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TUTTE POLYNOMIAL, SUBGRAPHS, ORIENTATIONS AND

SANDPILE MODEL: NEW CONNECTIONS VIA EMBEDDINGS

OLIVIER BERNARDI

Abstract. For any graph G with n edges, the spanning subgraphs and the
orientations of G are both counted by the evaluation TG(2, 2) = 2n of its Tutte
polynomial. We define a bijection Φ between spanning subgraphs and orien-
tations and explore its enumerative consequences regarding the Tutte poly-
nomial. The bijection Φ is closely related to a recent characterization of the
Tutte polynomial relying on a combinatorial embedding of the graph G, that
is, on a choice of cyclic order of the edges around each vertex. Among other
results, we obtain a combinatorial interpretation for each of the evaluations
TG(i, j), 0 ≤ i, j ≤ 2 of the Tutte polynomial in terms of orientations. The
strength of our approach is to derive all these interpretations by specializing
the bijection Φ in various ways. For instance, we obtain a bijection between the
connected subgraphs of G (counted by TG(1, 2)) and the root-connected orien-
tations. We also obtain a bijection between the forests (counted by TG(2, 1))
and outdegree sequences which specializes into a bijection between spanning
trees (counted by TG(1, 1)) and root-connected outdegree sequences. We also
define a bijection between spanning trees and recurrent configurations of the
sandpile model. Combining our results we obtain a bijection between recur-
rent configurations and root-connected outdegree sequences which leaves the
configurations at level 0 unchanged.

1. INTRODUCTION

In 1947, Tutte defined a graph invariant that he named the dichromate because
he thought of it as bivariate generalization of the chromatic polynomial [41]. Since
then, the dichromate, now known as the Tutte polynomial, has been widely studied
(see [6, 8]).

There are several alternative definitions of the Tutte polynomial [3, 22, 30, 42].
The most straightforward definition for a connected graph G = (V, E) is

TG(x, y) =
∑

S spanning subgraph

(x − 1)c(S)−1(y − 1)c(S)+|S|−|V |, (1)

where the sum is over all spanning subgraphs S (equivalently, subsets of edges),
c(S) denotes the number of connected components of S and |.| denotes cardinality.
From this definition, it is easy to see that TG(1, 1) (resp. TG(2, 1), TG(1, 2)) counts
the spanning trees (resp. forests, connected subgraphs) of G. A somewhat less
interesting specialization is TG(2, 2) = 2|E| counting the spanning subgraphs of G.
Note that this is also the number of orientations of G. As a matter of fact, all the
specializations TG(i, j), 0 ≤ i, j ≤ 2 as well as some of their refinements have nice
interpretations in terms of orientations [8, 22, 23, 26, 30, 31, 39].
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As one can see, there is a lot of interesting specializations of the Tutte poly-
nomial and a number of articles are devoted to combinatorial proofs of these spe-
cializations [20, 22, 21, 23, 24, 31]. In this paper, we give bijective proofs for the
interpretation of each of the evaluations TG(i, j), 0 ≤ i, j ≤ 2 in terms of orienta-
tions. The strength of our approach is to derive all these interpretations from a
single bijection between subgraphs and orientations that we specialize in various
ways. For instance, we derive a bijection between connected subgraphs (counted
by TG(1, 2)) and root-connected orientations. We also derive a bijection between
forests (counted by TG(2, 1)) and outdegree sequences. In particular, we derive a
bijection between spanning trees (counted by TG(1, 1)) and root-connected outde-
gree sequences.

We shall also deal with the sandpile model [1, 17] (equivalently chip firing game
[5]). It is known that the recurrent configurations of the sandpile model on G
(equivalently G-parking functions [38]) are counted by TG(1, 1) [17]. Observe that
this is the number of spanning trees. The following refinement is also true: the
coefficient of yk in TG(1, y) is the number of recurrent configurations at level k [33].
A bijective proof of this result was given in [11]. We give an alternative bijective
proof. We also answer a question of Gioan [23] by establishing a bijection between
recurrent configurations of the sandpile model and root-connected outdegree se-
quences that leaves the configurations at level 0 unchanged.

Our bijections require a choice of a combinatorial embedding of the graph G,
that is, a choice of a cyclic ordering of the edges around each vertex. In [3] the
internal and external embedding-activities of spanning trees were defined for em-
bedded graphs. It was proved that for any embedding of the graph G, the Tutte
polynomial of G is given by

TG(x, y) =
∑

T spanning tree

xI(T )yE(T ), (2)

where the sum is over all spanning trees T and I(T ) (resp. E(T )) denotes the
internal (resp. external) embedding-activity. This characterization of the Tutte
polynomial is reminiscent but inequivalent to the one given by Tutte in [42]. The
characterization (2) is our main tool in order to obtain enumerative corollary from
our bijections. In this respect, our approach is close to the one used by Gessel and
Sagan in [21, 22] in order to obtain enumerative consequences from a new notion
of external activity.

The outline of this paper is as follows.
• In Section 2, we recall some definitions and preliminary results obout graphs,
orientations and the sandpile model.
• In Section 3, we take a glimpse at the results to be developed in the following sec-
tions. We first establish some elementary results about the tour of spanning trees
and their embedding-activities. Then we define a mapping Φ from spanning trees
to orientations. We highlight a connection between the embedding-activities of a
spanning tree T and the acyclicity or strong-connectivity of the orientation Φ(T ).
Building on the mapping Φ we also define a bijection Γ between spanning trees
to root-connected outdegree sequences and a closely related bijection Λ between
spanning trees and recurrent configurations of the sandpile model.
• In Section 4, we define a partition Π of the set of subgraphs. Each part of this par-
tition is an interval in the boolean lattice of the set of subgraphs and is associated
to a spanning tree. The interval associated with a spanning tree T is closely related
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to the embedding-activities of T . We show how the partition Π explains the link be-
tween the subgraph expansion (1) and the spanning tree expansion (2) of the Tutte
polynomial. We also consider several criteria for subgraphs: connected, forest, in-
ternal, external and prove that the families of subgraphs that can be defined by
combining these criteria are counted by one of the evaluations TG(i, j), 0 ≤ i, j ≤ 2
of the Tutte polynomial.
• In Section 5, we extend the mapping Φ to the set of all subgraphs. This definition
makes use of the partition Π of the set of subgraphs. We prove that Φ is a bijection
between subgraphs and orientations.
• In Section 6, we study the specializations of the bijection Φ to the families of
subgraphs defined by the criteria connected, forest, internal, external. We prove
that Φ induces bijections between these families of subgraphs and the families of
orientations defined by the criteria root-connected, minimal, acyclic, strongly con-
nected. As a consequence, we obtain an interpretation for each of the evaluations
TG(i, j), 0 ≤ i, j ≤ 2 of the Tutte polynomial in terms of orientations or outdegree
sequences.
• In Section 7, we study the bijection Λ between spanning trees and recurrent con-
figurations of the sandpile model.
• Lastly, in Section 8 we comment on the case of planar graphs.

2. DEFINITIONS

We denote by N the set of non-negative integers. For any set S, we denote by |S|
its cardinality. For any sets S1, S2, we denote by S1 △ S2 the symmetric difference
of S1 and S2. If S ⊆ S′ and S′ is clear from the context, we denote by S the
complement of S, that is, S′ \ S. If S ⊆ S′ and s ∈ S′, we write S + s and S − s
for S ∪ {s} and S \ {s} respectively (whether s belongs to S or not).

2.1. Graphs

In this paper we consider finite, undirected graphs. Loops and multiple edges
are allowed but, for simplicity, we shall only consider connected graphs. Formally,
a graph G = (V, E) is a finite set of vertices V , a finite set of edges E and a relation
of incidence in V ×E such that each edge e is incident to either one or two vertices.
The endpoints of an edge e are the vertices incident to e. A cycle is a set of edges
that form a simple closed path. A cut is a set of edges C whose deletion increases
the number of connected components and such that the endpoints of every edge
in C are in distinct components of the resulting graph. A cut is shown in Figure
1. Given a subset of vertices U , the cut defined by U is the set of edges with one
endpoint in U and one endpoint in U . A cocycle is a cut which is minimal for
inclusion (equivalently it is a cut whose deletion increases the number of connected
components by one). For instance, the set of edges {f, g, h} in Figure 1 is a cocycle.

Let G = (V, E) be a graph. A spanning subgraph of G is a graph G′ = (V, E′)
where E′ ⊆ E. All the subgraphs considered in this paper are spanning and we
shall not further precise it. A subgraph is entirely determined by its edge set and,
by convenience, we shall identify the subgraph with its edge set. A forest is an
acyclic graph. A tree is a connected forest. A spanning tree is a (spanning) sub-
graph which is a tree. Given a tree T and a vertex distinguished as the root-vertex
we shall use the usual family vocabulary and talk about the father, son, ancestors
and descendants of vertices in T . By convention, a vertex is considered to be an
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Figure 1. The cut {e, f, g, h, i, j} and the connected components
after deletion of this cut (shaded regions).

ancestor and a descendant of itself. If a vertex of the graph G is distinguished as
the root-vertex we implicitly consider it to be the root-vertex of every spanning tree.

Let T be a spanning tree of the graph G. An edge of G is said to be internal if it
is in T and external otherwise. The fundamental cycle (resp. cocycle) of an external
(resp. internal) edge e is the set of edges e′ such that the subgraph T − e′ + e (resp.
T − e+ e′) is a spanning tree. Observe that the fundamental cycle C of an external
edge e is a cycle contained in T + e (C is made of e and the path of T between
the endpoints of e). Similarly, the fundamental cocycle D of an internal edge e is a
cocycle contained in T +e (D is made of the edges linking the two subtrees obtained
from T by removing e). Observe also that, if e is internal and e′ is external, then e
is in the fundamental cycle of e′ if and only if e′ is in the fundamental cocycle of e.

2.2. Embeddings

We recall the notion of combinatorial map [10, 12]. A combinatorial map (or
map for short) G = (H, σ, α) is a set of half-edges H , a permutation σ and an
involution without fixed point α on H such that the group generated by σ and α
acts transitively on H . A map is rooted if one of the half-edges is distinguished as
the root. For h0 ∈ H , we denote by G = (H, σ, α, h0) the map (H, σ, α) rooted on
h0. From now on all our maps are rooted.

Given a map G = (H, σ, α, h0), we consider the underlying graph G = (V, E),
where V is the set of cycles of σ, E is the set of cycles of α and the incidence relation
is to have at least one common half-edge. We represented the underlying graph of
the map G = (H, σ, α) on the left of Figure 2, where the set of half-edges is H =
{a, a′, b, b′, c, c′, d, d′, e, e′, f, f ′}, the involution α is (a, a′)(b, b′)(c, c′)(d, d′)(e, e′)(f, f ′)
in cyclic notation and the permutation σ is (a, f ′, b, d)(d′)(a′, e, f, c)(e′, b′, c′). Graph-
ically, we keep track of the cycles of σ by drawing the half-edges of each cycle in
counterclockwise order around the corresponding vertex. Hence, our drawing char-
acterizes the map G since the order around vertices give the cycles of the permuta-
tion σ and the edges give the cycles of the involution α. On the right of Figure 2, we
represented the map G′ = (H, σ′, α), where σ′ = (a, f ′, b, d)(d′)(a′, e, c, f)(e′, b′, c′).
The maps G and G′ have isomorphic underlying graphs.

Note that the underlying graph of a map G = (H, σ, α) is always connected
since σ and α act transitively on H . A combinatorial embedding (or embedding for
short) of a connected graph G is a map G = (H, σ, α) whose underlying graph is
isomorphic to G (together with an explicit bijection between the set H and the set
of half-edges of G). When an embedding G of G is given we shall write the edges
of G as pairs of half-edges (writing for instance e = {h, h′}). Moreover, we call
root-vertex the vertex incident to the root and root-edge the edge containing the
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root. In the following, we use the terms combinatorial map and embedded graph
interchangeably. We do not require our graphs to be planar.

c′

c

a′a

b′ e′

dd′

eb f ′ f

d′

eb

c′

f ′ f
c

σ

a′a

b′ e′

d

Figure 2. Two embeddings of the same graph.

Intuitively, a combinatorial embedding corresponds to the choice of a cyclic order
on the edges around each vertex. This order can also be seen as a local planar
embedding. In fact there is a one-to-one correspondence between combinatorial
embeddings of graphs and the cellular embeddings of graphs in orientable surfaces
(defined up to homeomorphism); see [35, Thm. 3.2.4].

2.3. Orientations and outdegree sequences

Let G be a graph and let G be an embedding of G. An orientation is a choice of
a direction for each edge of G, that is to say, a function O which associates to any
edge e = {h1, h2} one of the ordered pairs (h1, h2) or (h1, h2). Note that loops have
two possible directions. We call O(e) an arc, or oriented edge. If O(e) = (h1, h2)
we call h1 the tail and h2 the head. We call origin and end of O(e) the endpoint of
the tail and head respectively. Graphically, we represent an arc by an arrow going
from the origin to the end (see Figure 3).

tail head
origin end

Figure 3. Half-edges and endpoints of arcs.

A directed path is a sequence of arcs (a1, a2, . . . , ak) such that the end of ai is the
origin of ai+1 for 1 ≤ i ≤ k−1. A directed cycle is a simple directed closed path. A
directed cocycle is a set of arcs a1, . . . , ak whose deletion disconnects the graph into
two components and such that all arcs are directed toward the same component.
If the orientation O is not clear from the context, we shall say that a path, cycle,
or cocycle is O-directed. An orientation is said to be acyclic (resp. totally cyclic or
strongly connected) if there is no directed cycle (resp. cocycle).

We say that a vertex v is reachable from a vertex u if there is a directed path
(a1, a2, . . . , ak) such that the origin of a1 is u and the end of ak is v. If v is reach-

able from u in the orientation O denote it by u O
→v. An orientation is said to be

u-connected if every vertex is reachable from u. It is known that every edge in an
oriented graph is either in a directed cycle but not both [34]. Hence, an orientation
O is strongly connected if and only if the origin of every arc is reachable from its
end. Equivalently, O is strongly connected if every pair of vertices are reachable
from one another.
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The outdegree sequence (or score vector) of an orientation O of the graph G =
(V, E) is the function δ : V 7→ N which associates to every vertex the number of in-
cident tails. We say that O is a δ-orientation. The outdegree sequences are strongly
related to the cycle flips, that is, the reversing of every edge in a directed cycle.
Indeed, it is known that the outdegree sequences are in one-to-one correspondence
with the equivalence classes of orientations up to cycle flips [19].

There are nice characterizations of the functions δ : V 7→ N which are the
outdegree sequence of an orientation. Given a function δ : V 7→ N, we define the
excess of a subset of vertices U ⊆ V by

excδ(U) =

(

∑

u∈U

δ(u)

)

− |GU |,

where |GU | is the number of edges of G having both endpoints in U . By definition,
if δ is the outdegree sequence of an orientation O, the sum

∑

u∈U δ(u) is the num-
ber of tails incident with vertices in U . From this number, exactly |GU | are part
of edges with both endpoints in U . Hence, the excess excδ(U) corresponds to the
number of tails incident with vertices in U in the cut defined by U . This property is
illustrated in Figure 4. It is clear that if δ : V 7→ N is an outdegree sequence, then
the excess of V is 0 and the excess of any subset U ⊆ V is non-negative. In fact,
the converse is also true: every function δ : V 7→ N satisfying these two conditions
is an outdegree sequence [19].

2

U

3

1 2

4 0

Figure 4. The excess of the subset U is excδ(U) = (4 + 2 + 1) − 4 = 3.

We now prove that the reachability between two vertices in a directed graph only
depends on the outdegree sequence of the orientation.

Lemma 1. Let G = (V, E) be a graph and let u, v be two vertices. Let O be an
orientation of G and let δ be its outdegree sequence. Then v is reachable from u if
and only if there is no subset of vertices U ⊆ V containing u and not v and such
that excδ(U) = 0.

Proof. Lemma 1 is illustrated in Figure 5. Observe that the excess of a subset
U ⊆ V is 0 if and only if the cut defined by U is directed toward U .
• Suppose there is a subset of vertices U ⊆ V containing u and not v such that
excδ(U) = 0. Then, the cut defined by U is directed toward U . Thus, there is no
directed path from U to U . Hence v is not reachable from v.
• Conversely, suppose v is not reachable from u. Consider the set of vertices U
reachable from u. The subset U contains u but not v. Moreover, the cut defined
by U is directed toward U , hence excδ(U) = 0.

�
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u vU U

Figure 5. Reachability is a property of the outdegree sequence.

Since reachability only depends on the outdegree sequence of the orientation, we
can define an outdegree sequence δ to be u-connected or strongly connected if the
δ-orientations are. The u-connected outdegree sequences were considered in [23] in
connection with the cycle/cocycle reversing system (see Subsection 8.1).

Remark: From the characterization of outdegree sequences given above and Lemma 1
it is possible to characterize u-connected and strongly connected outdegree se-
quences. Let G = (V, E) be a graph and δ : V 7→ N be a mapping such that
∑

v∈V δ(v) = |E|. The mapping δ is a strongly connected outdegree sequence if
and only if the excess of any subset U ( V is positive. The mapping δ is a u-
connected outdegree sequence if and only if the excess of any subset U ( V is
non-negative and is positive whenever u ∈ U .

2.4. The sandpile model

The sandpile model is a dynamical system introduced in statistical physics in
order to study self-organized criticality [1, 16]. It appeared independently in com-
binatorics as the chip firing game [5]. Roughly speaking, the model consists of
grains of sand toppling through edges when there are too many on the same vertex.
Recurrent configurations play an important role in the model: they correspond to
configurations that can be observed after a long period of time. The recurrent
configuration are also equivalent to the G-parking functions introduced by Shapiro
and Postnikov in the study of certain quotient of the polynomial ring [38]. Despite
its simplicity, the sandpile model displays interesting enumerative [11, 17, 33] and
algebraic properties [13, 18].

Let G = (V, E) be a graph with a vertex v0 distinguished as the root-vertex. A
configuration of the sandpile model (or sandpile configuration for short) is a function
S : V 7→ N, where S(v) represents the number of grains of sand on v. A vertex v is
unstable if S(v) is greater than or equal to its degree deg(v). An unstable vertex
v can topple by sending a grain of sand through each of the incident edges. This
leads to the new sandpile configuration S′ defined by S′(u) = S(u) + deg(u, v) for
all u 6= v and S′(v) = S(v) − deg(v, ∗), where deg(u, v) is the number of edges
with endpoints u, v and deg(v, ∗) is the number of non-loop edges incident to v.
We denote this transition by S v

99K
S′. An evolution of the system is represented in

Figure 6.

A sandpile configuration is stable if every vertex v 6= v0 is stable. A stable con-
figuration S is recurrent if S(v0) = deg(v0) and if there is a labeling of the vertices
in V by v0, v1, . . . , v|V |−1 such that S v0

99K
S1

v1

99K
. . . v|V |−1

99K
S|V | = S. This means that

after toppling the root-vertex v0, there is a valid sequence of toppling involving each
vertex once that gets back to the initial configuration. For instance, the configura-
tion at the left of Figure 6 is recurrent. Lastly, the level of a recurrent configuration
S is given by: level(S) =

(
∑

v∈V S(v)
)

− |E|.
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v0

v2

v1 v3

v0

99K

v1

99K

v2

99K

v3

99K

Figure 6. A recurrent configuration and the evolution rule.

3. A GLIMPSE AT THE RESULTS

3.1. Tour of spanning trees and embedding-activities

We first define the tour of spanning trees. Informally, the tour of a tree is a walk
around the tree that follows internal edges and crosses external edges. A graphical
representation of the tour is given in Figure 7.

dd′

eb f ′ f

a
Tour of the tree

c′

c
a′

b′ e′

Figure 7. Intuitive representation of the tour of a spanning tree
(indicated by thick lines).

Let G = (H, σ, α) be an embedding of the graph G = (V, E). Given a spanning
tree T , we define the motion function t on the set H of half-edges by:

t(h) = σ(h) if h is external,
σα(h) if h is internal.

(3)

It was proved in [3] that t is a cyclic permutation on H . For instance, for the embed-
ded graph of Figure 7, the motion function is the cyclic permutation (a, e, f, c, a′, f ′,
b, c′, e′, b′, d, d′). The cyclic order defined by the motion function t on the set of half-
edges is what we call the tour of the tree T .

We will now define the embedding-activities of spanning trees introduced in [3]
in order to characterize the Tutte polynomial (see Theorem 4 below).

Definition 2. Let G = (H, σ, α, h) be an embedded graph and let T be a spanning
tree. We define the (G, T )-order on the set H of half-edges by h < t(h) < t2(h) <
. . . < t|H|−1(h), where t is the motion function. (Note that the (G, T )-order is a
linear order on H since t is a cyclic permutation.) We define the (G, T )-order on
the edge set by setting e = {h1, h2} < e′ = {h′

1, h
′
2} if min(h1, h2) < min(h′

1, h
′
2).

(Note that this is also a linear order.)

Example: Consider the embedded graph G rooted on a and the spanning tree T
represented in Figure 7. The (G, T )-order on the half-edges is a < e < f < c <
a′ < f ′ < b < c′ < e′ < b′ < d < d′. Therefore, the (G, T )-order on the edges is
{a, a′} < {e, e′} < {f, f ′} < {c, c′} < {b, b′} < {d, d′}.
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Definition 3. Let G be a rooted embedded graph and T be a spanning tree. We
say that an external (resp. internal) edge is (G, T )-active (or embedding-active if
G and T are clear from the context) if it is minimal for the (G, T )-order in its
fundamental cycle (resp. cocycle).

Example: In Figure 7, the (G, T )-order on the edges is {a, a′} < {e, e′} < {f, f ′} <
{c, c′} < {b, b′} < {d, d′}. Hence, the internal active edges are {a, a′} and {d, d′}
and there is no external active edge. For instance, {e, e′} is not active since {a, a′}
is in its fundamental cycle.

The following characterization of the Tutte polynomial was proved in [3].

Theorem 4. Let G be any rooted embedding of the connected graph G (with at least
one edge). The Tutte polynomial of G is equal to

TG(x, y) =
∑

T spanning tree

xI(T )yE(T ), (4)

where the sum is over all spanning trees and I(T ) (resp. E(T )) is the number of
(G, T )-active internal (resp. external) edges.

Example: We represented the spanning trees of K3 in Figure 8. If the embedding
is rooted on the half-edge a, then the embedding-active edges are the one indicated
by a ⋆. Hence, the spanning trees (taken from left to right) have respective contri-
butions x, x2 and y and the Tutte polynomial is TK3

(x, y) = x2 + x + y.

⋆ ⋆⋆
a

c′

a

c′

a

c′b bb

b′ b′ b′c c c

a′ a′a′

⋆

Figure 8. The embedding-activities of the spanning trees of K3.

Note that the characterization (4) of the Tutte polynomial 4 implies that the
sum in (4) does not depend on the embedding, whereas the summands clearly de-
pends on it. This characterization is reminiscent but inequivalent to the one given
by Tutte in [42].

From now on we adopt the following conventions. If an embedding G and a
spanning tree T are clear from the context, the (G, T ) order is denoted by <. If F
is a set of edges and h is a half-edge, we say that h is in F if the edge e containing h
is in F . A half-edge h is said to be internal, external or (G, T )-active if the edge e is.

We now make some elementary remarks about embedding-activities that will be
useful throughout the paper.

Lemma 5. Let G be an embedded graph. Let T be a spanning tree and let e =
{h1, h2} be an internal edge. Assume that h1 < h2 (for the (G, T )-order) and
denote by v1 and v2 the endpoints of h1 and h2 respectively. Then, v1 is the father
of v2 in T . Moreover, the half-edges h such that h1 < h ≤ h2 are the half-edges
incident to a descendant of v2.
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Proof. Let t be the motion function associated to the tree T (t is defined by
(3)). We consider the subtrees T1 and T2 obtained from T by deleting e with the
convention that h1 is incident to T1 and h2 is incident to T2. Let h be any half-edge
distinct from h1 and h2. By definition of t, the half-edges h and t(h) are incident
to the same subtree Ti. Therefore, the (G, T )-order is such that h0 < l1 < · · · <
li < h1 < l′1 < · · · < l′j < h2 < l′′1 < · · · < l′′k where l′1, . . . , l

′
j, h2 are the half-edges

incident with the subtree T2 not containing the root-vertex v0. Since the subtree
T2 does not contain v0 its vertices are the descendants of v2 in T . �

Lemma 6. With the same assumption as in Lemma 5, let e = {h1, h2} with h1 < h2

be an internal edge and let e′ = {h′
1, h

′
2} with h′

1 < h′
2 be an external edge.

• Then, e is in the fundamental cycle of e′ (equivalently, e′ is in the fundamental
cocycle of e) if and only if h1 < h′

1 < h2 < h′
2 or h′

1 < h1 < h′
2 < h2.

• Suppose that e is in the fundamental cycle of e′ and denote by v1, v2, v
′
1, v

′
2 the

endpoints of h1, h2, h
′
1, h

′
2 respectively. Recall that v1 is the father of v2 in T (Lemma

5) and that exactly one of the vertices v′1, v′2 is a descendant of v2. If e < e′, then
v′1 is the descendant of v2, else it is v′2.

Proof.

• Let V2 be the set of descendants of v2. Recall that the edge e′ is in the fundamental
cocycle of e if and only if it has one endpoint in V2 and the other in V2. By
Lemma 5, this is equivalent to the fact that exactly one of the half-edges h′

1, h
′
2 is

in {h′ : h1 < h′ ≤ h2}. Thus, e′ is in the fundamental cocycle of e if and only if
h1 < h′

1 < h2 < h′
2 or h′

1 < h1 < h′
2 < h2.

• Suppose that e is in the fundamental cycle of e′. By the preceding point, e < e′

implies h1 < h′
1 < h2 < h′

2. In this case, h′
1 is incident to a descendant of v2 by

Lemma 5. Similarly, e′ < e implies h′
1 < h1 < h′

2 < h2, hence h′
2 is incident to a

descendant of v2. �

Lemma 7. An external edge e′ = {h′
1, h

′
2} with h′

1 < h′
2 is (G, T )-active if and only

if the endpoint of h′
1 is an ancestor of the endpoint of h′

2.

Proof. Denote by v′1 and v′2 the endpoints of h′
1 and h′

2 respectively.
• Suppose v′1 is an ancestor of v′2. We want to prove that e′ is active. Let e =
{h1, h2} with h1 < h2 be an internal edge in the fundamental cycle of e′. The edge
e is in the path of T between v′1 and v′2. Denote by v1 and v2 the endpoints of h1

and h2 respectively. Recall that v1 is the father of v2 (Lemma 5). Since v′2 is a
descendant of v2, we have e′ < e by Lemma 6. The edge e′ is less than any edge in
its fundamental cycle hence it is (G, T )-active.
• Suppose that v′1 is not an ancestor of v′2. Then the edge e = {h1, h2} with h1 < h2

linking v′1 to its father in T is in the fundamental cycle of e′. If we denote by v1

and v2 the endpoints of h1 and h2 respectively, we get v2 = v′1 by Lemma 5. Since
the endpoint v′1 of h′

1 is a descendant of the endpoint v2 of h2, we get e < e′ by
Lemma 6. Thus, e′ is not (G, T )-active. �

3.2. A mapping from spanning trees to orientations and some related

bijections

We now take a glimpse at the results to be developed in the following sections.
In order to present these results, we define a mapping Φ from spanning trees to
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orientations. The mapping Φ will be extended into a bijection between subgraphs
and orientations in Section 5. Related to the mapping Φ, we define two other map-
pings Γ and Λ on the set of spanning trees. The mapping Γ is a bijection between
spanning trees and root-connected outdegree sequences while Λ is a bijection be-
tween spanning trees and recurrent sandpile configurations.

Consider an embedded graph G = (H, σ, α, h0) and a spanning tree T . Recall
that the tour of T defines a linear order, the (G, T )-order, on H for which the root
h0 is the least element. We associates with the spanning tree T the orientation OT

of G defined by:

For any edge e = {h1, h2} with h1 < h2, OT (e) = (h1, h2) if e is internal,
(h2, h1) if e is external.

(5)

This definition is illustrated in Figure 9 (left).

h0

2 121
2

2

1

2

⋆
⋆

⋆

1 23 4

⋆

⋆

Figure 9. Left: Orientation OT associated the spanning tree T
(indicated by thick lines) and active edges (indicated by a star).
Middle: outdegree sequence Γ(T ). Right: recurrent sandpile con-
figuration Λ(T ).

Observe that the spanning tree T is oriented from its root-vertex v0 to its leaves
in OT . Indeed, it is clear from the definitions and Lemma 5 that every internal
edge is oriented from father to son. This property implies that for every spanning
tree T the orientation OT is v0-connected.

The mapping Φ : T 7→ OT from spanning trees to v0-connected orientations is
not bijective. However, it is injective and in Section 5 we will extend it into a
bijection between subgraphs and orientations. For the time being, let us observe
(the proof will be given in Section 5) that the tree T can be recovered from the
orientation OT by the following procedure:

Procedure Construct-tree:

Initialization: Initialize the current half-edge h to be the root h0. Initialize the
tree T and the set of visited arcs F to be empty.
Core: Do:
C1: If the edge e containing h is not in F and h is a tail then add e to T .

Add e to F .
C2: Move to the next half-edge around T :

If e is in T , then set the current half-edge h to be σα(h), else set it to be σ(h).
Repeat until the current half-edge h is h0.
End: Return the tree T .

In the procedure Construct-tree we keep track of the set F of edges already
visited. The decision of adding an edge e to the tree T or not is taken when e is vis-
ited for the first time. The principle of procedure Construct-tree, which consists



12 OLIVIER BERNARDI

in constructing a tree T while making its tour, will appear again in the next sections.

Building on the mapping Φ : T 7→ OT , we define two mappings Γ and Λ.

Definition 8. Let G be an embedded graph. The mapping Γ associates with any
spanning tree T the outdegree sequence of the orientation OT .

Definition 9. Let G be an embedded graph and let V be the vertex set. The
mapping Λ associates with any spanning tree T the sandpile configuration ST :
V 7→ N, where ST (v) is the number of tails plus the number of external (G, T )-
active heads incident to v in the orientation OT .

The mappings Γ and Λ are illustrated in Figure 9.

As observed above, the orientation OT is always v0-connected hence the image of
any spanning tree by the mapping Γ is a v0-connected outdegree sequence. We shall
prove in Section 6 that Γ is a bijection between spanning tree and v0-connected out-
degree sequences. We will also show how to extend it into a bijection between forests
and outdegree sequences. Regarding the mapping Λ, we shall prove in Section 7
that it is a bijection between spanning trees and recurrent sandpile configurations.
Moreover, the number of external (G, T )-active edges is easily seen to be the level
of the configuration Λ(T ). This gives a new bijective proof of a result by Merino
linking external activities to the level of recurrent sandpile configurations [11, 33].

The two mappings Γ and Λ coincide on internal trees, that is, trees that have
external activity 0. Thus, the mapping Γ ◦ Λ−1 is a bijection between recurrent
sandpile configurations and v0-connected outdegree sequences that leaves the con-
figurations at level 0 unchanged. This answers a problem raised by Gioan [23]. As
an illustration we represented the 5 spanning trees of a graph in Figure 10 and their
image by the mappings Φ, Γ and Λ (the first two spanning trees are internal).

⋆
⋆
⋆⋆ ⋆⋆h0 ⋆

⋆

13

0

3

1

0

33

1

03

11

3

1

3

1

2

0

2 1 21

0

1

0

2

2 1 2

Φ

Γ

Λ

Figure 10. Spanning trees (embedding-active edges are indicated
by a star) and their image by the mappings Φ, Γ and Λ.

We now highlight a relation (to be exploited in Section 6) between the embedding-
activities of the spanning tree T and the acyclicity or strong connectivity of the
associated orientation OT .
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Lemma 10. Let G be an embedded graph ant let T be a spanning tree. The funda-
mental cycle (resp. cocycle) of an external (resp. internal) edge e is OT -directed if
and only if e is (G, T )-active.

Lemma 10 is illustrated by Figures 11 and 12. From this lemma we deduce that
if OT is acyclic (resp. strongly connected) then T is internal (resp. external), that
is, has no external (resp. internal) active edge. In fact, we shall prove in Section
6 that the converse is true: if the tree T is internal (resp. external), then the
orientation OT is acyclic (resp. strongly connected). For instance, in Figure 10 the
two first (last) spanning trees are internal (resp. external) and the corresponding
orientations are acyclic (resp. strongly connected).

h0
h0

⋆

Figure 11. Fundamental cocycles of an active internal edge (left)
and of a non-active internal edge (right).

h0

⋆

h0

Figure 12. Fundamental cycles of an active external edge (left)
and of a non-active external edge (right).

Proof. Consider an edge e = {h1, h2} with h1 < h2 and denote by v1 and v2 the
endpoints of h1 and h2 respectively.
• Suppose that e is internal. We want to prove that the fundamental cocycle D
of e is directed if and only if e is (G, T )-active. Recall that v1 is the father of v2

by Lemma 5. Let V2 be the set of descendants of v2. Recall that D is the cocycle
defined by V2. By definition, the arc OT (e) is directed toward v2 ∈ V2. By Lemma
6, for all edge e′ = {h′

1, h
′
2} with h′

1 < h′
2 in D − e, the arc OT (e′) = (h′

2, h
′
1) is

directed toward V2 if and only if e < e′. Therefore, the fundamental cocycle D is
directed if and only if e is minimal in D, that is, if e is (G, T )-active.
• Suppose that e is external. We want to prove that the fundamental cycle C of
e is directed if and only if e is (G, T )-active. Recall that C − e is the path in T
between v1 and v2. Since OT (e) is directed toward v1, the cycle C is directed if
and only if the path C − e is directed from v1 to v2. Since every edge in C − e ⊆ T
is directed from father to son (Lemma 5), the cycle C is directed if and only if v1
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is an ancestor of v2. This is precisely the characterization of external (G, T )-active
edges given by Lemma 7.

�

Up to this point we have considered mappings defined on the set of spanning
trees. In order to extend these mappings to general subgraphs we will associate a
spanning tree to every subgraph. This is the task of the next section.

4. A PARTITION OF THE SET OF SUBGRAPHS

In this section we define a partition of the set of subgraphs for any embedded
graph. Each part of this partition is associated with a spanning tree.

Let G be an embedded graph. Given a spanning tree T , we consider the set of
subgraphs that can be obtained from T by removing some internal (G, T )-active
edges and adding some external (G, T )-active edges. Observe that this set is an
interval in the boolean lattice of the subgraphs of G (i.e. subsets of edges). We call
tree-interval and denote by [T−, T +] the set of subgraphs obtained from a spanning
tree T . We represented the tree-intervals corresponding to each of the 5 spanning
trees of the embedded graph in Figure 13.

⋆

⋆

⋆ ⋆

⋆

⋆
⋆

h0 ⋆

Figure 13. The tree-intervals corresponding to each spanning
tree. The active edges are indicated by a ⋆.

We prove some properties of the subgraphs in the tree-interval [T−, T +].

Lemma 11. Let G be an embedded graph and let T be a spanning tree. Let e be an
internal (resp. external) (G, T )-active edge. The fundamental cocycle (resp. cycle)
of e is contained in S + e (resp. S + e) for any subgraph S in [T−, T +].

Proof. If e is internal and (G, T )-active, no edge in its fundamental cocycle D is
(G, T )-active (since their fundamental cycle contains e). Since no edge of D − e is
in T nor is (G, T )-active, none is in S. Hence, D ⊆ S + e. Similarly, if e is external
(G, T )-active, its fundamental cycle is contained in S + e.

�
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Lemma 12. Let G be an embedded graph. Let T be a spanning tree and let S be
a subgraph in [T−, T +] having c(S) connected components. Then c(S) − 1, (resp.
e(S) + c(S) − |V |) is the number of edges in S ∩ T (resp. S ∩ T ).

Proof. Consider any subgraph S in [T−, T +]. By Lemma 11, removing an internal
(G, T )-active edge from S increases c(S) by one and leaves e(S) + c(S) unchanged.
Similarly, adding an external (G, T )-active edge to S leaves c(S) unchanged and
increases e(S) + c(S) by one. Moreover, c(T ) − 1 = 0 and e(T ) + c(T ) − |V | = 0.
Therefore, Lemma 12 holds for every subgraph S in [T−, T +] by induction on the
number of edges in S △ T . �

By Lemma 12, the connected subgraphs in [T−, T +] are the subgraphs in the
interval [T, T +] (the subgraphs obtained from T by adding some external (G, T )-
active edges). Similarly, the forests in [T−, T +] are the subgraphs in the interval
[T−, T ] (the subgraphs obtained from T by removing some internal (G, T )-active
edges). These properties are illustrated in Figure 14.

T +

T

co
n
n
ec

te
d

fo
re

st

T−

Figure 14. The tree-interval [T−, T +], the sub-interval [T, T +] of
connected subgraphs and the sub-interval [T−, T ] of forests.

We are now ready to state and comment on the main result of this section.

Theorem 13. Let G = (V, E) be a graph and let G be an embedding of G. The
tree-intervals form a partition of the set of subgraphs of G:

2E =
⊎

T spanning tree

[T−, T +],

where the disjoint union is over all spanning trees of G.

The counterpart of Theorem 13 is known for the notion of (internal and ex-
ternal)activities defined by Tutte in [42]. This property has been used to extract
informations about the Tutte polynomial in [2, 14, 25].

Theorem 13 constitutes the key link between the subgraph expansion (1) and
spanning tree expansion (2) of the Tutte polynomial. Indeed, given Lemma 12, we
get
∑

S∈[T−,T+]

(x−1)c(S)−1(y−1)e(S)+c(S)−|V | = (x−1+1)I(T )(y−1+1)E(T ) = xI(T )yE(T ),
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where I(T ) (resp. E(T )) is the number of internal (resp. external) (G, T )-active
edges. Summing over all spanning trees gives the identity:

∑

S subgraph

(x − 1)c(S)−1(y − 1)e(S)+c(S)−|V | =
∑

T spanning tree

xI(T )yE(T ).

Remark. As observed in [25], the partition of the set of subgraphs gives several
other expansions of the Tutte polynomial. For instance, the tree-intervals can be
partitioned into forest-intervals. The forest-interval of a forest F in [T−, T +] is the
set [F, F+] of subgraphs obtained from F by adding some external (G, T )-active
edges. Since

[T−, T +] =
⊎

F forest in [T−,T+]

[F, F+],

the partition into tree-intervals given by Theorem 13 leads to a partition into forest-
intervals:

2E =
⊎

F forest

[F, F+].

Given Lemma 12, we get
∑

S∈[F,F+]

(x−1)c(S)−1(y−1)e(S)+c(S)−|V | = (x−1)c(F )−1(y−1+1)E(T ) = (x−1)c(F )−1yE(T ),

for any forest in [T−, T +]. Summing up over forests, gives the forest expansion

TG(x, y) =
∑

F forest

(x − 1)c(F )−1yE(F ),

where E(F ) is the number of (G, T )-active edges for the spanning tree T such that
F ∈ [T−, T +]. Let us mention that several alternative notions of external activities
have been defined, each of which gives a forest expansion [22, 28] which can be used
to obtain enumerative results about the Tutte polynomial [21, 22].

In order to prove Theorem 13 we define a mapping ∆ from subgraphs to spanning
trees.

Definition 14. Let G be an embedded graph rooted on h0 and let S be a subgraph.
The spanning tree T = ∆(S) is defined by the following procedure:
Initialization: Initialize the current half-edge h to be the root h0. Initialize the
tree T and the set of visited edges F to be empty.
Core: Do:
C1: If the edge e containing h is not in F , then decide whether to add e to T
according to the following rule:

If (e is in S and is in no cycle C ⊆ S ∩ F ) or
(e is not in S and is in a cocycle D ⊆ S ∩ F ),

Then add e to T .
Endif.

Endif.
Add e to F .

C2: Move to the next half-edge around T :
If e is in T , then set the current half-edge h to be σα(h), else set it to be σ(h).

Repeat until the current half-edge h is h0.
End: Return the tree T .

An execution of the procedure ∆ is illustrated in Figure 15.
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∆

h0

Figure 15. The mapping ∆ and some intermediate steps. The
dashed lines correspond to the set F of unvisited edges.

There is a direct proof that the mapping ∆ is well defined on every subgraph
(that is, the procedure terminates and returns a spanning tree). But we shall only
prove an (a priory weaker) result: the mapping ∆ is well defined on every tree-
interval and ∆(S) = T for any subgraph S in [T−, T +] (Proposition 15). This will
prove that the tree-intervals are disjoint. Moreover, the cardinality of the tree-
interval [T−, T +] is 2I(T )+E(T ), where I(T ) and E(T ) are the number of internal
and external (G, T )-active edges. Therefore, the number of subgraphs contained in
some tree-intervals is
∣

∣

∣

∣

∣

∣

⋃

T spanning tree

[T−, T +]

∣

∣

∣

∣

∣

∣

=
∑

T spanning tree

∣

∣[T−, T +]
∣

∣ =
∑

T spanning tree

2I(T )+E(T ).

By Theorem 4, this sum is the specialization TG(2, 2) of the Tutte polynomial
counting the subgraphs of G (as is clear from (1)). This counting argument proves
that every subgraph belongs to a tree-interval. Thus, we only need to prove the
following proposition.

Proposition 15. Let G be an embedded graph. Let T be a spanning tree and let S
be a subgraph in the tree-interval [T−, T +]. The procedure ∆ is well defined on S
and returns the tree T .

Before proving Proposition 15, we need to recall a classical result of graph theory.

Lemma 16. The symmetric difference of two cycles (resp. cocycles) C and C′ is
a union of cycles (resp. cocycles).

Lemma 16 is illustrated by Figure 16.

We now characterize the edges in the symmetric difference S △ T .

Lemma 17. Let G be an embedded graph. Let T be a spanning tree and let S be a
subgraph in the tree-interval [T−, T +].
(i) An edge e is in S∩T if and only if e is minimal (for the (G, T )-order) in a cycle
C ⊆ S.
(ii) An edge e is in S ∩ T if and only if e is minimal (for the (G, T )-order) in a
cocycle D ⊆ S.

Proof. We give the proof of (i); the proof of (ii) is similar.
• Suppose e is in S ∩ T . Then e is (G, T )-active, that is, e is minimal in its
fundamental cycle C. Moreover, by Lemma 11, C is contained in S.
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Figure 16. Left: Two cycles (thin and thick lines) and their in-
tersection (dashed lines). Right: two cocycles.

• Suppose e is minimal in a cycle C ⊆ S. We want to prove that e is in T . Suppose
the contrary. Then, there is an edge e′ 6= e in C ∩ T (since T has no cycle). Take
the least edge e′ in C ∩ T and consider its fundamental cycle C′. The edge e′

is (G, T )-active, that is, e′ is minimal in C′. In particular, e is not in C′. This
situation is represented in Figure 17. Since e is in C △ C′ and e′ is not, there is
a cycle C1 ⊆ C △ C′ containing e and not e′ (Lemma 16). By Lemma 11, the
fundamental cycle C′ of e′ is contained is S + e′, thus C1 ⊆ C △ C′ ⊆ S. Note that
e is minimal in the cycle C1 ⊆ S (since e is minimal in C and e′ > e is minimal in
C′). Moreover, the least edge in C1 ∩ T (this edge exists since T has no cycle) is in
C∩T −e′ (since C′ ⊆ T +e′), hence is greater than e′. We can repeat this operation
again in order to produce an infinite sequence C0 = C, C1, C2, . . . of cycles with e
minimal in Ci and Ci ⊆ S for all i ≥ 0. But the minimal element of Ci ∩ T is
strictly increasing with i. This is impossible.

�

C1

C

e′

e

Figure 17. The cycle C (circle), some edges in the tree T (indi-
cated by thick lines) and the edges e and e′.

Proof of Proposition 15. We consider a subgraph S in the tree-interval [T−
0 , T +

0 ].
We denote by H the set of half-edges. We denote by t the motion function associated
with spanning tree T0 and we denote by hi = ti(h0) the ith half-edge for the (G, T0)-
order. For any half-edge h, we denote Fh = {e = {h1, h2}/min(h1, h2) < h} and
Th = T0 ∩ Fh.
We adopt the notations h, e, F and T of the procedure ∆ (for instance, h denotes
the current half-edge) and we compare half-edges according to the (G, T0)-order.
We want to prove that, for all i ≤ |H |, at the beginning of the ith core step, h = hi,
F = Fh and T = Th. We proceed by induction on i. The property holds for the
first core step (i = 0) since h = h0 and Fh0

= Th0
= ∅. Consider now the ith

core step. Suppose first that the edge e containing the current half-edge h is not
in F . By the induction hypothesis, F = Fh thus e is greater than any edge in F
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and less than any edge in F − e. By Lemma 17, if e is in S, then it is in T0 if
and only if it is in a cycle C ⊆ S ∩ F . Also, if e is in S, then it is in T0 if and
only if it is in a cocycle D ⊆ S ∩ F . Therefore, the edge e is added to T at the
step C1 if and only if it is in T0. Suppose now that the edge e is already in F
at the beginning of the ith core step. Then, by the induction hypothesis, e is in
T = Th = T0 ∩ Fh = T0 ∩ F if and only if it is in T0. Whether the edge e is in F
or not at the beginning of the step C1, the edge e is in T at the beginning of the
step C2 if and only if it is in T0. Therefore, the current half-edge at the beginning
of the (i + 1)th core step, is t(h) = hi+1. Thus, the property holds for all i ≤ |H |
by induction. In particular, the procedure ∆ stops after |H | core steps and returns
the spanning tree T = Th|H|−1

= T0. �

This concludes the proof of Theorem 13.
�

Before we close this section we define some families of subgraphs counted by the
evaluations TG(i, j), 0 ≤ i, j ≤ 2 of the Tutte polynomial. Consider an embedded
graph G and a spanning tree T . Recall that the spanning tree T is said to be in-
ternal (resp. external) if it has no external (resp. internal) (G, T )-active edge. For
instance, among the spanning trees represented in Figure 13, the two first (resp.
last) are internal (resp. external). We say that a subgraph S in [T−, T +] is internal
or external if the spanning tree T is. The notion of internal subgraph is close to
Whitney’s notion of subgraphs without broken circuit [43]. Observe that by Lemma
12 any internal subgraph is a forest and any external subgraph is connected (the
converse is, of course, false). In Figure 24 we represented the subgraphs of figure
13 in each of the categories defined by the four criteria forest, internal, connected,
external.

Proposition 18. Let G be an embedded graph. The number of subgraphs in each
category defined by the criteria forest, internal, connected, external is given by the
following evaluation of the Tutte polynomial:

General Connected External

General TG(2, 2) = 2|E| TG(1, 2) TG(0, 2)
Forest TG(2, 1) TG(1, 1) TG(0, 1)

Internal TG(2, 0) TG(1, 0) TG(0, 0) = 0

Proof. Let T be a spanning tree with I(T ) internal and E(T ) external (G, T )-
active edges. By Lemma 12, the connected subgraphs in [T−, T +] are obtained
by adding some external (G, T )-active edges to T . Hence, there are 1I(T )2E(T )

connected subgraphs in [T−, T +]. Thus, given the partition of the set of subgraphs
into tree-intervals given by Theorem 13, the graph G has

∑

T spanning tree

1I(T )2E(T )

connected subgraphs. This sum is equal to TG(1, 2) by the characterization (4)
of the Tutte polynomial. Observe that there are 0I(T )2E(T ) external (connected)
subgraphs in the interval [T−, T +]1. Hence there are TG(0, 2) external subgraphs
of G. Every other category admits a similar treatment.

�

1Here, as everywhere in this paper, the convention is that 00 = 1.
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In the next section we will define a bijection Φ between subgraphs and orienta-
tions. In the following one we will study how Φ specializes to each of the families
of subgraphs defined by the criteria forest, internal, connected, external and deduce
from it an interpretation for each of the evaluations TG(i, j), 0 ≤ i, j ≤ 2 of the
Tutte polynomial in terms of orientations.

5. A BIJECTION BETWEEN SUBGRAPHS AND ORIENTATIONS

In this section we define a bijection Φ between subgraphs and orientations. The
bijection Φ is an extension of the correspondence T 7→ OT between spanning trees
and orientations defined in Section 3. For instance, the image by Φ of the spanning
tree T and the image of a subgraph S in [T−, T +] are shown in Figure 18.

Definition 19. Let G be an embedded graph. Let T be a spanning tree and let S
be a subgraph in the tree-interval [T−, T +]. The orientation OS = Φ(S) is defined
as follows. For any edge e = {h1, h2} with h1 < h2 (for the (G, T )-order), the arc
OS(e) is (h1, h2) if and only if - either e is in T and its fundamental cocycle contains
no edge in the symmetric difference S △ T - or if e is not in T and its fundamental
cycle contains some edges in S △ T ; the arc OS(e) is (h2, h1) otherwise.

Recall that a subgraph S is in the tree-interval [T−, T +] if and only if every edge
in the symmetric difference S △ T is (G, T )-active. Let S be a subgraph in [T−, T +]
and let e be any edge of G. We say that the arc OS(e) is reverse if OS(e) 6= OT (e).
Observe that the arc OS(e) is reverse if and only if the fundamental cycle or cocycle
of e (with respect to the spanning tree T ) contains an edge of S △ T (compare for
instance the orientations OS and OT in Figure 18). In particular, Definition 19 of
the mapping Φ extends the definition (5) given for spanning trees in Section 3.

h0

⋆
⋆

⋆

⋆

h0

△

△

⋆

Figure 18. Right. The orientation OT associated with a spanning
tree T . The active edges are indicated by a ⋆. Left. The orientation
OS associated with a subgraph S in [T−, T +]. The edges in the
symmetric difference S △ T are indicated by a △.

The main result of this section is that the mapping Φ is a bijection between
subgraphs and orientations. For instance, we have represented in Figure 19 the
image by Φ of the subgraphs represented in Figure 13.

Theorem 20. Let G be an embedded graph. The mapping Φ establishes a bijection
between the subgraphs and the orientations of G.

In order to prove Theorem 20, we define a mapping Ψ from orientations to
subgraphs. We shall prove that Ψ is the inverse of Φ.

Definition 21. Let G be an embedded graph and let O be an orientation. We
define the subgraph S = Ψ(O) by the procedure described below. The procedure Ψ
visits the half-edges in sequential order. The set of visited edges is denoted by F . If
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Figure 19. The image by Φ of the subgraphs in Figure 13.

C is a set of edges that intersects the set F of visited edges, we denote by efirst(C)
and hfirst(C) the first visited edge and half-edge of C respectively (efirst(C) contains
hfirst(C)). In this case, C is said to be tail-first if hfirst(C) is a tail and head-first
otherwise.
Initialization: Initialize the current half-edge h to be the root h0. Initialize the
subgraph S, the tree T and the set of visited edges F to be empty.
Core: Do:
C1: If the edge e containing h is not in F , then decide whether to add e to S
and T :

• If h is a tail, then
(a) If e is in a directed cycle C ⊆ F , then add e to S but not to T .
(b) If e is in a head-first directed cocycle D * F such that for all directed

cocycle D′ with efirst(D
′) = efirst(D) either e ∈ D′ or (D △ D′ * F and

efirst(D △ D′) ∈ D′), then do not add e to S nor to T .
(c) Else, add e to S and to T .

• If h is a head, then
(a′) If e is in a directed cocycle D ⊆ F , then add e to T but not to S.
(b′) If e is in a tail-first directed cycle C * F such that for all directed

cycle C′ with efirst(C
′) = efirst(C) either e ∈ C′ or (C △ C′ * F and

efirst(C △ C′) ∈ C′), then add e to S and to T .
(c′) Else, do not add e to S nor to T .

Add e to F .
C2: Move to the next half-edge around T :

If e is in T , then set the current half-edge h to be σα(h), else set it to be σ(h).
Repeat until the current half-edge h is h0.
End: Return the subgraph S.

In the procedure Ψ the conditions (a) and (b) (resp. (a′) and (b′)) are incom-
patible. Indeed the following lemma is a classical result of graph theory [34].

Lemma 22 ([34]). Every arc (of an oriented graph) is either in a directed cycle or
a directed cocycle but not both.

Proof. (Hint) is the origin of the arc reachable from its end? �

We are now going to prove that Φ and Ψ are inverse mappings.

Proposition 23. Let G be an embedded graph and let S be a subgraph. The map-
ping Ψ is well defined on the orientation Φ(S) (the procedure terminates) and
Ψ ◦ Φ(S) = S.
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Proposition 23 implies that the mapping Φ is injective. Since there are as many
subgraphs and orientations (2|E|), it implies that Φ is bijective and that Ψ and Φ
are reverse mappings. The rest of this section is devoted to the proof of proposi-
tion 23. Observe that Ψ is a variation on the procedure Construct-tree presented
in Section 3. The difference lies in the extra Conditions (a), (b), (a′), (b′) which are
now needed in order to cope with reverse edges. In Lemmas 24 to 28 we express
some properties characterizing reverse edges.

We first need some definitions. Let G be an embedded graph and O be an
orientation. Suppose that the edges and half-edges of G are linearly ordered. For
any set of edges C, we denote by emin(C) and hmin(C) the minimal edge and
half-edge of C respectively. We say that C is tail-min if hmin(C) is a tail and head-
min otherwise. A directed cycle (resp. cocycle) is tight if any directed cycle (resp.
cocycle) C′ 6= C with emin(C

′) = emin(C) satisfies emin(C △ C′) ∈ C′. For instance,
if the edges of the graph in Figure 20 are ordered by a < b < c < d < e < f < g,
the directed cycles (a, h, g, f, e, c) and (b, g, f, e, c) are tight whereas (a, h, g, d, c) is
not.

bd

f h

e ac

g

Figure 20. The directed cycles (a, h, g, f, e, c) and (b, g, f, e, c) are
tight whereas (a, h, g, d, c) is not.

In Lemmas 24 to 28 we consider an embedded graph G, a spanning tree T and a
subgraph S in the tree-interval [T−, T +]. We consider the orientation OS = Φ(S)
and compare edges and half-edges according to the (G, T )-order.

Lemma 24. The fundamental cycle (resp. cocycle) of any edge in S ∩ T (resp.
S ∩ T ) is OS-directed and tail-min (resp. head-min).

Proof. If e is in S ∩ T (resp. S ∩ T ), then every edge e′ in its fundamental cycle
(resp. cocycle) C is reverse (OS(e′) 6= OT (e′)). By Lemma 10, the cycle (resp.
cocycle) C is OT -directed, hence it is OS-directed. Since e is (G, T )-active, the
minimal edge emin(C) is e. Hence, hmin(C) is the least half-edge of e. By definition
of OS , the least half-edge of OS(e) is a tail (resp. head). Hence, C is tail-min (resp.
head-min). �

Lemma 25. Let e be a reverse edge (OS(e) 6= OT (e)). Then, e is in S if an only
if it is in a directed cycle (otherwise it is in a directed cocycle by Lemma 22).

Proof.

• Suppose that e is in S. We want to prove that e is in a directed cycle. If e is in
S ∩ T , its fundamental cycle is directed by Lemma 24. If e is in S ∩ T there is an
edge e′ ∈ S ∩ T in its fundamental cocycle (since e is reverse). Therefore, e is in
the fundamental cycle of e′ which is directed by Lemma 24.
• A similar argument proves that if e is in S, then it is in a directed cocycle. In
this case, e is not in a directed cycle by Lemma 22.
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�

We now need to recall a classical result of graph theory (which is closely related
to the axioms of oriented matroid theory [4]).

Lemma 26 (Orthogonality). Let D be a cocycle and let V1 and V2 be the connected
components after deletion of D. If a directed cycle C contains an arc oriented from
V1 to V2 then it also contains an arc oriented from V2 to V1.

Lemma 26 is illustrated by Figure 21.

D C

V2

V1

Figure 21. A directed cycle crossing a cocycle.

Lemma 27. An edge e is in S ∩ T (resp. S ∩ T ) if and only if it is minimal in a
tail-min (resp. head-min) directed cycle (resp. cocycle).

Proof. We only prove that if an edge is minimal in a tail-min directed cycle then it
is in ∈ S ∩T . The reverse implication is given by Lemma 24. The proof of the dual
equivalence (e is minimal in a tail-min directed cycle if and only if e is in S ∩ T ) is
similar.
Let e = {h1, h2} with h1 < h2 be a minimal edge in a tail-min directed cycle C.
We want to prove that e is in S ∩ T . Observe first that OS(e) = (h1, h2) (since
hmin(C) = h1 and C is tail-min). We now prove successively the following points.
- The edge e is not in S ∩ T . Otherwise, the edge e would be both in a directed
cycle C and in a directed cocycle by Lemma 24.
- The edge e is not in S ∩ T . Suppose the contrary. Since e is in T , the arc
OS(e) = (h1, h2) = OT (e) is not reverse. Let D be the fundamental cocycle of
e. Let v1 and v2 be the endpoints of h1 and h2 respectively and let V2 be set of
descendants of v2. Recall that v1 is the father of v2 in T (Lemma 5) and that D is
the cocycle defined by V2. Since the cycle C is directed and the arc OS(e) in C ∩D
is directed toward V2, there is an edge e′ in C ∩D with OS(e′) directed away from
V2 by Lemma 26. This situation is represented in Figure 22. Since e is minimal in
the cycle C, we have e < e′. Therefore, the arc OT (e′) is directed toward V2 by
Lemma 6. Thus, e′ is reverse. The edge e′ is reverse and contained in a directed
cycle, therefore it is in S by Lemma 25. We have shown that e′ is in S ∩ T . But
this is impossible since e < e′ is in the fundamental cycle of e′.
- The edge e is in S ∩T . We know from the preceding points that e is in T . Hence,
OT (e) = (h2, h1) 6= OS(e). Thus, e is reverse in a directed cycle. Therefore, e is in
S by Lemma 25. �

Lemma 28. The fundamental cycle (resp. cocycle) of any edge in S ∩ T (resp.
S ∩ T ) is tight.

Proof. We prove that the fundamental cycle of an edge in S ∩ T is tight. The
proof of the dual property (concerning edges in S ∩ T ) is similar. Let e∗ be in
S ∩ T . Recall that e∗ = emin(C). By Lemma 24, the fundamental cycle C of e∗ is
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e

e′

v1

D
v2

C

Figure 22. The directed cycle C, the fundamental cocycle D and
the edges e and e′.

directed. We want to prove that C is tight. Suppose not and consider a directed
cycle C′ with emin(C

′) = emin(C) = e∗ and e = emin(C △ C′) ∈ C. The edge e is
in the fundamental cycle C of e∗, hence e∗ is in fundamental cocycle D of e. This
situation is represented in Figure 23. Let v1 and v2 be the endpoints of e with v1

father of v2 in T . Let V2 be the set of descendants of v2. Recall that D is the
cocycle defined by V2. The edge e is in the fundamental cycle of e∗ which is (G, T )
active, hence e∗ < e. Therefore, the arc OT (e∗) is directed away from V2 by Lemma
6. Since e∗ is in S∩T , the arc OS(e∗) is reverse, hence is directed toward V2. Since
the cycle C′ is directed and the arc O(e∗) in C′ ∩D is directed toward V2, there is
an arc OS(e′) in C′ ∩ D oriented away from V2 by Lemma 26. Observe that e′ is
not in the fundamental cycle C since C ⊆ T + e∗ and D ⊆ T + e. Thus, e′ is in
C △ C′ and e′ > e. Hence, by Lemma 6, the arc OT (e′) in the fundamental cocycle
D of e is directed toward V2. Thus, the arc OS(e′) 6= OT (e′) is reverse. Since e′ is
reverse and contained in a directed cycle, it is in S by Lemma 25. We have shown
that e′ is in S ∩ T . But this is impossible. Indeed e′ is not (G, T )-active since its
fundamental cycle contains e which is less than e′. �

e′

e

C′

CD v2

v1
e∗

Figure 23. The directed cycles C and C′ and the cocycle D.

Proof of Proposition 23. We consider a subgraph S0 in the tree-interval [T−
0 , T +

0 ]
and the orientation OS0

= Φ(S0). We want to prove that the procedure Ψ returns
the subgraph S0. We compare edges and half-edges according to the (G, T0)-order
denoted by <: we say that an edge or half-edge is greater or less than another.
We also compare edges and half-edges according to their order of visit during the
algorithm: we say that an edge or half-edge is before or after another. We denote
by t the motion function associated with T0. We denote by hi = ti(h0) the ith

half-edge for the (G, T0)-order. Also, for every half-edge h, we denote Fh = {e =
{h1, h2} such that min(h1, h2) < h}, Th = T0 ∩ Fh and Sh = S0 ∩ Fh.
We want to prove that at the beginning of the ith core step, h = hi, F = Fh,
T = Th, S = Sh, where h is the current half-edge. We proceed by induction on
the number of core steps. The property holds for the first (i = 0) core step since
h = h0 and Fh0

= Th0
= Sh0

= ∅. Suppose the property holds for all i ≤ k. By
the induction hypothesis, the (G, T0)-order and the order of visit coincide on the
edges and half-edges of F . In particular, if C is any set not contained in F , then
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hmin(C) = hfirst(C) and emin(C) = efirst(C). Suppose the edge e containing the
current half-edge h is not in F = Fh. In this case, the current half-edge h (resp.
edge e) is less than any other half-edge (resp. edge) in F . We consider the different
cases (a), (b), (c), (a′), (b′), (c′). We will prove successively the following properties.

• Condition (a) is equivalent to e ∈ S0 ∩ T0.
- Suppose Condition (a) holds: h is a tail and e is in a directed cycle C ⊆ F .
Since, C ⊆ F , the current half-edge h is minimal in C. Since h is a tail,
the directed cycle C is tail-min. Thus, e is in S0 ∩ T0 by Lemma 27.
- Conversely, if e is in S0∩T0, then e is minimal in a tail-min directed cycle
C by Lemma 27. Therefore, h is a tail and C ⊆ F .

• Condition (a′) is equivalent to e ∈ S0 ∩ T0.
The proof is the similar to the proof of the preceding point.

• Condition (b) is equivalent to e ∈ S0 ∩ T0 and OS0
(e) is reverse.

- Suppose Condition (b) holds: h is a tail and e is in a head-first directed co-
cycle D * F such that for all directed cocycle D′ with efirst(D

′) = efirst(D)

either e ∈ D′ or D △ D′ * F and efirst(D △ D′) ∈ D′. Since the (G, T0)-
order and the order of visit coincide on F we have hmin(D) = hfirst(D).
Since the cocycle D is head-first, it is tail-min. The edge e∗ := emin(D) is
minimal in a head-min directed cocycle, hence e∗ is in S0∩T0 by Lemma 27.
Let D∗ be the fundamental cocycle of e∗. Recall that emin(D

∗) = e∗ =
emin(D) We want to prove that e is in D∗. Suppose e is not in D∗. By
Condition (b), we have D △ D∗ * F and efirst(D △ D∗) ∈ D∗. But this
is impossible since emin(D △ D∗) = efirst(D △ D∗) and D∗ is tight by
Lemma 28. Thus, e is indeed in the fundamental cocycle D∗ of e∗. Since
e∗ is in S0 ∩ T0, the edge e is in T0 and also in S0 by Lemma 11. Moreover
the arc OS0

(e) is reverse.
- Conversely, suppose that e is in S0∩T0 and that the arc OS0

(e) is reverse.
The current half-edge h is the least half-edge of e. Since e is external, h
is the head of the arc OT0

(e) and the tail of the reverse arc OS0
(e). Since

OS0
(e) is reverse, the external edge e is in the fundamental cocycle D of an

edge e∗ ∈ S0∩T0. The cocycle D is head-min, directed and tight by Lemmas
24 and 28. Since e∗ = emin(D), the edge e∗ is less than e. Therefore e∗ is
before e and D * F . The cocycle D is head-first since hfirst(D) = hmin(D).
Consider any directed cocycle D′ such that efirst(D

′) = efirst(D) = e∗ and
e /∈ D′. We want to prove that D △ D′ * F and efirst(D △ D′) ∈ D′. Since
D is tight, the edge e′ = emin(D △ D′) is in D′. Since e is in D △ D′,
the edge e′ is less than e, hence it is in F . Therefore, D △ D′ * F and
efirst(D △ D′) = emin(D △ D′) = e′ is in D′.

• Condition (b′) is equivalent to e ∈ S0 ∩ T0 and OS0
(e) is reverse.

The proof is the similar to the proof of the preceding point.
• Condition (c) is equivalent to e ∈ S0 ∩ T0 and is not reverse.

- Suppose Condition (c) holds. In this case, Conditions (a), (a′), (b), (b′) do
not hold. Hence (by the preceding points), the edge e is not in S0 △ T0 and
the arc OS0

(e) is not reverse. Since OS0
(e) is not reverse and the half-edge

h (which is the least half-edge of e) is a tail, the edge e is in T0. Since e is
not in S0 △ T0, it is in S0.
- Conversely, suppose that e is in S0 ∩ T0 and that OS0

(e) is not reverse.
By the preceding points, none of the conditions (a), (a′), (b), (b′) holds.
Moreover, the half-edge h (which is the least half-edge of e) is a tail.

• Condition (c′) is equivalent to e ∈ S0 ∩ T0 and is not reverse.
The proof is the similar to the proof of the preceding point.
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By the preceding points, e is added to S (resp. T ) in the procedure Ψ if and only
if e is in S0 (resp. T0). Hence, the next half-edge will be t(h) = σα(h) if h is in T0

and σ(h) otherwise. Thus, all the properties are satisfied at the beginning of the
(k + 1)th core step. �

This concludes the proof of Theorem 20. We have also proved the following
property that will be useful in the next section.

Lemma 29. During the execution of the procedure Ψ on an orientation O, the
half-edges are visited in (G, T )-order, where T is the spanning tree ∆ ◦ Ψ(O).

6. SPECIALIZATIONS OF THE BIJECTION BETWEEN

SUBGRAPHS AND ORIENTATIONS

In this section we study several restrictions of the bijection Φ between subgraphs
and orientations. More precisely we shall look at the restriction of Φ to each fam-
ily of subgraphs defined by combining the four criteria forest, internal, connected,
external. In Figure 24 we organized the subgraphs according to these criteria. We
also represented the orientations associated to each subgraph by the mapping Φ.
As Figure 24 suggests, there are nice correspondence, which it is the goal of this
section to explicit, between the properties of the subgraph and the properties of the
associated orientations. Recall from Proposition 18 that the families of subgraphs
defined by combining the criteria forest, internal, connected, external are counted
by the evaluations TG(i, j), 0 ≤ i, j ≤ 2 of the Tutte polynomial. By studying the
restriction of Φ to each of these families we shall obtain a combinatorial interpre-
tation for each of the evaluations TG(i, j), 0 ≤ i, j ≤ 2 in terms of orientations or
outdegree sequences (see Theorem 46).

6.1. Connected subgraphs and external subgraphs

In this subsection we study the restriction of Φ to connected and to external
subgraphs.

Proposition 30. Let G be an embedded graph and let v0 be the root-vertex. The
orientation OS is v0-connected if and only if the subgraph S is connected.

Lemma 31. Let G be an embedded graph and let T be a spanning tree. Let D
be a cut and let G0 be the connected component of G containing the root-vertex v0

after D is removed. Then, the half-edge hmin(D) is incident to G0. Moreover, every
half-edge not in G0 is greater than or equal to hmin(D).

Proof. Let t be the motion function of T . If a half-edge h is incident to G0 and
is not in D then t(h) is incident to G0. Since the root h0 is incident to G0, the
half-edge hmin(D) is also incident to G0 and is less than any half-edge not in G0. �

Lemma 32. An orientation is v0-connected if and only if it has no head-min di-
rected cocycle.

Proof.

• If there is a head-min directed cocycle, this cocycle is directed toward the compo-
nent containing v0 by Lemma 31. Therefore, the vertices in the other components
are not reachable from v0 and the orientation is not v0-connected.
• If the orientation is not v0-connected we consider the cut D defined by the set V0
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Figure 24. Subgraphs in each category defined by the four cri-
teria forest, internal, connected, external and the corresponding
orientations. The categories goes from the most general to the
most constrained from left to right and from up to down. The non-
connected subgraphs (resp. non-external connected subgraphs, ex-
ternal subgraphs) are in column 1 (resp. 2, 3). The subgraphs that
are not forests (resp. the forests that are not internal, the internal
forests) are in line 1 (resp. 2, 3).
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of vertices reachable from v0. The cut D is directed toward V0, hence is head-min
by Lemma 31. Let v1 be the endpoint of the edge e = emin(D) that is not in V0.
Let V1 be the set of vertices in the connected component containing v1 after the
cut D is deleted. The set of edges D1 with one endpoint in V0 and one endpoint
in V1 is a cocycle contained in D. Since every edge in D1 is directed away from V0

the cocycle D1 directed. Since hmin(D1) = hmin(D) is a head, the cocycle D1 is
head-min. �

Proof of Proposition 30. Let S be a subgraph in [T−, T +]. The orientation OS

is v0-connected if and only if there is no head-min directed cocycle by Lemma 32.
An edge is in S ∩ T if and only if it is minimal in a head-min directed cocycle by
Lemma 27. Thus, OS is v0-connected if and only if S ∩ T = ∅. And S ∩ T = ∅ if
and only if S is connected by Lemma 12. �

We now study the restriction of the bijection Φ to external subgraphs.

Proposition 33. Let G be an embedded graph and let S be a subgraph. The orien-
tation OS is strongly connected if and only if S is external.

Lemma 34. Let T be a spanning tree and let e be an edge of T . Let u and v be
the endpoints of e with the convention that u is the father of v. For any connected
subgraph S in [T−, T +], the vertex v is Os-reachable from its father u.

Proof. For any connected subgraph S in [T−, T +], the set S ∩ T is empty by
Lemma 12. If the fundamental cocycle of the edge e contains no edge of S ∩ T ,
then the arc OS(e) is not reverse. In this case, the arc OS(e) = OT (e) is directed
from u to v by Lemma 5. Suppose now that the fundamental cocycle of e contains
an edge e∗ of S ∩ T . In this case, e is in the fundamental cycle C∗ of e∗ which is
OS-directed by Lemma 24. Therefore, the vertex v is Os-reachable from u (and
vice-versa). �

Lemma 35. Let G be an embedded graph. Let T be a spanning tree and let S be a
connected subgraph in [T−, T +]. An edge e is minimal in an OS-directed cocycle if
and only if e is an internal (G, T )-active edge.

Proof. Since the subgraph S is connected, the subset S ∩ T is empty by Lemma
12 and the orientation OS is v0-connected by Lemma 30.
• Suppose that the edge e is an internal (G, T )-active edge. The edge e is minimal
in its fundamental cocycle D. We want to prove that D is OS-directed. Note first
that e is not in S △ T (since e is in T and S ∩ T = ∅). No other edge of D is in
S △ T since none is (G, T )-active. Hence, OS(e) = OT (e). Let e′ 6= e be an edge
in the fundamental cocycle D of e. The fundamental cycle of e′ does not contain
any edge of S ∩ T since this edge is empty. Hence, OS(e′) = OT (e′). Thus, the
orientations OS and OT coincide on the cocycle D. By Lemma 10, the cocycle D
is OT -directed, hence it is OS-directed.
• Suppose that e = {h1, h2} with h1 < h2 is minimal in an OS-directed cocycle D.
We want to prove that e is an internal (G, T )-active edge. We prove successively
the following properties:
- The half-edge h1 is a tail. Otherwise, the cocycle D is head-min. (This is impos-
sible by Lemma 32 since OS is is v0-connected.) - The edge e is in T . If e is not
in T , then the arc OS(e) = (h1, h2) is reverse. Thus, the fundamental cycle C of e
contains an edge of S △ T . Since C ⊆ T + e and S ∩ T = ∅, the edge e is in S ∩ T .
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Thus, the cycle C is OS-directed by Lemma 24. This is impossible since e cannot
be both is a directed cycle and a directed cocycle.
- The edge e is (G, T )-active. Since the edge e is in T , the arc OS(e) = (h1, h2) =
OT (e) is not reverse. Let v1 and v2 be the endpoints of h1 and h2 respectively. Let
G2 be the connected component of G containing v2 once the cocycle D is removed.
The arc OS(e) is directed toward v2, thus the cocycle D is directed toward G2. By
Lemma 34, all the descendants of v2 are reachable from v2, hence they are all in G2.
Let e′ be an edge in the fundamental cocycle D′ of e. Since one of the endpoints
of e′ is a descendant of v2, the edge e′ is either in D or in G2. Since the minimal
half-edge h1 of D is not incident to G2, every edge in D ∪ G2 is greater than or
equal to e by Lemma 31. Thus, e′ is greater than e. The edge e is minimal in its
fundamental cocycle D, that is, e is (G, T )-active.

�

Proof of Proposition 33. Let S be a subgraph in [T−, T +].
• Suppose that the subgraph S is external. The subgraph S is connected and there
is no (G, T )-active edge, hence there is no OS-directed cocycle by Lemma 35. Thus,
the orientation OS is strongly connected.
• Suppose that the orientation OS is strongly connected. The subgraph S is con-
nected (since OS is v0-connected) and there is no OS-directed cocycle, hence there
is no (G, T )-active edge by Lemma 35. Thus, the subgraph S is external.

�

6.2. Forests and internal forests

In this subsection we study the restriction of the bijection Φ to forests and to
internal subgraphs.

Let G be an embedded graph and let O be an orientation. We compare half-edges
according to the (G, T )-order, where T = ∆ ◦Ψ(O). We say that the orientation O
is minimal if there is no tail-min O-directed cycle. We shall see (Lemma 39) that
for any out degree sequence δ there is a unique minimal δ-orientation.

Proposition 36. The orientation OS is minimal if and only if the subgraph S is
a forest.

Proof. Let T = ∆(S). By Lemma 27, an edge is in S ∩ T if and only if it is
minimal in a tail-min directed cycle. Thus, the orientation OS is minimal if and
only if S ∩ T = ∅. And S ∩ T = ∅ if and only if S is a forest by Lemma 12.

�

Proposition 37. The orientation OS is acyclic if and only if the subgraph S is
internal.

In order to prove Proposition 37 we need to define a linear order, the postfix
order, on the vertex set. For any vertex v 6= v0 we denote by hv the half-edge
incident to v and contained in the edge linking v to its father in T . The postfix
order, denoted by <post, is defined by v <post v0 for v 6= v0 and v <post v′ if
hv < hv′ for v, v′ 6= v0. The postfix order is illustrated in Figure 25.

Lemma 38. Let T be a spanning tree and let e be an edge. The arc OT (e) is
directed toward its greatest endpoint (for the postfix order) if and only if the edge e
is external (G, T )-active.
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Lemma 38 is illustrated by Figure 25.

Proof. Recall from Lemma 6 that a half-edge h is incident to a descendant of v if
and only if h′

v < h ≤ hv, where h′
v = α(hv) is the other half of the edge containing

hv.
• Consider an internal edge e. Let u and v be the endpoints of e with u father of v.
By Lemma 5, the arc OT (e) is directed toward v. We want to prove that v <post u.
If u = v0, the inequality holds. Else, the half-edges hu and hv exist. Moreover, the
half-edge hv is incident to a descendant of u, hence hv < hu and v <post u.
• Consider an external edge e. We write e = {h1, h2} with h1 < h2 and denote by
u and v the endpoints of h1 and h2 respectively. By definition, the arc OT (e) is
directed toward u. We want to prove that v ≤post u if and only if e is (G, T )-active.
- Suppose the edge e is (G, T )-active. Then, the vertex v is a descendant of u by
Lemma 7. The half-edge hv is incident to a descendant of u, hence hv ≤ hu and
v ≤post u.
- Suppose that v ≤post u. If u = v0, the vertex v is a descendant of u and the edge
e is (G, T )-active by Lemma 7. Else, the half-edges hu and hv exist and hv ≤ hu.
In this case, α(hu) < h1 < h2 < hv ≤ hu (indeed, h2 < hv since h2 is incident to v
and α(hu) < h1 since h1 is incident to u), hence v is a descendant of u by Lemma
6. Thus, the edge e is (G, T )-active by Lemma 7.

�

h0

1

6

7

5

⋆
23

8

9

4

⋆

⋆

Figure 25. A spanning tree T , the postfix order, the orientation
OT and the external active edges (indicated by a ⋆).

Proof of Proposition 37. Let S be a subgraph in the tree-interval [T−, T +]. We
compare half-edges according to the (G, T )-order.
• Suppose that the subgraph S is internal (i.e. the tree T is internal). Recall that
S ∩ T = ∅. We want to prove that the orientation OS is acyclic. Observe first
that the orientation OT is acyclic since the vertices are strictly decreasing (for the
postfix order) along any OT -directed path by Lemma 38. Suppose now that there
is an OS-directed cycle C. The OS-directed cycle C contains a reverse arc O(e) or
C would be OT -directed. Since S∩T = ∅, the reverse edges are in the fundamental
cocycle of an edge of S ∩ T . Thus, the edge e is in the fundamental cocycle D of
an edge of S ∩T . The cocycle D is directed by Lemma 24. This is impossible since
e cannot be both in a directed cycle and in a directed cocycle.
• Suppose that the orientation OS is acyclic. We want to prove that the subgraph
S is internal (i.e. the tree T is internal). Suppose there is an external (G, T )-
active edge e. Let C be the fundamental cycle of e. Since OS is minimal, we
know (by Proposition 36) that S ∩ T is empty. Therefore, the reverse edges are
in the fundamental cocycle of an edge of S ∩ T . Since e is active, it is not in the
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fundamental cocycle of an edge of S ∩ T . Since the other edges of C are not active
(they are less than e) they are not in S ∩ T . Moreover, since they are in T , they
are not in the fundamental cocycle of an edge of S ∩ T . Thus, the orientations OS

and OT coincide on the cycle C. By Lemma 10, the cycle C is OT -directed, hence
it is OS-directed. This is impossible since OS is acyclic. �

6.3. Minimal orientations and outdegree sequences

In the previous subsection we proved that the bijection Φ induces a bijection
between forests and minimal orientations (Proposition 36). We are now going to
link minimal orientations and outdegree sequences.

Proposition 39. Let G be an embedded graph. For any outdegree sequence δ there
exists a unique minimal δ-orientation.

The rest of this subsection is devoted to the proof of Proposition 39. We first
recall the link between outdegree sequences and the cycle-flips.

Consider an orientation O and an O-directed cycle (resp. cocycle) C. Flipping
the O-directed cycle (resp. cocycle) C means reversing every arc in C. We shall
talk about cycle-flips and cocycle-flips. Observe that flipping a directed cycle does
not change the outdegree sequence. Therefore, any orientation O′ obtained from O
by a sequence of cycle-flips has the same outdegree sequence as O. It was proved
in [19] that the converse is also true.

Lemma 40. [19] Two orientations O and O′ have the same outdegree sequence
if and only if they can be obtained from one another by a sequence of cycle-flips.
Moreover, the flipped cycles can be chosen to be contained in the set {e/O(e) 6=
O′(e)}.

Lemma 40 is a direct consequence of the following result proved in [19].

Lemma 41. [19] Let G be a graph and let O and O′ be two orientations having the
same outdegree sequence. For any edge e in the set K = {e′/O(e) 6= O′(e)}, there
is an O-directed cycle C ⊆ K containing e.

Proof. (Hint) Start from the end v of O(e) and look for an edge e1 in K directed
away from v. This edge exists except if v is also the origin of e (since the number
of edges directed away from v is the same in O and O′). Repeat the process until
arriving to the origin of e. �

Recall that any very arc of an oriented graph is either in a directed cycle or a
directed cocycle but not both (Lemma 22). We say that an arc a is cyclic or acyclic
depending on a being in a directed cycle or in a directed cocycle. We call cyclic
part (resp. acyclic part) of an orientation the set of cyclic (resp. acyclic) edges.

It is well known that the cyclic and acyclic parts are unchanged by a cycle-flip
or a cocycle flip [19, 23, 37]. Indeed, it is easily seen that the cyclic part of an
orientation can only grow when a directed cocycle D is flipped (since no directed
cycle intersects with D). Since we return to the original orientation by flipping D
twice, we conclude that the cyclic and acyclic parts are unchanged by a cocycle-flip.
Similarly, the cyclic and acyclic parts are unchanged by a cycle-flip.

We will also need the following classical result (closely related to an axioms of
oriented matroids theory [4]).
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Lemma 42 (Elimination). Let O be an orientation and let C and C′ be two O-
directed cycles (resp. cocycles). Let O′ be the orientation obtained from O by
flipping C′. Then, the symmetric difference of C and C′ is a union of O′-directed
cycles (resp. cocycles). In particular, any edge in the O-directed cycle (resp. cocy-
cle) C is in an O′-directed cycle (resp. cocycle) C′′ ⊆ C ∪ C′.

Lemma 42 is illustrated by Figure 26.

Figure 26. The O-directed cycles (resp. cocycles) C and C′ (thin
and thick lines) and their intersection (dashed lines).

We are now ready to prove Proposition 39. A false proof of the uniqueness of
the minimal δ-orientation in this proposition is as follows. If there are two different
δ-orientations O and O′, then these orientations differ on a directed cycle C. Hence,
the cycle C is tail-min in either O or O′. A false proof of the existence (of a min-
imal δ-orientation) is as follows. Take any δ-orientation and starts flipping cycles
until no more tail-min directed cycle remains. Of course, both the uniqueness and
existence proofs are false in this version since flipping a cycle changes the associated
subgraph, hence the spanning tree and the order on the half-edges. However being
a bit careful, one can make both proofs correct.

We consider the procedure Ψ on orientations (see Definition 21). For an orien-
tation O we denote by Ψ[O] the execution of Ψ on O. Recall (from Lemma 29)
that the half-edges are visited in (G, T )-order during Ψ[O], where T is the spanning
tree ∆ ◦ Ψ(O). Therefore, the orientation O is minimal if and only if Condition
(a) never holds during the execution Ψ[O].

Lemma 43. Let O be an orientation. Consider the current half-edge h, the edge e
and the sets F , S and T at the beginning of a given core step of the execution Ψ[O].
Let Cf ⊆ F + e be an O-directed cycle and let O′ be the orientation obtained from
O by flipping Cf . We want to prove that Condition (a) (resp. (b), (c), (a′), (b′),
(c′)) holds for the orientation O if and only if it holds for the orientation O′. (Let
us insist that when evaluating the Conditions (a), · · · , (c′) for the orientation O′,
the symbols F , S, T , hfirst and efirst continue to refer to the execution of Ψ[O].)

Proof. Note first that the orientations O and O′ coincide on the current half-edge
h since e /∈ Cf . We now study separately the different conditions.
• Recall that O and O′ coincide on their acyclic part: the directed cocycles of O
and O′ are the same. Therefore, Condition (b) (resp. (a′)) holds for O if and only
if it holds for O′.
• Suppose now that Condition (a) holds for O: the current half-edge h is a tail and
the edge e is in an O-directed cycle C ⊆ F . By Lemma 42, the edge e is also in
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an O′-directed cycle C′ ⊆ C ∪ Cf ⊆ F . Thus, Condition (a) holds for O′. The
same argument proves that if Condition (a) holds for O′, then it holds for O (O is
obtained from O′ by flipping the O′-directed cycle Cf ).
• Suppose now that Condition (b′) holds for O: the current half-edge h is a head and
the edge e is in a tail-first O-directed cycle C * F such that for all O-directed cycle

C′ with efirst(C
′) = efirst(C) either e ∈ C′ or (C △ C′ * F and efirst(C △ C′) ∈ C′).

By Lemma 42, the edge e∗ = efirst(C) is in an O′-directed cycle C1 ⊆ C ∪ Cf .
Note that efirst(C1) = e∗. We want to prove that Condition (b′) holds for O′ by
considering the O′-directed cycle C1. We prove successively the following properties.

• The edge e is in C1.
The edge e∗ is in the O′-directed cycle C1 and not in Cf . By Lemma 42,
there is an O-directed cycle C2 ⊆ C1∪Cf containing e∗ (since O is obtained
from O′ by flipping Cf ). Note that efirst(C2) = e∗. Suppose that e is not in

C2. By Condition (b′) on C, we have C △ C2 * F and efirst(C △ C2) ∈ C2.

This is impossible since C ∩ C2 ⊆ Cf (since C2 ⊆ C1 ∪ Cf ⊆ C ∪ Cf ) and

the edge e in C ∩ C2 is visited before any edge in Cf . Thus e ∈ C2. Since
e ∈ C2 ⊆ C1 ∪ Cf and e is not in Cf , it is in C1.

• For all O′-directed cycle C′
1 with efirst(C

′
1) = efirst(C1) either e ∈ C′

1 or

(C1 △ C′
1 * F and efirst(C1 △ C′

1) ∈ C′
1). (This proves that Condition (b′)

is satisfied for O′).
Let C′

1 be an O′-directed cycle not containing e and such that efirst(C
′
1) =

efirst(C1) = e∗. We want to prove that C1 △ C′
1 ⊆ F and efirst(C1 △ C′

1) ∈
C′

1. The edge e∗ is in the O′-directed cycle C′
1 but not in Cf . By Lemma

42, there exists an O-directed cycle C′ ⊆ C′
1 ∪Cf containing e∗. Note that

efirst(C
′) = e∗ and that e /∈ C′ (since e is not in Cf nor in C′

1 by hypothesis).

By Condition (b′) on C, we have C △ C′ * F and e△ = efirst(C △ C′) ∈ C′.
We now prove the following properties.
- The edge e△ is in C1 ∩ C′

1.
The edge e△ is in C′

1 since e△ /∈ Cf and e△ ∈ C′ ⊆ C′
1∪Cf . Moreover, e△ is

not in C1 since e△ /∈ C, e△ /∈ Cf and C1 ⊆ C ∪Cf . Thus, e△ is in C1 ∩C′
1.

- Any edge in C1 ∩ C′
1 is visited after e△ during the execution Ψ[O].

Let e′ be an edge in C1 ∩ C′
1. If e′ is in Cf , it is visited after e△. Else, e′

is in C since e′ ∈ C1, e′ /∈ Cf and C1 ⊆ C ∪ Cf . Moreover, e′ is not in C′

since e′ /∈ C′
1, e′ /∈ Cf and C′ ⊆ C1 ∪ Cf . Since e′ ∈ C △ C′, the edge e′ is

visited after e△ = efirst(C △ C′) during the execution Ψ[O].

Since e△ is in C1 ∩C′
1 and any edge in C1 ∩C′

1 is visited after e△, the edge
efirst(C1 △ C′

1) is in C′
1. Thus, Condition (b′) holds for O′.

We have proved that if Condition (b′) holds for O, then it holds for O′. The same
argument proves that if Condition (b′) holds for O′, then it holds for O.
• Condition (c) holds for O if h is a tail and Conditions (a) and (b) do not hold for
O By the preceding points this is true if and only if h is a tail and Conditions (a)
and (b) do not hold for O′. Therefore, Condition (c) holds for O if and only if it
holds for O′. Similarly, Condition (c′) holds for O if and only if it holds for O′. �

Lemma 44. Consider two orientations O and O′ having the same outdegree se-
quence. We consider the executions Ψ[O] and Ψ[O′]. For all 0 ≤ i < |H |, we
denote by hi, Fi, Ti and Si the current half-edge and the sets F , T and S at the
beginning of the ith core step of the execution Ψ[O] (see Definition 21). We define
h′

i, F ′
i , T ′

i and S′
i similarly for the orientation O′. We want to prove that if the

orientations O and O′ coincide on hi for all i < k (that is, O(ei) = O′(ei) where
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ei is the edge containing hi), then the k first core steps of the executions Ψ[O] and
Ψ[O′] are the same. In particular, hi = h′

i, Fi = F ′
i , Si = S′

i, and Ti = T ′
i for all

i ≤ k.

Proof. We proceed by induction on k. Recall from Lemma 40 that the orientation
O′ can be obtained from O by a sequence of cycle-flips such that the flipped cycles
are contained in the set K = {e/O(e) 6= O′(e)}. For k = 0 the property obviously
holds. Now suppose that the property holds for k and suppose that O and O′

coincide on hi, i < k+1. By the induction hypothesis the current half-edge hk = h′
k

and the sets F = Fk = F ′
k, S = Sk = S′

k, and T = Tk = T ′
k are the same at the

beginning of the (k + 1)th core step of the procedures Ψ[O] and Ψ[O′]. Moreover,
the set K = {e′/O(e′) 6= O′(e′)} of reverse edges is contained in F + e. Since O′

is obtained from O by a sequence of flips of cycles contained in F + e, we know
by induction on Lemma 43 that Condition (a) (resp. (b), (c), (a′), (b′), (c′)) holds
for the orientation O if and only if it holds for the orientation O′. Therefore,
the (k + 1)th core step is the same for the two executions Ψ[O] and Ψ[O′]. In
particular, the sets F , S, and T are modified in the same way in both executions
and hk+1 = h′

k+1. Thus, the property holds by induction. �

Proof of Proposition 39. Recall that an orientation O is minimal if and only
if Condition (a) never holds during the execution Ψ[O]. Thus, we need to prove
that for any outdegree sequence δ there exists a unique δ-orientation O such that
Condition (a) never holds during the execution Ψ[O].
• Uniqueness: Let O and O′ be two (distinct) orientations having the same
outdegree sequence. We take the same notations hi, Fi, Ti, Si, h′

i, F ′
i , T ′

i , S′
i as in

Lemma 44. Let k be the first index such that O and O′ differ on hk. By Lemma
44, we have hk = h′

k and Fk = F ′
k, Tk = T ′

k, Sk = S′
k. We can suppose without

loss of generality that hk is a tail in O and a head in O′. We now prove that
Condition (a) holds for O. By hypothesis, the edge e containing h is such that
O(e) 6= O′(e). Hence, by Lemma 41, the edge e is contained in an O-directed cycle
C ⊆ K = {e/O(e) 6= O′(e)}. Since O and O′ coincide on hi for i < k, the set K is
contained in Fi. Since C ⊆ Fi is O-directed, Condition (a) holds for O.
• Existence: Let δ be an outdegree sequence. We want to find a δ-orientation
O such that Condition (a) never holds during the execution Ψ[O]. Let O0 be any
δ-orientation. We are going to define a set of δ-orientations O0,O1, . . . ,O|H| such
that Condition (a) is not satisfied during the i first core steps of the execution
Ψ[Oi]. We prove that Ok exists by induction on k. Suppose the δ-orientation Ok−1

exists. We consider the current half-edge h, the edge e and the sets F , S and T
at the beginning of the kth core step of Ψ[Ok−1]. If either e ∈ F or Condition (a)
does not hold, we define Ok = Ok−1. Else, the current half-edge hk is a tail (for the
orientation Ok−1) and there is an Ok-directed cycle C ⊆ F containing e. In this
case, we define Ok to be the orientation obtained from Ok−1 by flipping the cycle
C. Observe that Ok is a δ-orientation in which hk is a head. Moreover, since C ⊆ F
the two orientations Ok−1 and Ok coincide on the half-edges hi for i < k, where
hi is the current half-edge at the beginning of the ith core step of the execution
Ψ[Ok−1]. Thus, by Lemma 44, the k first core steps of the executions Ψ[Ok−1] and
Ψ[Ok] are the same. Moreover, the current half-edge h = hk at the beginning of the
kth core step of Ψ[Ok] is a head (for the orientation Ok). Hence, Condition (a) does
not hold at this core step. Thus, Ok is a δ-orientation such that Condition (a) does
not hold during the kth first core steps of the execution Ψ[Ok]. The orientations
O0,O1, . . . ,O|H| exist by induction. In particular, the δ-orientation O|H| is such
that Condition (a) never holds during the execution Ψ[O|H|].
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�

From Proposition 36 and 39 one obtains the following bijection between outde-
gree sequences and forests.

Proposition 45. Let G be an embedded graph. The mapping Γ which associates
with any subgraph S the outdegree sequence of the orientation OS establishes a
bijection between the forests and the outdegree sequences of G.

Another bijection between outdegree sequences and forests was established in
[27] after Stanley asked for such a bijection [40].

6.4. Summary of the specializations and further refinements

From Propositions 30, 33, 36 and 37 we can characterize the orientations associ-
ated with each class of subgraphs defined by the criteria forest, internal, connected,
external. Each class of subgraphs is counted by a specialization of the Tutte polyno-
mial given in Proposition 18. Our results are summarized in the following theorem.

Theorem 46. Let G be an embedded graph and let v0 be the root-vertex.

(1) The v0-connected orientations are in bijection with the connected subgraphs
counted by TG(1, 2).

(2) The strongly connected orientations are in bijection with the external sub-
graphs counted by TG(0, 2).

(3) The outdegree sequences are in bijection with minimal orientations, which
are in bijection with forests, counted by TG(2, 1).

(4) The acyclic orientations are in bijection with internal forests counted by
TG(2, 0).

(5) The v0-connected outdegree sequences are in bijection with v0-connected
minimal orientations which are in bijection with spanning trees counted
by TG(1, 1).

(6) The strongly connected outdegree sequences are in bijection with strongly
connected minimal orientations which are in bijection with external span-
ning trees counted by TG(0, 1).

(7) The v0-connected acyclic orientations are in bijection with internal span-
ning trees counted by TG(1, 0).

Theorem 46 is illustrated by Figure 24. The enumeration of acyclic orientations
by TG(2, 0) was first established by Winder in 1966 [44] and rediscovered by Stanley
1973 [39]. The result of Winder was stated as an enumeration formula for the num-
ber of faces of hyperplanes arrangements and was independently extended to reel
arrangements by Zaslavsky [45] and to orientable matroids by Las Vergnas [29]. The
enumeration of v0-connected acyclic orientations by TG(1, 0) was found by Greene
and Zaslavsky [26]. In [22], Gessel and Sagan gave a bijective proof of both results.
In [20], Gebhard and Sagan gave three other proofs of Greene and Zaslavsky’s re-
sult. The enumeration of strongly connected orientations by TG(0, 2) is a direct
consequence of Las Vergnas’ characterization of the Tutte polynomial [30]. The
enumeration of outdegree sequences by TG(2, 1) was discovered by Stanley [8, 40]
and a bijective proof was established in [27]. The enumeration of v0-connected
orientations by TG(1, 2), the enumeration of v0-connected outdegree sequences by
TG(1, 1) and the enumeration of strongly connected outdegree sequences by TG(0, 1)
were proved by Gioan [23].
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Refinements. It is possible to refine the results of Theorem 46. For instance,
we have proved that the acyclic orientations of a graph G are counted by TG(2, 0).
This is the sum of the coefficients of the polynomial TG(1 + x, 0) (which is closely
related to the chromatic polynomial of G). We denote by [xi]P (x) the coefficient
of xi in a polynomial P (x). The identities

∑

i∈N

[xi]TG(1 + x, 0) = TG(2, 0) = |{acyclic orientations}|,

and
∑

i∈N

[xi]TG(x, 0) = TG(1, 0) = |{v0-connected acyclic orientations}|,

make it appealing to look for a partition of the acyclic orientations (resp. root-
connected acyclic orientations) in parts of size [xi]TG(1 + x, 0) (resp. [xi]TG(x, 0)).
Such partitions were defined by Lass in [31] using set functions algebra. The par-
tition defined by Lass is linked to former constructions by Cartier, Foata, Gessel,
Stanley and Viennot (see references in [31]). More generally, one can try to in-
terpret the coefficients of TG(x, 1), TG(1 + x, 1), TG(x, 2), TG(1 + x, 2) etc. in
terms of orientations in order to interpolate between the different specializations
TG(i, j), 0 ≤ i, j ≤ 2. Observe that the coefficients of each of these polynomials can
be given an interpretation in terms of subgraphs. For instance, [xi]TG(1 + x, 0)
counts internal forests with i + 1 trees (by Theorem 13 and Lemma 12) and
[xi]TG(x, 0) counts internal spanning trees with i internal embedding-active edges
(by Theorem 4).

We will give an interpretation of the coefficients [xi]TG(1 + x, j) for i ≥ 0 and
j = 0, 1, 2 in terms of orientations. Let O be an orientation. We define the par-
tition of the vertex set V into root-components V =

⊎

0≤i≤k Vi as follows. The
first root-component V0 is the set of vertices reachable from the root-vertex v0. If
Wk = ∪0≤i≤kVi ( V , we consider the minimal edge ek with one vertex in Wk and

one vertex vk in Wk (the edges are compared according to the (G, T )-order, where
T = ∆(Ψ(O))). Then, the (k+1)th root-component is the set of vertices in Wk that
are reachable from vk. For instance, the root-components have been indicated for
the orientation in Figure 27 (left). It is clear that v0-connected orientations have
only one root-component. Given a v0-connected orientation O, we define the parti-
tion of the vertex set V into root-strong-components V =

⊎

0≤i≤k Ui as follows. The
first root-strong-component U0 is the set of vertices that can reach the root-vertex
v0. If Wk = ∪0≤i≤kUi ( V , we consider the minimal edge ek with one vertex in

Wk and one vertex vk in Wk. Then, the (k + 1)th root-strong-component is the set
of vertices in Wk that can reach vk. For instance, the root-strong-components have
been indicated for the v0-connected orientation in Figure 27 (right).

Theorem 47. Let G be an embedded graph and let v0 be the root-vertex. The coef-
ficient [xi]TG(1 + x, 2) (resp. [xi]TG(1 + x, 1), [xi]TG(1 + x, 0)) counts orientations
(resp. minimal orientations, acyclic orientations) with i + 1 (non-empty) root-
components. The coefficient [xi]TG(x, 2) (resp. [xi]TG(x, 1), [xi]TG(x, 0)) counts
v0-connected orientations (resp. minimal v0-connected orientations, acyclic v0-
connected orientations) with i + 1 (non-empty) root-strong-components.

As mentioned above, the coefficients [xi]TG(1+x, 0) and [xi]TG(x, 0) had already
been interpreted by Lass in [31]. We now prove Theorem 47.
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Figure 27. Left: root-components of an orientation. Right: root-
strong-components of a v0-connected orientation. The thick edges
correspond to the subgraph associated with the orientation by the
bijection Ψ.

Lemma 48. Let G be an embedded graph and let O be an orientation. We consider
the spanning tree T = ∆(Ψ(O)) and compare the half-edges and edges according
to the (G, T )-order. Let V0, . . . , Vk be the root-components and let Wi = ∪0≤j≤iVj.
Let Di for i = 1 . . . k be the cut defined by Wi−1 and let ei be the minimal edge in
Di. Then, an edge is minimal in a head-min directed cocycle if and only if it is in
the set {e1, . . . , ek}.

Proof.

• We first prove that for all 1 ≤ i ≤ k the edge ek is minimal in a head-min
directed cocycle. Clearly, every edge in the set Di is directed toward the vertices
in Wi−1. Let vi be the endpoint of ei = emin(D) which is not in Wi−1. Let Xi be
the set of vertices contained in the connected component containing vi once the cut
D is removed. The set D of edges with one endpoint in Wi−1 and one endpoint
in Xi is a directed cocycle contained in Di. Thus, the edge ei is minimal in the
directed cocycle D directed toward Wi−1. Since the cocycle D is directed toward
the component containing the root-vertex, it is head-min by Lemma 31.
• Consider an edge e minimal in a head-min directed cocycle D. We want to prove
that e is in {e1, . . . , ek}. Let G0 and G1 be the connected components after the
cocycle D is removed with the convention that G0 contains the root-vertex v0. The
directed cocycle D is head-min, hence it is directed toward G0 by Lemma 31. Let
i be the first index such that the root-component Vi contains a vertex v of G1.
The cocycle D is directed toward G0, hence no edge of G1 is reachable from v0 and
the index i is positive. Let ui and vi be the endpoints of ei in Wi−1 and Wi−1

respectively. By definition, the endpoint ui is in G0. Moreover, the vertex v ∈ G1

is reachable from vi, hence the endpoint vi is in G1. Thus, the edge ei is in D and
ei ≥ e = emin(D). We will now prove that ei ≤ e. The subset of vertices Wi−1

contains the root-vertex and the subset of edges Di separate Wi−1 and Wi−1, hence
every edge with one endpoint in Wi−1 is greater than ei = emin(Di) by Lemma 31.
The edge e has one endpoint in G1 ⊆ Wi−1, hence ei ≤ e. Thus, e = ei. �

Here is a counterpart of Lemma 48 for root-strong-components.

Lemma 49. Let G be an embedded graph and let O be a v0-connected orientation.
We consider the spanning tree T = ∆(Ψ(O)) and compare the half-edges and edges
according to the (G, T )-order. Let U0, . . . , Uk be the root-strong-components and let
Wi = ∪0≤j≤iUj. Let Di for i = 1 . . . k be the cut defined by Wi−1 and let ei be the
minimal edge in Di. Then, an edge is minimal in a directed cocycle if and only if
it is in the set {e1, . . . , ek}.
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Proof. The proof of Lemma 49 very similar to the proof of Lemma 48 and is left
to the reader. �

Proof of Theorem 47.

• We first prove that the coefficient [xi]TG(1+x, 2) (resp. [xi]TG(1+x, 1), [xi]TG(1+
x, 0)) counts orientations (resp. minimal orientations, acyclic orientations) with
i + 1 root-components. Let T be a spanning tree with I(T ) internal and E(T )
external (G, T )-active edges. By Lemma 12, the coefficient [xi](1 + x)I(T )2E(T )

counts the subgraphs S in the tree-interval [T−, T +] having i edges in S ∩ T .
Given that the tree-intervals form a partition of the set of subgraphs, the coef-
ficient [xi]

∑

T spanning tree (1 + x)I(T )2E(T ) counts the subgraphs S having i edges

in S∩∆(S). Moreover, by the characterization (4) of the Tutte polynomial, the sum
∑

T (1+x)I(T )2E(T ) is equal to TG(1+x, 2). Similarly, the coefficient [xi]TG(1+x, 1)
(resp. [xi]TG(1 + x, 0)) counts the forests (resp. internal forests) S having i edges
in S ∩ ∆(S). By Theorem 46 and Lemma 27, the coefficient [xi]TG(1 + x, 2) (resp.
[xi]TG(1 + x, 1), [xi]TG(1 + x, 0)) counts the orientations (resp. minimal orien-
tations, acyclic orientations) having exactly i edges which are minimal in some
head-min directed cocycle. Moreover, by Lemma 48, an orientation has i edges
which are minimal in some head-min directed cocycle if and only if it has i + 1
root-components.
• We now prove that the coefficient [xi]TG(x, 2) (resp. [xi]TG(x, 1), [xi]TG(x, 0))
counts v0-connected orientations (resp. minimal v0-connected orientations, acyclic
v0-connected orientations) with i + 1 root-strong-components. Let T be a spanning
tree with I(T ) internal (G, T )-active edges and E(T ) external (G, T )-active edges.
By Lemma 12, the coefficient [xi]xI(T )2E(T ) is the number of connected subgraphs in
the tree-interval [T−, T +] if I(T ) = i and 0 otherwise. Given that the tree-intervals
form a partition of the set of subgraphs, the coefficient [xi]

∑

T spanning tree xI(T )2E(T )

counts the connected subgraphs S such that the tree T = ∆(S) has i internal
(G, T )-active edges. Moreover, by the characterization (4) of the Tutte polynomial,
the sum

∑

T xI(T )2E(T ) is equal to TG(x, 2). Similarly, the coefficient [xi]TG(x, 1)
(resp. [xi]TG(x, 0)) counts the spanning trees (resp. internal spanning trees) T hav-
ing i internal (G, T )-active edges. By Theorem 46 and Lemma 35, the coefficient
[xi]TG(x, 2) (resp. [xi]TG(x, 1), [xi]TG(x, 0)) counts the v0-connected orientations
(resp. minimal v0-connected orientations, acyclic v0-connected orientations) having
exactly i edges which are minimal in some directed cocycle. Moreover, by Lemma
48, an orientation has i edges which are minimal in some directed cocycle if and
only if it has i + 1 root-strong-components. �

One specialization of this result is of special interest: the coefficient [x1]TG(x, 0)
counts bipolar orientations. Given two vertices u and v, a (u, v)-bipolar orientation
is an acyclic orientation such that u is the unique source and v is the unique sink.
The bipolar orientations are important for many graph algorithms [32]. In addition,
a bijection between spanning trees having activities (1, 0) with respect to Tutte’s
definition [42] and bipolar orientations is the building block used in [24] in order
to define a general correspondence between spanning trees and orientations. This
correspondence explains the link between the activities of spanning trees defined
by Tutte in [42] and the activities of orientations defined by Las Vergnas in [30].

Proposition 50. Let G be an embedded graph, let v0 be the root-vertex and let v1 be
the other endpoint of the root-edge. The mapping Φ establishes a bijection between



TUTTE POLYNOMIAL, ORIENTATIONS AND SANDPILE MODEL 39

the spanning trees having embedding-activities (I(T ), E(T )) = (1, 0) (counted by
[x1]TG(x, 0)) and the (v0, v1)-bipolar orientations.

Proposition 50 is illustrated by Figure 28.

v0 v1

Figure 28. A bipolar orientation and the corresponding spanning
tree (indicated by thick lines).

Proof. Observe first that an acyclic orientation O is (v0, v1)-bipolar if and only
if any vertex is reachable from v0 and can reach v1. By Theorem 47 the coef-
ficient [x1]TG(x, 0) counts acyclic v0-connected orientation having 2 root-strong-
components. No vertex v 6= v0 can reach v0 in an acyclic v0-connected orien-
tation (there would be a directed path from v0 to v and back). Hence the first
root-component U0 of an acyclic v0-connected orientation is reduced to {v0}. The
minimal edge with one endpoint in U0 = {v0} and one endpoint outside U0 is the
root-edge. Hence an acyclic v0-connected orientation has 2 root-strong-components
if and only if every vertex can reach v1. Thus, the coefficient [x1]TG(x, 0) counts
(v0, v1)-bipolar orientations. �

7. A BIJECTION BETWEEN BETWEEN SPANNING TREES AND

RECURRENT SANDPILE CONFIGURATIONS

In Section 3, we defined a mapping Λ : T 7→ ST from spanning trees to sandpile
configurations. Recall from Definition 9 that the number of grains ST (v) on the
vertex v in the configuration ST = Λ(T ) is the number of tails plus the number of
external (G, T )-active heads incident to v in the orientation OT = Φ(T ). In this
section, we prove that the mapping Λ is a bijection between spanning trees and
recurrent sandpile configurations.

Theorem 51. Let G be an embedded graph. The mapping Λ : T 7→ ST is a bijection
between the spanning trees and the recurrent sandpile configurations of G.

Let G = (V, E) be the graph underlying the embedding G. Observe that the
level of the configuration ST , that is,

∑

v∈V ST (v)− |E|, is the number of external
(G, T )-active edges. Indeed, every edge of G has contribution 1 to the sum

∑

v ST (v)
except the external (G, T )-active edges which have contribution 2.

Corollary 52. Let G be an embedded graph. The number of recurrent sandpile
configurations at level i is the number [yi]TG(1, y) of spanning trees having i external
(G, T )-active edges.

As mentioned above, Corollary 52 is not new. It was first proved recursively in
[33] and then bijectively in [11] (using Tutte’s notion of activity [42]). The Theorem
51 and Corollary 52 are illustrated by Figure 29.
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h0 ⋆ ⋆ ⋆

⋆
3 1 0 2 23 3 1 33

11010

Figure 29. The spanning trees (thick lines) and the correspond-
ing sandpile configurations. The external active edges are indicated
by a ⋆.

We first prove that the image of any spanning tree is a recurrent sandpile con-
figuration.

Proposition 53. Let G be an embedded graph. For any spanning tree T , the
sandpile configuration ST = Λ(T ) is recurrent.

Proof. Let v0 be the root-vertex. We consider the orientation OT and prove suc-
cessively the following properties.
• The sandpile configuration ST is stable. Let v be any vertex distinct from v0. We
want to prove that ST (v) < deg(v). Observe that any half-edge incident to v has
contribution at most one to ST (v). Moreover, the half-edge hv incident to v and
contained in the edge of T linking v to its father is a head by Lemma 5. Thus, hv

has no contribution to ST (v), and ST (v) ≤ deg(v) − 1.
• ST (v0) = deg(v0). We must prove that every half-edge incident to v0 has contri-
bution 1 to ST (v0). By Lemma 5, the internal edges are oriented from father to son
in OT . Therefore any internal half-edge incident to v0 is a tail, hence has contribu-
tion 1 to ST (v0). Let h be an external half-edge incident to v0. By definition, if the
half-edge h is greater than the half-edge h′ = α(h), then h is a tail. Else, the edge
e = {h, h′} is (G, T )-active by Lemma 7 (since the endpoint v0 of h is an ancestor
of the endpoint of h′). Thus, any external half-edge incident to v0 has contribution
1 to ST (v0).
• The sandpile configuration ST is recurrent. We want to prove that there is
a labeling of the vertices v0, v1, . . . , v|V |−1 such that the sequence of topplings

ST
v0

99K
S1

T
v1

99K
· · · v|V |−1

99K
S
|V |
T is valid. Observe that in this case the configuration ST

is recurrent. Indeed, the final configuration S
|V |
T is equal to ST since every vertex v

has been toppled once, hence has sent and received exactly deg(v, ∗) grains during
the sequence of topplings (recall that deg(v, ∗) is the number of non-loop edges in-
cident to v). In Section 6, we defined a linear order, the postfix order, on the vertex
set V (see Lemma 38). The root-vertex v0 is the maximal element for this order.
We want to prove that taking the unique labeling such that v0 > v1 > · · · > v|V |−1

for the postfix order, the sequence of topplings ST
v0

99K
S1

T
v1

99K
· · · v|V |−1

99K
S
|V |
T is valid.

From the preceding point, the toppling of v0 is valid. Suppose that the sequence
ST

v0

99K
S1

T
v1

99K
· · · vi−1

99K
Si

T is valid. After these topplings, the number of grains on the

vertex vi is Si
T (vi) = ST (vi) +

∑

j<i deg(vi, vj) (recall that deg(vi, vj) is the num-

ber of edges linking vi and vj). We want to prove that vi can be toppled, that is,
Si

T (vi) ≥ deg(vi). By Lemma 38, any arc OT (e) is directed toward its least end-
point (for the postfix order) unless e is external (G, T )-active. Let h be an half-edge
in an edge linking vi to a vertex vj , j ≥ i. The vertex vj is less than or equal to vi

for the postfix order, hence h is either a tail or an external (G, T )-active half-edge.
In both cases, the half-edge h has contribution 1 to ST (vi). Hence,

ST (vi) ≥
∑

j≥i

deg(vi, vj).
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Thus,

Si
T (vi) = ST (vi) +

∑

j≥i

deg(vi, vj) ≥
∑

j≥0

deg(vi, vj) = deg(vi)

and vi can be toppled. By induction, the sequence of topplings ST
v0

99K
S1

T
v1

99K
· · ·

· · · v|V |−1

99K
S
|V |
T is valid.

�

It remains to prove that Λ : T 7→ ST is a bijection between the spanning trees
and the recurrent sandpile configurations. For this purpose we define a mapping
Υ that we shall prove to be the inverse of Λ. The mapping Υ is a variant of the
burning algorithm introduced by Dhar in order to distinguish between recurrent
and non-recurrent sandpile configurations [16]. The spanning tree returned by the
algorithm can be seen as the path through which the fire (the sequence of topplings)
propagates. The intuitive principle of the algorithm is to decompose each toppling
and consider its effect grain after grain. When a grain makes another vertex topple,
we add the edge by which the grain has traveled into the tree. Different variants
of this algorithm have been proposed [11, 9]. These variants differ by the rule used
for choosing the next grain to be sent, and also differ from the procedure Υ given
below. Let us insist that the variants considered in [11, 9] do not contain our bi-
jection Λ as a special case.

If v is a vertex and F ⊆ E be a subgraph, we denote by degF (v) the degree of v
in the subgraph F .

Definition 54. Let G = (H, σ, α, h0) be an embedded graph. The mapping Υ
associates with a recurrent sanpile configuration S the spanning tree defined by the
following procedure.
Initialization: Initialize the current half-edge h to be h′

0 = σ−1(h0). Initialize the
tree T and the set of visited edges F to be empty.
Core: Do:
C1: Let e be the edge containing h, let u be the vertex incident to h and let v be
the other endpoint of e.

If e is not in F , then
- Add e to F .
- If u is not connected to v by T and S(v) + degF (v) ≥ deg(v) then

Add e to T .
C2: Move to the next half-edge clockwise around T :

If e is in T , then set the current half-edge h to be σ−1α(h), else set it to be σ−1(h).
Repeat until the current half-edge h is h′

0.
End: Return the tree T .

We represented the intermediate steps of the procedure Υ in Figure 30.

Observe that during the procedure Υ our motion (step C2) around the span-
ning tree is reverse (compared to our previous algorithms). This way of visiting
the half-edges would be the usual tour of the spanning tree in the embedded graph
G′ = (H, σ−1, α, h′

0).

We will now prove that Υ and Λ are inverse bijections. We first prove that the
mapping Υ is well defined on recurrent configurations and returns a spanning tree
(Proposition 55). Then we prove that Υ and Λ are inverse mappings (Propositions
62 and 63).
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h0

0

2

0

22

1

3

1

43 5 5 5 5

2

Υ

5

2

6

3 1 4 1 4 1 5 1 15

5

2

6

6 3 36

Figure 30. The mapping Υ. In the middle line, some intermedi-
ate steps are represented. The set F of unvisited edges is indicated
by dashed lines. The number associated to each vertex v is equal
to S(v) + degF (v). In the bottom line, the burning algorithm rep-
resentation of each of the intermediate steps is given.

Proposition 55. The procedure Υ is well defined on recurrent configurations and
returns a spanning tree.

Lemma 56. Let S be a recurrent configuration. Then, at any time of the execution
of the procedure Υ on S, the endpoint u of the current half-edge h is connected to
v0 by T .

Proof. The property holds at the beginning of the execution. Clearly, it remains
true each time a step C2 is performed. �

Proof of Proposition 55. Let S be a recurrent configuration. We denote by
Υ[S] the execution of the procedure Υ on S. We prove successively the following
properties on the execution Υ[S].
• At any time of the execution, the subgraph T is a tree incident to v0. The property
holds at the beginning of the execution. Suppose that it holds at the beginning of
a given core step and consider the edge e with endpoints u and v containing the
current half-edge. If the edge e is added to T , the subgraph T remains acyclic since
u is not connected to v by T . Moreover the subgraph T remains connected and
incident to v0 since (by Lemma 56) the vertex u is connected to v0 by T .
• No half-edge is visited twice, hence the execution terminates. Suppose that a
half-edge h is visited twice during the execution. We consider the first time this
situation happens. First note that h 6= h′

0 or the execution would have stopped just
before the second visit to h. Let h1 and h2 be respectively the current half-edge
just before the first and second visit to h.. Let T1 and T2 be the trees constructed
by the procedure Υ at the time of the first and second visit to h. Let e be the edge
containing σ−1(h). For i = 1, 2 we have h = σ−1α(hi) if e is in Ti and h = σ−1(hi)
otherwise. Since h1 6= h2 and T1 ⊆ T2, the edge e is in T2 but not in T1. This is
impossible since after the visit of h1 the edge e is in F and cannot be added to the
tree T anymore.
We denote by T0 the tree returned by the execution Υ[S] and by F0 the set of
visited edges at the end of this execution.



TUTTE POLYNOMIAL, ORIENTATIONS AND SANDPILE MODEL 43

• If e = {h1, h2} is an edge in T0 = Υ(S) and the endpoint of h1 is the father of
the endpoint of h2, then h1 is visited during the execution Υ[S]. Consider the core
step at which the edge e is added to the tree T . Let h be the current half-edge, let
u be the vertex incident to h and let v be the other endpoint of e. By Lemma 56,
the vertex u is connected to v0 by T ⊆ T0 − e, hence u is the father of v. Hence
h1 = h is visited during the execution Υ.
• At the end of the execution, any edge adjacent to T0 is in F0. We want to show
that any half-edge incident to T0 is visited during the execution Υ[S]. First observe
that no edge can be added to T after its first visit. Therefore, when a step C2

is performed, the edge e containing the current half-edge is in T if and only if it
is in T0. Let h be a half-edge incident to T0 which has not been visited during
the execution Υ. If the half-edge σ−1(h) is not in T0 then it has not been visited
(or h would have been the next half-edge visited during the execution). Thus by
applying σ−1 repeatedly we find an unvisited half-edge h such that σ−1(h) is in
T0. Then, the half-edge ασ−1(h) has not been visited during the execution Υ (or
h would have been the next half-edge visited during the execution). Thus (by the
preceding point) the endpoint of ασ−1(h) is the son of the endpoint of σ−1(h). We
have proved that if there is an unvisited half-edge h incident to T0, then there is
an unvisited half-edge incident to one of its sons in T0. We reach an impossibility.
• The tree T0 = Υ(S) is spanning. Let v0, v1, . . . , v|V |−1 be a labeling of the vertices

such that the sequence S v0

99K
S1 v1

99K
· · · v|V |−1

99K
S|V | is valid. In the configuration Si,

the number of sand grains on the vertex vi is Si(vi) = S(vi)+
∑

j<i deg(vj , vi) and
is more than the degree of vi. Suppose now that the tree T0 is not spanning and
consider the least index i such that vi is not connected to v0 by T . Each vertex vj

for j < i is incident to T , hence (by the preceding point) every edge joining vj and
vi is in F0. Moreover vi is adjacent to at least one of the vertices vj , j < i since
S(vi) is less than its degree and Si(vi) is not. Consider the last edge e (in order of
visit) joining vi to a vertex vj , j < i. When the edge e is visited, we have degF (vi) ≥
∑

j<i deg(vi, vj). Therefore, the condition S(vi) + degF (vi) ≥ deg(vi) holds and
the edge e should have been added to the tree T . We reach a contradiction.

�

We proceed to prove that Λ and Υ are inverse mappings.

Lemma 57. Consider a given core step of the procedure Υ. Let e be the edge
containing the current half-edge h and let v be the endpoint of α(h). If the edge e
is added to T , then the inequality S(v) + degF (v) ≥ deg(v) (tested in the procedure
Υ) is an equality.

Proof. Observe first that the vertex v is distinct from v0, otherwise adding e to
the tree T would create a cycle by Lemma 56. While v is not connected to v0 by
T , it is not the endpoint of the current half-edge h (Lemma 56). Thus, each time
the quantity degF (v) increases, that is, each time an edge incident to v is added to
F , the condition S(v) + degF (v) ≥ deg(v) is tested and the edge is added to T if
the condition holds.

�

Lemma 58. Let G = (H, σ, α, h0) be an embedded graph and let T be a spanning
tree. We consider the (G, T )-order on half-edges. Let v be a vertex distinct from
v0 and let hv be the half-edge incident to v in the edge of T linking v to its father.
Any half-edge h incident to v and such that α(h) > hv is external. Moreover, there
are deg(v) − ST (v) − 1 such half-edges.
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Proof. We consider the orientation OT . Recall from Lemma 5 that α(hv) < hv and
that the half-edges h incident to a descendant of v are characterized by α(hv) <
h ≤ hv. In particular, the inequalities α(hv) < h ≤ hv hold for the half-edges
incident to v. We now prove successively the following properties.
• Any half-edge h incident to v and such that α(h) > hv is external. Suppose that
the half-edge h is internal and consider the edge e containing h. If e links v to its
father, then h = hv and α(h) = α(hv) < hv. If e links v to one of its sons, then
α(h) is incident to a descendant of v and α(h) ≤ hv. In either cases, the hypothesis
α(h) > hv does not hold.
• An external half-edge h incident to v is a non-active head if and only if α(h) > hv.
The three following properties are sufficient to prove the equivalence:
- If h is a tail then α(h) < hv. Indeed, we have α(h) < h since h is a tail and
h ≤ hv since h is incident to v.
- If h is a head and α(h) < hv then h is (G, T )-active. Since h is a head, we have
h < α(h) hence, α(hv) < h < α(h) < hv. Thus, α(h) is incident to a descendant of
v and the edge e = {h, α(h)} is (G, T )-active by Lemma 7.
- If h is a head and α(h) > hv then h is not (G, T )-active. Since h is a head we
have h < α(h). Since α(h) > hv, the half-edge α(h) is not incident to a descendant
of v and the edge e = {h, α(h)} is not (G, T )-active by Lemma 7.
• There are deg(v)−ST (v)− 1 half-edges h incident to v and such that α(h) > hv.
By definition, ST (v) is the number of tails plus the number of external (G, T )-active
heads incident to v. Hence, deg(v) − ST (v) is the number of heads incident to v
which are not external (G, T )-active. By Lemma 5, internal edges are oriented from
father to son. Hence, the vertex v is incident to exactly one internal head. Thus
deg(v) − ST (v) − 1 is the number of external non-active heads. By the preceding
point, these half-edges are characterized by the condition α(h) > hv.

�

We now define the clockwise-tour of a tree. Let G = (H, σ, α, h0) be an embedded
graph. Given a spanning tree T , we define the clockwise-motion function τ on half-
edges by

τ(h) = σ−1α(h) if h is internal and τ(h) = σ−1(h) otherwise.

As observed above, the clockwise-motion function τ is the usual motion function for
the embedded graph G−1 = (H, σ−1, α, σ−1(h0)). This defines the (G−1, T )-order
on the half-edge set H for which h′

0 = σ−1(h0) is the least element. The (G, T )-order
denoted by < and the (G−1, T )-order denoted by <−1 are closely related.

Lemma 59. Let G be an embedded graph and let T be a spanning tree. The (G, T )-
order and (G−1, T )-order are related by h < h′ if and only if β(h′) <−1 β(h), where
β is the involution defined by β(h) = h if h is external and β(h) = α(h) otherwise.

Proof. Let t be the usual motion function and let τ be the clockwise-motion
function. Observe that tβ = σ and τβ = σ−1. Thus, τ = βt−1β. Let us write
t = (h0, h1, . . . , h|H|−1) in cyclic notation. Then t−1 = (h|H|−1, . . . , h1, h0) and τ =

βt−1β = (β(h|H|−1), . . . , β(h1), β(h0)). Moreover, σβ(h|H|−1) = t(h|H|−1) = h0,

hence β(h|H|−1) = h′
0 = σ−1(h0). Therefore, hi < hj if and only if i < j if and only

if β(hj) <−1 β(hi). �

Lemma 60. Let S be a recurrent configuration and let T0 = Υ(S) be the spanning
tree returned by the procedure Υ. The half-edges of G are visited in (G−1, T0)-order
during the procedure Υ.
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Proof. During the procedure Υ, no edge can be added to the tree T after its
first visit. Therefore, when a step C2 is applied, the edge e containing the current
half-edge is in T if and only if it is in T0. Hence, a step C2 corresponds to an
application of the clockwise-motion function τ of the spanning tree T0. Since the
first visited half-edge is h′

0 = σ−1(h0), the half-edges are visited in (G−1, T0)-order.

�

Lemma 61. Let G be an embedded graph and let T be a spanning tree. Let v be a
vertex distinct from v0 and let ev be the edge of T linking v to its father. There are
deg(v) − ST (v) − 1 edges incident to v and less than ev for the (G−1, T )-order.

Proof. Let hv be the half-edge of ev incident to v. Let h 6= hv be a half-edge
incident to v and let e be the edge containing h. We prove successively the following
properties.
• The edge e is less than ev if and only if α(h) <−1 α(hv). Moreover, in this case
e is not a loop. By Lemma 5 applied to the embedded graph G−1, the half-edges
h incident to v are such that α(hv) <−1 h ≤−1 hv. Hence, the edge containing h
is less than ev for the (G−1, T )-order if and only if α(h) <−1 α(hv). In this case,
α(h) is not incident to v by Lemma 5, that is, e is not a loop.
• The conditions α(h) <−1 α(hv) and α(h) > hv are equivalent. Moreover, there
are deg(v)−ST (v)−1 half-edges satisfying this condition. Suppose α(h) <−1 α(hv).
In this case, h external. Indeed, h is not in ev and is not incident to a son of v
by Lemma 5 applied to the embedded graph G−1. Hence, by Lemma 59, we get
α(h) > hv. Conversely, if α(h) > hv, the edge e is external by Lemma 58, hence
α(h) <−1 α(hv) by Lemma 59. Moreover, there are deg(v) − ST (v) − 1 half-edges
satisfying this condition by Lemma 58. �

Proposition 62. The mapping Λ ◦ Υ is the identity on recurrent configurations.

Proof. Let S be a recurrent configuration and let T = Υ(S). We want to prove
that the recurrent configuration ST = Λ(T ) is equal to S. We already know that
ST (v0) = deg(v0) = S(v0) since ST and S are recurrent configurations. Let v be
a vertex distinct from v0 and let ev be the edge of T linking v to its father. Let
F be the set of visited edges when ev is added to T during the execution Υ[S].
We know that S(v) = deg(v) − degF (v) by Lemma 57. It remains to prove that
ST (v) = deg(v) − degF (v). By Lemma 60, the half-edges are visited in (G−1, T )-
order during the execution Υ[S]. Therefore, the value degF (v) is the number of
edges incident to v which are less or equal to ev for the (G−1, T )-order. There are
deg(v)−ST (v) such edges by Lemma 61. We obtain degF (v) = deg(v)−ST (v), or
equivalently, ST (v) = deg(v) − degF (v). Thus, ST (v) = S(v). �

Proposition 63. The mapping Υ ◦ Λ is the identity on spanning trees.

Proof. Let T0 be a spanning tree. We denote by T1 = Υ(ST0
) the image of T0 by

Υ ◦Λ and want to prove that T1 = T0. Recall that every edge of G is visited during
the execution Υ[ST0

]. Hence, it is sufficient to prove that at the beginning of any
core step of the execution Υ[ST0

], the tree T constructed by the procedure Υ is T0∩F ,
where F denotes the set of visited edges. We proceed by induction on the number of
core steps. The property holds at the beginning of the first core step. Suppose that
it holds at the beginning of the kth core step. If the edge e containing the current
half-edge is already in the set F of visited edges, then the set F and the tree T
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are unchanged during this core step and the property holds at the beginning of the
k + 1th core step. Suppose now that the edge e is not in F at the beginning of the
kth core step. By the induction hypothesis, the tree T constructed by the procedure
Υ is T0 ∩ F . Moreover, no edge is added to the tree T after its first visit, hence
T = T1∩F . In other words, the spanning trees T0 and T1 coincide on F . By Lemma
60, the half-edges are visited in (G−1, T1)-order during the execution Υ[ST0

], hence
the edges visited before e during the execution Υ[ST0

] have been visited in (G−1, T0)-
order. Thus, the edges visited before e during the execution Υ[ST0

] are the edges
which are less than e for the (G−1, T0)-order. Suppose now that the edge e is in the
tree T0. In this case the endpoints u and v of e are not connected by T ⊆ T0 − e.
Moreover, the value degF+e(v) which corresponds to the number of edges incident
to v and visited before e during the execution Υ[ST0

], that is, the edge which are
less or equal to e for the (G−1, T0)-order, is deg(v) − ST0

(v) by Lemma 61. Thus,
the condition ST0

(v) + degF+e(v) ≥ deg(v) (tested by the procedure Υ) holds and
the edge e is added to the tree T . Suppose now that e is not in T0. In this case, the
edge ev linking v to its father in T0 is greater than e for the (G−1, T0)-order. Hence,
the value degF+e(v) is less or equal to the number of edges incident to v which are

less than ev for the (G−1, T0)-order. Thus, degF+e(v) < deg(v) − ST0
(v) − 1 by

Lemma 61. The condition ST0
(v) + degF+e(v) ≥ deg(v) (tested by the procedure

Υ) does not hold, hence the edge e is not added to the tree T . In any case, the
property holds at the beginning of the k + 1th core step.

�

This concludes our proof of Theorem 51. �

8. CONCLUDING REMARKS

8.1. The cycle and cocycle reversing systems

We consider the cycle reversing system and the cocycle reversing system. A tran-
sition in the cycle (resp. cocycle) reversing system consists in flipping a directed
cycle (resp. cocycle). The cycle and cocycle reversing systems appear implicitly in
many works (e.g. [19, 15, 37, 7]).

It is known from [37] that there is a unique v0-connected orientation (equiva-
lently, orientation without head-min directed cocycle by Lemma 32) in each equiva-
lence class of the cocycle reversing system. The counterpart of this property for the
cycle reversing system is given by Proposition 39. Indeed, the equivalence classes
of the cycle reversing system are in one-to-one correspondence with outdegree se-
quences [19]. Thus, Proposition 39 proves that there is a unique minimal orientation
(that is, orientation without tail-min directed cycle) in each equivalence class of the
cycle reversing system.

The cycle-cocycle reversing system in which a transition consists in flipping ei-
ther a directed cycle or a directed cocycle was introduced in [23]. It was observed in
this paper that the cycle and cocycle flips are really independent since they act on
the cyclic part and acyclic part respectively and do not modify the other part. As a
consequence it was shown that the equivalence classes of the cycle-cocycle reversing
system are in one-to-one correspondence with root-connected outdegree sequences.
Since the cycle and cocycle flips are independent, the unicity of the v0-connected
orientation in the classes of the cocycle reversing system ([37]) and the unicity of
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minimal orientation in the classes of the cycle reversing system (Proposition 39)
proves that there is a unique v0-connected minimal orientation in each equivalence
class of the cycle-cocycle reversing system.

As observed in [23], the enumerative results of Theorem 46 can be expressed in
terms of cycle/cocycle reversing systems. For instance, the equivalence classes of
the cocycle reversing system (in bijection with minimal orientations) are counted
by TG(1, 2), the equivalence classes of the cocycle reversing system reduced to one
element (equivalently, the strongly connected orientations) are counted by TG(0, 2)
etc.

8.2. The planar case and duality

In this subsection we restrict our attention to planar graphs. Our goal is to
highlight some nice properties of our bijections with respect to duality. Therefore
we will handle simultaneously a planar embedding and its dual. In order to avoid
confusion we shall indicate the implicit embedding G for the tree-intervals and the
mapping Φ by writing [T−, T +]G and ΦG .

Let G = (V, E) be a planar graph. The graph G can be embedded in the sphere,
that is, drawn in such a way the edges only intersect at their endpoints. An embed-
ding of G in the oriented sphere defines a combinatorial embedding G = (H, σ, α)
where the permutation σ corresponds to the counterclockwise order around each
vertex. There is a one-to-one correspondence between the embedding of graphs
in the oriented sphere and combinatorial embeddings having Euler characteristic
0, where the Euler characteristic is the number of vertices (cycles of σ) plus the
number of faces (cycles of σα) minus the number of edges (cycles of α) minus 2.
We call these embeddings planar. If G = (H, σ, α, h0) is a (combinatorial) planar
embedding, then G∗ = (H, σα, α, h0) correspond to the graphical dual of G in the
reverse-oriented sphere (the graphical dual of a graph embedded in the sphere is
obtained by putting a vertex in each face and an edge across each edge). Observe,
by the way that G∗∗ = G.

Consider a planar embedding G. Observe that the edges, subgraphs and ori-
entations of G can also be considered as edges, subgraphs and orientations of G∗.

Given a subgraph S of G we denote by S
∗

the co-subgraph, that is, the comple-
ment of S considered as a subgraph of G∗. Given an orientation O of G we denote

by O
∗

the co-orientation, that is, the orientation obtained from O by reversing
all arcs considered as an orientation of G∗. Observe that for any subgraph S and

any orientation O, we have S
∗∗

= S and O
∗∗

= O. From the Jordan Lemma, a

subgraph S is connected if and only if the co-subgraph S
∗

is acyclic. This implies
the well known property (see [36]) that a subgraph T is a spanning tree of G if and

only if the co-subgraph T
∗

is a spanning tree of G∗. From this property, it follows
that the fundamental cycle (resp. cocycle) of an internal (resp. external) edge e
with respect to G and T is the fundamental cocycle (resp. cycle) of e with respect

to G∗ and T
∗
. Moreover, it follows directly from the definitions that the motion

function of the spanning tree T of G and the motion function of the spanning tree

T
∗

of G∗ are equal. In particular, the (G, T )-order and the (G∗, T
∗
)-order are the

same. Hence, an edge is (G, T )-active if and only if it is (G∗, T
∗
)-active. Thus,

the mapping S 7→ S
∗

induces a bijection between the tree-intervals [T−, T +]G and

[T
∗−

, T
∗+

]G∗ . It follows directly from this property and the definitions that the
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mappings ΦG and ΦG∗ are related by :

for any subgraph S of G, ΦG(S)
∗

= ΦG∗(S
∗
).
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LaBRI, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France

E-mail address: bernardi@labri.fr


