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Introduction 

The time-varying nature of measured voltages and 
currents is well known and ever present in power 
systems. It is mainly due to the variability of the non-
linear loads operating mode, or well to linear loads 
with fixed operating conditions, when switching on 
and off to the grid. 
Many recent research interests are focused on the non 
stationary behaviour of electrical signals and 
especially on the time-varying nature of the 
harmonics, an important aspect of the power quality. 
As the FFT algorithm is not accurate in the harmonic 
estimation in case of random variations, different 
techniques for time-varying harmonics assessment 
have been proposed in the literature: wavelet 
transform [1], neural network [2], Min norm method 
and Wigner-Ville distribution [3]. Other recent 
publications are focused on the probabilistic 
harmonic analysis, the harmonic summation and 
propagation in systems with multiple non linear loads 
[4,5]. Revisions of standards are proposed [6] or 
even made [7] including probabilistic limits for time-
varying harmonic currents and voltages. The 
application of the actual steady-state harmonic 
distortion limits to non stationary harmonics is also 
investigated in [8]. 
The distributed generation technologies can either 
improve or deteriorate the level of power system 
harmonics and the power quality in general. In order 
to determine their impact on the power quality, a 
large volume of measurements should be performed 
and analysed. One of the major challenges is to 
represent this voluminous recorded data in statistical 
terms without loosing any information. The simplest 
approach to compress measured data consists to 
describe it by statistical measures: minimum value, 
maximum value, mean value and standard deviation 
[9]. A more accurate way to describe a set of 
measurements in statistical terms is the vector form 
representation, i.e. the probability density function or 
well the probability distribution function. The 
probability density function indicates the frequency 
of occurrence of the recorded signal values. Its 
accuracy can be improved by considering the signal 
as a sum of deterministic and random component 
[10]. The probability distribution function is the 
integral of the probability density function. It 
provides the same information and has the same 
advantages and drawbacks as the probability density 
function. 

The vector form representation is an easy and 
efficient way to describe random behaviour of 
recorded signals. However, information about time 
evolution of the recorded signal is completely lost. In 
order to take it into account, a matrix description of 
the recorded signal should be applied. 
This paper deals with the statistical matrix 
representation of time-varying electric signals. Two 
matrix forms are investigated. The first one is the 
transition probability matrix, which terms represent 
the probability that the signal passes from one value 
to another. This matrix is also known as Markov 
matrix and has already been applied in case of non 
stationary harmonics [11]. The second one is the 
transitions number matrix, which represents the 
number of times the signal has passed from one value 
to another. The main advantage of the matrix 
representation with respect to the previous vector 
form is that it contains information about the 
temporal structure of the recorded signal. This 
information can be used to reconstruct the recorded 
signal, or well to know in advance how power system 
will behave and what susceptibility level at which 
point on the system can be expected. 
This paper is organized as follows. First, the 
statistical matrix representation of the recorded data 
in both matrix forms is described. The derivation of 
the probability density function and the classical 
statistical measures from both matrices is also 
explained. Then, two applications of the statistical 
matrices are investigated: signal reconstruction and 
signal prediction. Finally, the statistical matrices are 
applied to measured wind generator currents and the 
obtained results in the currents reconstruction and 
prediction are described and discussed. 
 
Matrix representation of recorded data 
 
In this section recorded data are statistically 
described by Markov matrix and transitions number 
matrix. Both matrices are first defined and then their 
computation is given in details and illustrated with an 
example. The derivation of the probability density 
function and the most important statistical measures 
from both matrices is finally demonstrated. 
 
Matrix definition 
A Markov chain is a sequence of random variables 
whose probabilities at a time interval depend upon 
the values at the previous time. A signal recorded 



 

 

from the real network can be considered as a Markov 
chain, because its current values depend on its 
previous values (also called states). The probability 
that the signal goes to one state to another is called 
transition probability.  
The behaviour of Markov chains is described by the 
matrix of transitions probabilities, also called Markov 
matrix. Each element ijp  in this matrix represents 
the probability of transition from a particular state 
(the matrix row index) to the next state (the matrix 
column index). Being probabilities, the elements of 
the Markov matrix take values between 0 and 1. The 
sum of the probabilities in each row is exactly 1, 
because from anyone state the system either remains 
in this state or moves to one of the others: 

( ) [ ] 10,, ≤≤= ijij ppjiM  ∑ =
i

ijp 1   (1) 

An alternative of the Markov matrix is the transitions 
number matrix, which elements ijr , as its name 
indicates, represent the number of transitions 
between the different states. The elements of the 
transitions number matrix are always positive or 
zero: 

( ) [ ] 0,, ≥= ijij rrjiR     (2) 
 

Matrices estimation  
The two previous matrices are easy to compute from 
successive data. In this section their computation is 
described and illustrated with an example. 
 

a) Transitions number matrix 
The transitions number matrix can be derived from 
the recorded data by increasing in each state 
transition the corresponding matrix element with an 
increment. The computational process is shown in 
fig.1, where the states are denoted by S  and the 
number of transitions for state i  to state j  by ijr . 
When the data vector is achieved, an additional 
increment is added to the term corresponding of the 
transition between the last state and the first one in 
order to increase the accuracy of the matrix in its 
reconstruction and prediction applications. The 
elements ijr  are arranged in a matrix form ( )jiR , ; 
the size of the matrix is determined by the number of 
signal states (values). 
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Figure 1: Estimation of the transitions number 
matrix 
 

b) Markov matrix 
The estimation technique applied for the Markov 
matrix is described in [12]. First the number of times 

ijr  that the signal has moved from state i  to state j  
is calculated and arranged in a matrix form ),( jiR  as 

previously explained. Then, the probability of 
transition from state i  to state j  is estimated by 
dividing each term ijr  by the sum of the elements in 
the i -th row: 

∑
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where n is the states number. 

 
Signal reconstruction 
 
In this section, recorded data are first described by 
probability density function, Markov matrix and 
transitions number matrix. Secondly, these three 
statistical quantities are used to reconstruct the 
original signal and their performances are compared 
and discussed.  
 
Algorithms 
As the probability density function does not contain 
information about the time distribution of the 
recorded data, the reconstruction of the signal using 
this quantity is realized by generation of random 
numbers having the corresponding probability 
distribution. 
The signal reconstruction using the transitions 
number matrix begins from an arbitrary-chosen 
matrix term [13]. Every following signal state is 
derived from the last one and the matrix element on 
the corresponded row containing the highest 
transitions number. For every reconstructed point, the 
matrix term used for its determination decreases by 
an increment equal to 1. The described algorithm is 
the opposite of the one used for the transition 
numbers matrix estimation shown in fig.1. 
The algorithm of signal reconstruction using Markov 
matrix is analogous to the one applied in the case of 
transitions number matrix. The reconstruction of the 
stored signal starts from the term with the highest 
probability. After each point determination, the 
matrix term employed for the reconstruction 

decreases by an increment value 
sa

st
N
N , where stN  is 

the states number and saN  is the samples number of 
the stored signal. 
 
Results 
The real and the reconstructed signals are compared 
in fig.2. The deviations between real and 
reconstructed signals in the three cases are presented 
in Table 1 by relative errors in the wave forms, in the 
probability density functions and in the statistical 
measures (mean value and variance). In order to 
compare the dynamics of the different signals, 
another important parameter is introduced in Table 1: 
the number of state changes. 
The reconstructed signal from the probability density 
function is random and does not have the same 
dynamics as the real signal. The deviation between 



 

 

the two wave forms is important. However, the 
reconstructed signal has very similar probability 
density function and statistical measures than the real 
signal. 
The reconstructed signal from the Markov matrix has 
a wave form similar to the wave form of the real 
signal, but it doesn’t have the same probability 
density function. It is due to the fact that the terms of 
Markov matrix represent the probability that the 
system passes from one state to another, but they do 
not provide information about the frequency of 
occurrence for the different signal states. The 
deviation between the statistical measures of real and 
reconstructed signals is also important. 
In the signal reconstruction the transitions number 
matrix combines the advantages of Markov matrix 
and probability density function. The restored signal 
has the same dynamics as the real signal and very 
similar probability density function and statistical 
measures. 

 
Figure 2: Real and reconstructed signals using 
the probability density function, the Markov matrix 
and the transitions number matrix 
 

 
Table 1: Errors in the reconstruction from 

Probability density function, Markov matrix and 
Transitions number matrix 

Reconstructed signal  Real signal 
Probability 

density function 
Markov matrix Transitions 

number matrix 
Relative error for the 

mean value [%] 
- 1.1 0.16 0.0269 

Relative error for the 
variance [%] 

- 3.02 11.79 0.55 

Mean relative error for 
the wave form [%] 

- 1.17 1.09 0.63 

Mean relative error for 
the probability density 

function [%] 

- 2.73 39.4 3.44 

Number of states 
changements  (dynamics) 

62 144 61 63 

  

 
Table 1 indicates that the signal reconstructed from 
the transitions number matrix has minimal errors in 
the wave-form as well as in the probability density 
function and almost the same dynamics as the real 
signal. 
 
Signal prediction 
 
Classical signal prediction methods give usually 
good results, but only for few time steps in the future. 
They are usually based on the correlation function of 
the signal (linear prediction, Kalman filter) and give 
worse results after a certain number of time steps, 
when the correlation disappears. Markov 
probabilities are also applied in time series prediction 
[14], but only for real time forecasting, where the 
originally forecast values are updated or modified as 
measured data become available. 
Power system harmonics prediction is a subject of 
interest only if an important number of samples are 
predicted. In this section, statistical matrices are 
applied to forecast the future behaviour of harmonics 
in long term duration. 
The prediction of a large number of samples from the 
previous matrices is investigated. Stochastic and 
deterministic approaches based on statistical matrices 
are proposed. Both methods are applied in the case of 
Markov matrix, the prediction using transitions 
number matrix being analogous. 
The deterministic approach is similar to the method 
used for signal reconstruction. The prediction of the 
signal begins from the last measured point of the real 
signal. Every following signal state is determined 
from the last state and the term with the highest 
probability on the corresponding row. After each 
signal point prediction, a new matrix is computed, 
decreasing by an increment the matrix term used for 
the last signal point generation. 
In the stochastic approach the signal prediction is 
realized by a generation of random variables with 
Gaussian probability distribution. Every next state is 
determined by the generation of a random number 
with Gaussian probability distribution corresponding 
to the previous state. In other words, by supposing 
that the signal is in the state i , the next state j  is 
determined by: 

iij randnx μσ += )1( , where   (4) 
randn : function generating random numbers with 
normal distribution with mean zero and standard 
deviation 1 

iμ  mean value for the state i  

iσ  standard deviation for the state i  
One of the advantages of the stochastic approach is 
that it does not need a new matrix computation after 
each point determination. Although, an important 
error may be induced due to the fact that the signal is 
supposed to have a Gaussian distribution in anyone 
of its states, which is not always valid. 
The results obtained from the deterministic and the 
stochastic approaches are presented in fig.3 and fig.4 



 

 

respectively. In the chosen example, 1 hour worth 
data are used; the sampling time is 30 seconds. The 
signal behaviour is predicted for 1 hour (100 points). 
As it can be seen from table 2, the deterministic 
method gives better results than the stochastic one. In 
both cases the predicted signal is closer to the real 
signal for small periods of time. 
The methods applied for signal prediction from 
Markov matrix can be used in the case of transitions 
number matrix. In fact, the transitions number matrix 
may be reduced to a Markov matrix, which allows 
the application of the same prediction techniques as 
in the case of Markov matrix. 

 
Figure 3: Signal prediction by deterministic 
approach 

 
Figure 4: Signal prediction by stochastic 
approach 
 

 
Table 2: Mean relative error in the signal predicted 
from the deterministic and the stochastic approach 

Mean relative error for  
300 time steps 600 time steps 

Deterministic 
approach 

0.16 % 0.18 % 

Stochastic 
approach 

0.23 % 0.27 % 

 
Example of application to wind generator 
currents 
The transition matrices allow the compression of a 
large volume of data without lose of important 
information. They can be applied not only to time-
varying harmonics, but also to any time-varying 
electrical signal. 
In this section the transitions matrices are applied to 
the currents of doubly fed induction wind turbine 
generator. The wind generator is modelled by a dc 
motor and doubly fed induction generator (fig.5a). 
The stator of the induction generator is directly 
connected to the network and the rotor is connected 
to the network via an AC/DC/AC converter (fig.5b). 
 

a)  

b) 

Rotor

Stator

AC/DC DC/AC

Network

Wind
turbine

Rotor

Stator

AC/DC DC/AC

Network

Wind
turbine

 
Figure 5: Experimental bench 
 
Rotor currents depend on the speed of the wind and 
respectively their magnitudes vary with the time: as 
example, a recorded rotor current magnitude is 
shown on fig.6. In order to reduce the volume of 
information, the measured current magnitude is 
compressed by using Markov matrix and State 
transitions matrix. The reconstruction of the signal 
from both matrix forms (fig.6a) proves that there is 
no lose of lot of information due to the data 
compression. The rotor current magnitude can be 
also well predicted for small periods of time (fig.6b); 
the errors in the signal prediction increase with 
respect of the time.  

a)  

b)  
Figure 6: Recorded rotor current and its 
reconstruction from transition matrices (a); Rotor 
current prediction from Markov matrix(b) 



 

 

 
Conclusion 
Distributed generation, advanced distribution 
automation and utility deregulation may have a 
positive or a negative effect on the power quality. 
Measurements should be performed in order to 
evaluate their impact. 
Measured signals usually present a large volume of 
data. They can be presented into a compact and easy 
to exploit form without loosing important 
information by using a statistical matrix description. 
The presented in this paper Markov matrix and 
transitions number matrix offer an efficient way to 
store recorded data. In addition to the usual methods 
for data storage, these statistical matrices take into 
account the temporal evolution of the signal, which 
allows the restitution of the stored signal and the 
prediction of its future behaviour. They can be 
successfully applied for the statistical description of 
power quality disturbances like power system 
harmonics, voltage variations and voltage dips. 
The use of transitions number matrix is 
recommended, because it gives better results in the 
signal reconstruction. Moreover, it can be easily 
reduced to a Markov matrix, the inverse process is 
not realizable. 
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