

Da0=aW g;f0½ 	 b; að Þ; ð11Þ

where the dilation operator is understood to act on the
translation variable b only. The geometrical sense of this
equation is that the wavelet transform of a homogeneous
singularity has the appearance of a cone whose apex points
onto the singularity for a # 0+ (Figure 2). As can be
observed, the amplitude of the wavelet transform is
controlled by the homogeneity degree of the analyzed
function. This property is at the basis of the wavelet method
used to detect and characterize homogeneous singularities
in signals [Grossmann et al., 1987; Holschneider, 1988;
Mallat and Hwang, 1992]. A detailed discussion of this
technique and applications to geomagnetic time series can
be found in the papers by Alexandrescu et al. [1995, 1996].
Further applications of this method to the characterization of
seismic interfaces are given by Le Gonidec et al. [2002,
2003].

2.2. Poisson Wavelets

[11] Previous studies [Moreau et al., 1997, 1999; Sailhac
et al., 2000; Sailhac and Gibert, 2003] demonstrated that
when applied to potential fields, the wavelet transform can
be given a deep physical sense. The main physical principle
at the basis of our method is to observe that the potential
field caused by a homogeneous source like a monopole, a
dipole, etc., is homogeneous too. The idea behind the use of
homogeneous source is that an extended geological body
causing a potential field anomaly may be replaced by a
small number of equivalent point sources whose homoge-
neity depends on the shape of the geological source. The
equivalent sources associated with an extended body will
depend on the scale (i.e., the dilation a) of analysis: at small
scales the equivalent sources will be localized on the edges

Figure 1. Analyzing wavelets g belonging to the Poisson semigroup and corresponding to increasing g
values. Convolution with these wavelets mainly acts as an horizontal derivative of order g combined with
an upward continuation with an offset Dz proportional to dilation a. The wavelets are given by g(x) =
�(2p)x(1 + x2)�2, g(x) = �(2p)(1 � 3x2)(1 + x2)�3, and g(x) = (24p )(1 � x2)(1 + x2)�4 from left to right.
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of the geological source, and at large scales the equivalent
sources will be more global as discussed in details by
Sailhac and Gibert [2003]. Assuming homogeneous caus-
ative sources, when upward continued at a level z0 + Dz, the
potential field is simply a dilated, and of course a rescaled,
version of the potential field measured at a reference level z0
above the source. This behavior is very similar to what is
described by equation (8) with the additional property that
the altitude offset Dz is equivalent to the dilation a. A
modified version of equation (11) may be obtained if the
analyzing wavelet g belongs to the so-called Poisson
wavelet family which are potential field anomalies caused
by homogeneous sources and for which the dilation a also
corresponds to and upward continuation offset Dz. Moreau
et al. [1997, 1999] demonstrated that this family may be
generated by applying homogeneous Fourier multipliers of
arbitrary degree g � 1 to the Poisson semigroup kernel p
which, in 1-D, reads

p xð Þ ¼ c1

1þ xj j2
; ð12Þ

where c1 is a normalizing constant. From the point of view
of potential field theory [e.g., Blakely, 1996], the Fourier
multiplier is equivalent to computing vertical, horizontal or
oblique derivatives from which more sophisticated opera-
tors like reduction to the pole may be derived [Gibert and

Galdéano, 1985]. Hence, by using the Poisson wavelets, the
dilation a = Dz, and the wavelet transform is the upward
continued and derivated potential field f0 measured at z0.
The same physical reasoning was also followed by Hornby
et al. [1999], who independently obtained results similar to
ours.
[12] If the analyzing wavelet g belongs to the Poisson

family, the wavelet transform of a potential field f0 mea-
sured at level z0 = 0 and created by a homogeneous source
satisfies [Moreau et al., 1999],

W g;f0½ 	 b; að Þ ¼ a

a0

� �g a0 � zs

a� zs

� �g�a�2

W g;f0½ 	 b
a0 þ zs

aþ zs
; a0

� �
;

ð13Þ

where a is the homogeneity degree (see equation (9)) of the
source located at a depth zs.
[13] This expression is similar to (11) except for the zs

term present in the right-hand side. For instance, and
contrary to what happens for equation (11) for which the
cone-like pattern converges on the line a = 0 (Figure 2), the
b(a0 + zs)/(a + zs) term present in equation (13) brings a
fundamental difference in the sense that the cone-like
pattern now converges toward an apex located in the
negative-dilation domain on the line a = zs.
[14] By applying the following rescaling,

W g;f0½ 	 b; að Þ �! 1

a

� �g

W g;f0½ 	 b; að Þ; ð14Þ

and a change of coordinates along the dilation axis,

a �! a� zs; ð15Þ

equation (13) can be rewritten under a form similar to (11),

W g;f0½ 	 b; a0ð Þ ¼ a0

a

� ��gþaþ2

Da0=aW g;f0½ 	 b; að Þ: ð16Þ

In a way very similar to that which can be done for
homogeneous functions, the wavelet transform then allows
for a straightforward determination of the regularity a of the
source causing the analyzed potential field.

2.3. The 2-D Continuous Ridgelet Transform

[15] The 1-D wavelet method presented in the preceding
sections formally applies to 2-D potential field anomalies
invariant in the y horizontal direction perpendicular to x.
Such anomalies are produced by sources infinitely
elongated in the y direction.
[16] Let us now consider the case of a 2-D potential field

anomaly f0(h) measured in the horizontal plane z = z0
whose point coordinates are represented by the horizontal
vector h. Assuming that the anomaly is elongated in a
direction represented by the unit vector sk, the x direction is
chosen perpendicular to sk, and the coordinate x = h � s?
where s? is a unit vector perpendicular to the anomaly strike
sk. Accordingly, the y = h � sk coordinate is taken parallel to
sk. With these 2-D notations, the 1-D wavelet transform
given by equation (6) may be generalized to give the

Figure 2. Examples of wavelet transforms of homoge-
neous singularities of degree (a) a = �1 and (c) a = 0. The
analyzing wavelet is shown in Figure 1b (g = 2). Both
wavelet transforms have a conspicuous cone-like appear-
ance with an apex pointing onto the location (i.e., the
homogeneity center) of the singularity. (b, d) When taken
along any ridge of the cone, the amplitude of the wavelet
transform varies according to a power law of exponent a.
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ridgelet transform [Candès, 1998; Candès and Donoho,
1999],

R r;f0½ 	 b; a; s?ð Þ ¼
Z
R2

1

a
r

b� x

a
; y; s?

� �
f0 x; yð Þdxdy; ð17Þ

where the 2-D analyzing ridgelet is obtained by steering a
1-D Poisson wavelet g(x) in the perpendicular direction y,

r b� x; y; s?ð Þ ¼ g b� h � s?ð Þ � 1 yð Þ: ð18Þ

A ridgelet r is then a 2-D function invariant in the sk
direction and equals to g(x) in the s? direction (Figure 3)
[Candès, 1998]. The unity function 1(y) is used in equation
(18) to emphasize the y-dependence of the ridgelets.
Observe that the ridgelet transform depends on the variable
s?. Using the definition of equations (6) and (18), equation
(17) may be rewritten by splitting the double integral as

R r;f0½ 	 b; a; s?ð Þ ¼
Z
R

dx

a
g

b� x

a

� �Z
R

f0 x; yð Þdy ð19Þ

¼ W g;RT f0; sk
� �� �

b; að Þ; ð20Þ

where we have introduced the Radon transform, RT , of the
potential field anomaly,

RT f0; x; sk
� �


Z
R

f0 x; yð Þdy: ð21Þ

The explicit dependence of the Radon transform with
respect to sk is here to recall that the y-integration is done
along the strike direction.
[17] Equation (20) shows that the ridgelet transform of

elongated quasi-2-D anomalies is given by the 1-D wavelet

transform applied in the Radon domain. In practice, this is
done by computing a 1-D wavelet transform for each
direction in the Radon domain. In the next section, we
consider the practical issues related to the application of
equation (20).

3. Practical Issues

[18] In this section, we address the practical issues
pertaining to the application of the Poisson ridgelet trans-
form to the analysis of potential field anomalies. In order
to make the explanations clearer, we illustrate this section
by applying the method to a synthetic magnetic map
consisting in the anomalies of three vertical prismatic
bodies with different center positions (xc, zc), sizes, depths
to top, thicknesses, and magnetization intensities jJj. The
values chosen for these parameters are listed in Table 1,
and the directions of both the normal field and the
magnetization are taken vertical. The magnetic anomalies
produced by this model were computed according to
the formula of Bhattacharyya [1964] and are shown in
Figure 4. The effects of noise are identical to those
observed for the 1-D wavelet analysis, and they have
already been discussed in detail in previous studies
[Moreau et al., 1997, 1999; Sailhac et al., 2000; Sailhac
and Gibert, 2003].

3.1. Computing the Radon Transform

[19] The first stage of the ridgelet analysis consists in
computing the Radon transform given by equation (21).
In order to make the analyzing ridgelet admissible and
the integral of equation (21) finite, it is necessary to give
a limited support, Sy, of length Ly to r(h) in the strike
direction. Hence the integrals in equation (19) are actually
limited to a rectangular domain S = Sx � Sy forming the
support of the ridgelet. In practice, as discussed below,
the choice of the domain S of size Lx � Ly is not
particularly difficult and must such that S contains the
whole analyzed anomaly. The transverse size Lx must be
sufficiently large to allow the computation of the wavelet
transform over a significant dilation range, and we
observed that a good choice is when Lx roughly equals
the depth of the source causing the analyzed anomaly. Of
course this condition can only be a posteriori verified
when the whole analysis procedure is accomplished.
Accounting for these adjustments, the modified version
of the ridgelet transform actually used in the remaining of
this study reads

R r;f0½ 	 b; a; s?ð Þ ¼
Z
Sx

dx

a
g

b� x

a

� �
RT sn f0; x; sk

� �
; ð22Þ

Figure 3. Example of analyzing ridgelet obtained by using
the wavelet g shown in Figure 1a in equation (18).

Table 1. Parameters of the Prismatic Bodies Used to Produce the Anomaly Map Shown in Figure 4a

Prism xc yc Length Width Angle Depth Thickness J

A 70 90 100 2 40 2. 0.5 3
B 60 35 90 2 �20 4. 0.5 �3
C 95 80 200 2 120 6 12.0 1
aMagnetization J of the prisms and the normal field are vertical. All distances are given in kilometers, the angles are in degrees from

the x direction (i.e., horizontal axis in Figure 4), and the magnetization is given in Am�1 (positive downward and negative upward). See
text for definitions of symbols.
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where the seminormalized Radon transform, RT of the
potential field anomaly is used,

RT sn f0; x; sk
� �

 1

Ly

Z
Sy

f0 x; yð Þdy: ð23Þ

[20] In the present study we compute the Radon transform
(23) through a direct integration of the anomaly map along
each line b � h � s? = x instead of working in the Fourier
domain [e.g., Bracewell, 1978] where ghost images of the
anomalies appear because of the implicit periodization of
the transformed map. The range spanned by the x coordinate
equals the size Lx of the analyzed subdomain S; that is, the
integration is not done in the four corners of S where the
amount of data is too small to obtain a significant
integration. The integration is done by finely interpolating
the anomaly map along each line. Because of the intrinsic
smooth nature of potential fields the interpolation is not
particularly difficult to handle, and we used the algorithm of
Akima [1974] which supposes data sampled onto a
rectangular grid with meshes of possibly variable size. A
more rapid method would be to use the so-called recto-polar
approximation [Starck et al., 2002], but this method proved
to be less accurate and also does not allow a fine and
arbitrary sampling along the angular axis of the Radon
transform.
[21] The Radon transform of the anomaly map shown in

Figure 4 is represented in Figure 5. In the present instance,
the domain S was defined as the whole anomaly map. The
horizontal axis corresponds to the position x of the
integration lines, and the vertical axis corresponds to
the angular direction, qr, of the lines, i.e., to the y
direction. Let us recall that the x coordinate corresponds
to the axis perpendicular to the integration lines of a given
direction (see Figure 3). In the present study, we place the

origin of the x axis at the center of S. Because of obvious
symmetry, the angular-direction axis is limited to the 0 

qr 
 p.

3.2. Complex Ridgelet Transform

[22] Once in the Radon domain, the ridgelet transform
becomes a series of 1-D wavelet transforms, and in the
present study we use the complex analyzing wavelets
introduced by Sailhac et al. [2000] and Boukerbout et al.
[2003]. These wavelets are such that their imaginary part is
the Hilbert transform of their real part; that is, the wavelets
are analytic signals whose envelope (i.e., modulus) and
phase may be computed.
[23] Both the modulus and the phase of the ridgelet

transforms of the three anomalies of Figure 4 are shown
in Figure 6. In the examples, the analyzing wavelet has g =
1 and its real part is shown in Figure 3. The ridgelet
transforms corresponding to anomalies A, B, and C in
Figure 4 have been computed at the respective angular
positions 40�, 160�, and 120� in the Radon domain and
represented by three horizontal lines in Figure 5. In practice,
the choice of these angular positions is interactively done in
order to easily localize where the Radon transform locally
takes its maximum peak-to-peak amplitude. The signals
shown below each ridgelet transform in Figure 6 are
actually the Radon transform taken along horizontal lines
at the chosen angular positions.
[24] As can be observed, both the modulus and the phase

of the ridgelet transforms display conspicuous cone-like
signatures associated with each analyzed anomaly. The
strong decrease of the modulus observed as dilation
increases is caused by the upward continuation property
of the analyzing Poisson wavelet. The occurrence of conical
signatures indicates that the anomalies present in the ana-

Figure 5. Radon transform of the anomaly map shown in
Figure 4. The letters identify the signatures of the three
magnetic anomalies of Figure 4. The three horizontal lines
represent the Radon anomalies analyzed in Figure 6.

Figure 4. Synthetic anomaly map of the total magnetic
field produced by three prismatic bodies whose parameters
are given in Table 1.
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lyzed signals may be generated by point sources with a,
possibly nonintegral, homogeneity degree.

3.3. Determination of the Source Depth

[25] The ridgelet transforms of Figure 6 are actually 1D
wavelet transforms, and they display a conspicuous cone-
like pattern typical of homogeneous sources [e.g., Moreau
et al., 1997, 1999; Sailhac et al., 2000; Sailhac and Gibert,
2003; Boukerbout et al., 2003]. As explained in a previous
section, the apex of the cone is located below the a = 0
horizontal axis of the ridgelet transforms, i.e., at a negative
dilation corresponding to the depth of the homogeneous

causative source. The determination of the position of the
apex may be done either with the modulus or the phase of
the ridgelet transform; however, the phase furnishes a more
accurate localization because of both its more abrupt varia-
tions and also because the conical signature of the sources
may directly be processed without performing the rescaling
with formulas (14) and (15) [Boukerbout et al., 2003].
[26] In practice, the source depth is determined by scan-

ning the negative-dilation axis and, for each tested depth zs,
the x axis of the ridgelet transform is scanned in order to
detect if a location xs exists where a cone apex is present at
a = �zs. The likelihood, r, for the occurrence of an apex at

Figure 6. (top) Modulus of the ridgelet transforms of the anomalies shown in Figure 4 (sections A, B,
and C are for anomalies A, B, and C, respectively) and corresponding to the three horizontal lines in
Figure 5. (middle) Phase of the ridgelet transforms, with values given in degrees and contour line interval
equal to p/2. A conspicuous conical pattern is visible above each anomaly in both the modulus and the
phase maps. Half-conical patterns visible at some extremities of the maps are created by edge effects.
(bottom) Maps of the entropy criterion (24) obtained for the phase of the ridgelet transforms. The
locations of the sources correspond to the maximum values (in red) of the entropy criterion given in
equation (24), and the rectangles (solid lines) depict the edges of the initial sources.
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(xs, zs) is evaluated with the following criterion [Tass et al.,
1998; Boukerbout et al., 2003]:

r xs; zsð Þ  lnN þ
PN

i¼1 hi ln hi

lnN
; ð24Þ

where the h0is are the values of the normalized histogram of
either the slopes of the modulus or the phases taken along
lines belonging to the cone and diverging from the tested
apex.
[27] The bottom part of Figure 6 shows the localization of

sources A, B and C (Figure 4) obtained by using their
conical signature in the phase of the ridgelet transforms
shown above. As can be observed in this figure, all sources
are correctly localized both horizontally and vertically. A
small vertical bias is observed for source B and may be due
to slight distortions of the wavelet transform caused by the
nearby low-amplitude anomaly centered at x = 40 km and
related to interferences with anomaly A. Only the shallowest
secondary multipolar sources created on the edges of source
C by the transformation operators acting through the ridge-
let analysis (@/@z in the present example) produce a signif-
icant signal. The contribution of the deeper part of C to the
total anomaly is far weaker and this explains why the
homogeneous source localized from anomaly C corresponds
to the top part of the actual source. As for anomaly B, the
depth of anomaly C may also be slightly biased by the
presence of anomaly B.

4. Application to Aeromagnetic Data

4.1. Aeromagnetic Survey of Northern Britanny

[28] In this section we apply the ridgelet analysis to a
part of the aeromagnetic map of the northern Armorican
region in Brittany (France). Geological and tectonic
studies concerning this region may be found in papers
by Chantraine et al. [1988], Brun and Bale [1990], and
Chantraine et al. [2001]. The main geodynamic event of
this region was a subduction leading to the closure of the
Celtic ocean. A high-temperature belt (Guingamp - Saint
Malo) formed during the Cadomian orogeny (late Pre-
cambrian 600–540 Ma) and obduction of a back-arc
basin over a continental margin occurred [Brun and Bale,
1990]. The belt is made of micaschists, paragneisses, and
migmatites.
[29] The aeromagnetic measurements were done along

flight lines 500 m apart, oriented 48�N and at an altitude of
350 m. These data were subsequently interpolated onto a
north-south oriented regular grid with a 250 � 250 m mesh
and reduced to the pole [Galdéano et al., 2001]. The part of
the magnetic map analyzed in the present study is located in
the south and eastern part of the Saint Malo Gulf (Figure 7).
This region of the aeromagnetic survey of Northern Bri-
tanny was previously studied by Mikhailov et al. [2003],
who performed an Euler deconvolution analysis to localize
the magnetic sources associated with elongated magnetic
anomalies correlated with a swarm of doleritic dikes (see
Vidal [1980], Perroud et al. [1986], and Lahaye et al.
[1995] for details). The dikes apparent onshore have an
average thickness of 5 m and their associated magnetic
anomalies are considerably wider indicating that the emerg-
ing narrow dikes are probably connected to wider and

deeper magmatic bodies which actually constitute the caus-
ative sources of the observed magnetic anomalies. The
magnetic anomalies of the Saint Malo region are quasilinear
and north-south oriented. Northward, in the Gulf of Saint
Malo, their strike changes to northwest-southeast, i.e.,
roughly parallel to the flight lines of the aeromagnetic
survey, and Galdéano et al. [2001] carefully discuss
and eliminate the possibility that these anomalies could
result from incomplete reduction and/or leveling of the
magnetic data. The relationship of these anomalies with
the Guingamp Saint Malo belt is unclear, since the structure
of the magnetic anomalies close to their intersection is
complicated.

4.2. Source Location by Ridgelet Analysis

[30] We apply the ridgelet analysis to 6 magnetic anoma-
lies labeled from A to F in Figure 7, and representative of
the causative sources expected in this region. Anomaly A
corresponds to anomaly 2 in Figure 6 of Mikhailov et al.
[2003] and is probably associated with an intrusive body
emplaced after the dikes. Anomalies B, C, D and E are
associated with doleritic dikes. Anomaly F has a different
orientation and its association with a dike is less clear.
[31] The locations of the sources associated with the six

selected anomalies are shown in Figure 8. As can be
observed the entropy criterion has a rather sharp maximum
both in the horizontal and the vertical directions. This
results in a very good localization of the sources. Several
source localizations have been performed with the Euler
deconvolution method [Asfirane and Galdéano, 2000;
Mikhailov et al., 2003], and a comparison with the results
obtained by Mikhailov et al. [2003] shows that the ridgelet
depths are in very good agreement with the Euler depths

Figure 7. Aeromagnetic map of the Saint Malo region.
Labeled areas indicate anomalies analyzed in the present
study (see Figure 8). Coordinate system is Lambert France
II and color scale is linear in the signed log10 of magnetic
field. The flight altitude is 350 m above sea level.
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(see Table 2) and provide a sharper determination for large
depths than obtained with the Euler method.

5. Conclusion

[32] The synthetic examples presented above illustrate the
main steps of the localization of sources of potential field by
means of the ridgelet transform based on the Poisson
analyzing wavelets. The main step of the method is to bring
the information into the Radon domain where elongated
anomalies are recognized as localized high-amplitude sig-
natures. The ridgelet analysis is then applied to each
selected Radon signature to localize the causative sources
of the potential field anomaly. The main advantage of this
approach is its capability to automatically decompose a
measured anomaly map into elementary anomalies, each
being associated with a homogeneous source. This atomic
decomposition may be of great help in identifying the
causative bodies of measured anomalies and bringing prior
information to more sophisticated inversion techniques.
Indeed, the decomposition may be considered as optimal
in the sense that it involves the smallest as possible number
of causative sources. Consequently, the ridgelet analysis
gives some indication about the number of independent
parameters to be determined if an inverse approach is
subsequently used. The ridgelet analysis could then be used

to regularized inversion methods which are notoriously
known to be ill-posed. A similar approach has recently
been followed by Li and Oldenburg [2003], who used
orthogonal wavelets and thresholding [e.g., Moreau et al.,
1996] to reduce the number of parameters to be inverted.
[33] In the present study, the ridgelet analysis is imple-

mented in an interactive way and the user may easily define
the subareas containing selected anomalies map for which a
local ridgelet analysis is desired. The user may also select
the relevant angles in the Radon transform, i.e.,
corresponding to the strikes of the elongated anomalies
present in the analyzed map. The last interactive step of

Figure 8. View of the sources located by ridgelet analysis of the magnetic anomalies shown in Figure 7.
Depth are given relative to the flight altitude (i.e., 350 m above sea level).

Table 2. Ridgelet Depths Obtained in the Present Study (See

Figure 8) and Euler Depths Derived by Mikhailov et al. [2003] for

the Six Selected Anomalies Shown in Figure 7a

Anomaly
Depth Derived in the
Present Study, km

Depth Derived by
Mikhailov et al. [2003], km

A 0.4–1.0 0.6–5.0
B 0.3–0.6 0.6–0.8
C 0.0–0.4 0.0–0.5
D 0.5–1.2 0.3–0.5
E 1.3–2.1 0.6–5.0
F 0.0–0.3 0.0–0.5

aDepths are given relative to the ground level.
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the analysis consists in selecting the region of the ridgelet
transform containing the conical signature used to compute
the entropic criterion from which the source location is
determined.
[34] If the causative sources are elongated with a depth

varying along strike, it is possible to make a sequence of
local analysis in order to track the variable depth of the
source body. This is illustrated by both anomalies E and F
(Figure 7) whose local analysis reveal significantly different
depths (Figure 8). However, the method ceases to be
accurate if the source is so inclined that the depth cannot
be considered as constant even in the sub-areas of the local
ridgelet analysis. Curved anomalies may equally be pro-
cessed through a local ridgelet analysis where the initial
curved anomaly is decomposed into a small number of
straight subanomalies.

[35] Acknowledgments. We thank Armand Galdéano who kindly
provided the aeromagnetic data of the Saint Malo region. Pascal Sailhac
and Erwan Thébault made very detailed and constructive reviews. This
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tiques, Bull. Soc. Géol. Fr., 171, 71–81.

Baranov, W. (1975), Potential Fields and Their Transformations in Applied
Geophysics, Geoexplor. Monogr. Ser., vol. 6, 121 pp., Gebruder Born-
traeger, Stuttgart, Germany.

Bhattacharyya, B. K. (1964), Magnetic anomalies due to prism-shaped
bodies with arbitrary polarization, Geophysics, 29, 517–531.

Bhattacharyya, B. K. (1972), Design of spatial filters and their application
to high-resolution aeromagnetic data, Geophysics, 37, 68–91.

Blakely, R. J. (1996), Potential Theory in Gravity and Magnetic Applica-
tions, 441 pp., Cambridge Univ. Press, New York.

Bosch, M., A. Guillen, and P. Ledru (2001), Lithologic tomography: An
application to geophysical data from the Cadomian belt of northern Brit-
tany, France, Tectonophysics, 331, 197–227.

Boschetti, F., V. Therond, and P. Hornby (2004), Feature removal and
isolation in potential field data, Geophys. J. Int., 159, 833 – 841,
doi:10.1111/j1365-246X.2004.02293.x.

Boukerbout, H., D. Gibert, and P. Sailhac (2003), Identification of sources
of potential fields with the continuous wavelet transform: Application to
VLF data, Geophys. Res. Lett., 30(8), 1427, doi:10.1029/2003GL016884.

Bracewell, R. (1978), The Fourier transform and its Applications,
McGraw-Hill, New York.

Brun, J. P., and P. Bale (1990), Cadomian tectonics in northern Brittany,
Geol. Soc. Spec. Publ., 51, 95–114.

Candès, M. (1998), Ridgelets: Theory and Applications, Ph.D. thesis, Dep.
of Stat., Stanford Univ., Stanford, Calif.

Candès, M., and D. L. Donoho (1999), Ridgelets: A key to higher-dimen-
sional intermittency?, Philos. Trans. R. Soc., Ser. A, 357, 2495–2509.

Chantraine, J., J.-J. Chauvel, P. Bale, E. Denis, and D. Rabu (1988), Le
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enne en Bretagne (France), Bull. Geol. Soc. Fr., 4, 815–829.

Chantraine, J., E. Egal, D. Thieblemont, E. Le Goff, C. Guerrot,
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Gibert, D., and A. Galdéano (1985), A computer program to perform
transformations of gravimetric and aeromagnetic surveys, Comput. Geos-
ci., 11, 553–588.

Gibert, D., and M. Pessel (2001), Identification of sources of potential fields
with the continuous wavelet transform: Application to self-potential pro-
files, Geophys. Res. Lett., 28, 1863–1866.

Goupillaud, P., A. Grossmann, and J. Morlet (1984), Cycle-octave and
related transforms in seismic signal analysis, Geoexploration, 23, 85–
102.

Green, A. G. (1972), Magnetic profile analysis, Geophys. J. R. Astron. Soc.,
30, 393–403.

Grossmann, A., M. Holschneider, R. Kronland-Martinet, and J. Morlet
(1987), Detection of abrupt changes in sound signals with the help of
wavelet transforms, in Advances in Electronics and Electron Physics, vol.
19, pp. 289–306, Elsevier, New York.

Holschneider, M. (1988), On the wavelet transformation of fractal objects,
J. Stat. Phys., 50, 953–993.

Holschneider, M. (1995), Wavelets: An Analysis Tool, 423 pp., Clarendon,
Oxford, U. K.

Hornby, P., F. Boschetti, and F. G. Horovitz (1999), Analysis of potential
field data in the wavelet domain, Geophys. J. Int., 137, 175–196.

Lahaye, Y., S. Blais, B. Auvray, and G. Ruffet (1995), Le volcanisme
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