

Tutte polynomial, subgraphs, orientations and sandpile model: new connections via embeddings

Olivier Bernardi

► To cite this version:

Olivier Bernardi. Tutte polynomial, subgraphs, orientations and sandpile model: new connections via embeddings. The Electronic Journal of Combinatorics, 2008, 15 (1), pp.R109. hal-00117268

HAL Id: hal-00117268 https://hal.science/hal-00117268

Submitted on 30 Nov 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TUTTE POLYNOMIAL, SUBGRAPHS, ORIENTATIONS AND SANDPILE MODEL: NEW CONNECTIONS VIA EMBEDDINGS

OLIVIER BERNARDI

ABSTRACT. For any graph G with n edges, the spanning subgraphs and the orientations of G are both counted by the evaluation $T_G(2,2) = 2^n$ of its Tutte polynomial. We define a bijection Φ between spanning subgraphs and orientations and explore its enumerative consequences regarding the Tutte polynomial. The bijection Φ is closely related to a recent characterization of the Tutte polynomial relying on a *combinatorial embedding* of the graph G, that is, on a choice of cyclic order of the edges around each vertex. Among other results, we obtain a combinatorial interpretation for each of the evaluations $T_G(i,j), 0 \leq i, j \leq 2$ of the Tutte polynomial in terms of orientations. The strength of our approach is to derive all these interpretations by specializing the bijection Φ in various ways. For instance, we obtain a bijection between the connected subgraphs of G (counted by $T_G(1,2)$) and the root-connected orientations. We also obtain a bijection between the forests (counted by $T_G(2,1)$) and outdegree sequences which specializes into a bijection between spanning trees (counted by $T_G(1,1)$) and root-connected outdegree sequences. We also define a bijection between spanning trees and recurrent configurations of the sandpile model. Combining our results we obtain a bijection between recurrent configurations and root-connected outdegree sequences which leaves the configurations at level 0 unchanged.

1. INTRODUCTION

In 1947, Tutte defined a graph invariant that he named the *dichromate* because he thought of it as bivariate generalization of the chromatic polynomial [41]. Since then, the dichromate, now known as the *Tutte polynomial*, has been widely studied (see [6, 8]).

There are several alternative definitions of the Tutte polynomial [3, 22, 30, 42]. The most straightforward definition for a connected graph G = (V, E) is

$$T_G(x,y) = \sum_{S \text{ spanning subgraph}} (x-1)^{c(S)-1} (y-1)^{c(S)+|S|-|V|},$$
(1)

where the sum is over all spanning subgraphs S (equivalently, subsets of edges), c(S) denotes the number of connected components of S and |.| denotes cardinality. From this definition, it is easy to see that $T_G(1,1)$ (resp. $T_G(2,1)$, $T_G(1,2)$) counts the spanning trees (resp. forests, connected subgraphs) of G. A somewhat less interesting specialization is $T_G(2,2) = 2^{|E|}$ counting the spanning subgraphs of G. Note that this is also the number of orientations of G. As a matter of fact, all the specializations $T_G(i, j), 0 \le i, j \le 2$ as well as some of their refinements have nice interpretations in terms of orientations [8, 22, 23, 26, 30, 31, 39].

Date: November 30, 2006.

As one can see, there is a lot of interesting specializations of the Tutte polynomial and a number of articles are devoted to combinatorial proofs of these specializations [20, 22, 21, 23, 24, 31]. In this paper, we give bijective proofs for the interpretation of each of the evaluations $T_G(i, j), 0 \leq i, j \leq 2$ in terms of orientations. The strength of our approach is to derive all these interpretations from a single bijection between subgraphs and orientations that we specialize in various ways. For instance, we derive a bijection between connected subgraphs (counted by $T_G(1, 2)$) and root-connected orientations. We also derive a bijection between forests (counted by $T_G(2, 1)$) and outdegree sequences. In particular, we derive a bijection between spanning trees (counted by $T_G(1, 1)$) and root-connected outdegree sequences.

We shall also deal with the sandpile model [1, 17] (equivalently chip firing game [5]). It is known that the recurrent configurations of the sandpile model on G (equivalently G-parking functions [38]) are counted by $T_G(1,1)$ [17]. Observe that this is the number of spanning trees. The following refinement is also true: the coefficient of y^k in $T_G(1, y)$ is the number of recurrent configurations at level k [33]. A bijective proof of this result was given in [11]. We give an alternative bijective proof. We also answer a question of Gioan [23] by establishing a bijection between recurrent configurations of the sandpile model and root-connected outdegree sequences that leaves the configurations at level 0 unchanged.

Our bijections require a choice of a combinatorial embedding of the graph G, that is, a choice of a cyclic ordering of the edges around each vertex. In [3] the *internal* and *external embedding-activities* of spanning trees were defined for embedded graphs. It was proved that for any embedding of the graph G, the Tutte polynomial of G is given by

$$T_G(x,y) = \sum_{T \text{ spanning tree}} x^{\mathcal{I}(T)} y^{\mathcal{E}(T)}, \qquad (2)$$

where the sum is over all spanning trees T and $\mathcal{I}(T)$ (resp. $\mathcal{E}(T)$) denotes the internal (resp. external) embedding-activity. This characterization of the Tutte polynomial is reminiscent but inequivalent to the one given by Tutte in [42]. The characterization (2) is our main tool in order to obtain enumerative corollary from our bijections. In this respect, our approach is close to the one used by Gessel and Sagan in [21, 22] in order to obtain enumerative consequences from a new notion of external activity.

The outline of this paper is as follows.

• In Section 2, we recall some definitions and preliminary results obout graphs, orientations and the sandpile model.

• In Section 3, we take a glimpse at the results to be developed in the following sections. We first establish some elementary results about the *tour* of spanning trees and their *embedding-activities*. Then we define a mapping Φ from spanning trees to orientations. We highlight a connection between the embedding-activities of a spanning tree T and the acyclicity or strong-connectivity of the orientation $\Phi(T)$. Building on the mapping Φ we also define a bijection Γ between spanning trees to root-connected outdegree sequences and a closely related bijection Λ between spanning trees and recurrent configurations of the sandpile model.

• In Section 4, we define a partition Π of the set of subgraphs. Each part of this partition is an interval in the boolean lattice of the set of subgraphs and is associated to a spanning tree. The interval associated with a spanning tree T is closely related

to the embedding-activities of T. We show how the partition Π explains the link between the subgraph expansion (1) and the spanning tree expansion (2) of the Tutte polynomial. We also consider several criteria for subgraphs: connected, forest, *internal*, *external* and prove that the families of subgraphs that can be defined by combining these criteria are counted by one of the evaluations $T_G(i, j), 0 \leq i, j \leq 2$ of the Tutte polynomial.

• In Section 5, we extend the mapping Φ to the set of all subgraphs. This definition makes use of the partition Π of the set of subgraphs. We prove that Φ is a bijection between subgraphs and orientations.

• In Section 6, we study the specializations of the bijection Φ to the families of subgraphs defined by the criteria *connected*, *forest*, *internal*, *external*. We prove that Φ induces bijections between these families of subgraphs and the families of orientations defined by the criteria *root-connected*, *minimal*, *acyclic*, *strongly connected*. As a consequence, we obtain an interpretation for each of the evaluations $T_G(i, j), 0 \leq i, j \leq 2$ of the Tutte polynomial in terms of orientations or outdegree sequences.

• In Section 7, we study the bijection Λ between spanning trees and recurrent configurations of the sandpile model.

• Lastly, in Section 8 we comment on the case of planar graphs.

2. **DEFINITIONS**

We denote by \mathbb{N} the set of non-negative integers. For any set S, we denote by |S| its cardinality. For any sets S_1, S_2 , we denote by $S_1 \triangle S_2$ the symmetric difference of S_1 and S_2 . If $S \subseteq S'$ and S' is clear from the context, we denote by \overline{S} the complement of S, that is, $S' \setminus S$. If $S \subseteq S'$ and $s \in S'$, we write S + s and S - s for $S \cup \{s\}$ and $S \setminus \{s\}$ respectively (whether s belongs to S or not).

2.1. Graphs

In this paper we consider finite, undirected graphs. Loops and multiple edges are allowed but, for simplicity, we shall only consider *connected* graphs. Formally, a graph G = (V, E) is a finite set of vertices V, a finite set of edges E and a relation of incidence in $V \times E$ such that each edge e is incident to either one or two vertices. The endpoints of an edge e are the vertices incident to e. A cycle is a set of edges that form a simple closed path. A cut is a set of edges C whose deletion increases the number of connected components and such that the endpoints of every edge in C are in distinct components of the resulting graph. A cut is shown in Figure 1. Given a subset of vertices U, the cut defined by U is the set of edges with one endpoint in U and one endpoint in \overline{U} . A cocycle is a cut which is minimal for inclusion (equivalently it is a cut whose deletion increases the number of connected components by one). For instance, the set of edges $\{f, g, h\}$ in Figure 1 is a cocycle.

Let G = (V, E) be a graph. A spanning subgraph of G is a graph G' = (V, E')where $E' \subseteq E$. All the subgraphs considered in this paper are spanning and we shall not further precise it. A subgraph is entirely determined by its edge set and, by convenience, we shall identify the subgraph with its edge set. A forest is an acyclic graph. A tree is a connected forest. A spanning tree is a (spanning) subgraph which is a tree. Given a tree T and a vertex distinguished as the root-vertex we shall use the usual family vocabulary and talk about the father, son, ancestors and descendants of vertices in T. By convention, a vertex is considered to be an

FIGURE 1. The cut $\{e, f, g, h, i, j\}$ and the connected components after deletion of this cut (shaded regions).

ancestor and a descendant of itself. If a vertex of the graph G is distinguished as the *root-vertex* we implicitly consider it to be the root-vertex of every spanning tree.

Let T be a spanning tree of the graph G. An edge of G is said to be *internal* if it is in T and *external* otherwise. The *fundamental cycle* (resp. *cocycle*) of an external (resp. internal) edge e is the set of edges e' such that the subgraph T - e' + e (resp. T - e + e') is a spanning tree. Observe that the fundamental cycle C of an external edge e is a cycle contained in T + e (C is made of e and the path of T between the endpoints of e). Similarly, the fundamental cocycle D of an internal edge e is a cocycle contained in $\overline{T} + e$ (D is made of the edges linking the two subtrees obtained from T by removing e). Observe also that, if e is internal and e' is external, then e is in the fundamental cycle of e' if and only if e' is in the fundamental cocycle of e.

2.2. Embeddings

We recall the notion of combinatorial map [10, 12]. A combinatorial map (or map for short) $\mathcal{G} = (H, \sigma, \alpha)$ is a set of half-edges H, a permutation σ and an involution without fixed point α on H such that the group generated by σ and α acts transitively on H. A map is rooted if one of the half-edges is distinguished as the root. For $h_0 \in H$, we denote by $\mathcal{G} = (H, \sigma, \alpha, h_0)$ the map (H, σ, α) rooted on h_0 . From now on all our maps are rooted.

Given a map $\mathcal{G} = (H, \sigma, \alpha, h_0)$, we consider the *underlying* graph G = (V, E), where V is the set of cycles of σ , E is the set of cycles of α and the incidence relation is to have at least one common half-edge. We represented the underlying graph of the map $\mathcal{G} = (H, \sigma, \alpha)$ on the left of Figure 2, where the set of half-edges is H = $\{a, a', b, b', c, c', d, d', e, e', f, f'\}$, the involution α is (a, a')(b, b')(c, c')(d, d')(e, e')(f, f')in cyclic notation and the permutation σ is (a, f', b, d)(d')(a', e, f, c)(e', b', c'). Graphically, we keep track of the cycles of σ by drawing the half-edges of each cycle in counterclockwise order around the corresponding vertex. Hence, our drawing characterizes the map \mathcal{G} since the order around vertices give the cycles of the permutation σ and the edges give the cycles of the involution α . On the right of Figure 2, we represented the map $\mathcal{G}' = (H, \sigma', \alpha)$, where $\sigma' = (a, f', b, d)(d')(a', e, c, f)(e', b', c')$. The maps \mathcal{G} and \mathcal{G}' have isomorphic underlying graphs.

Note that the underlying graph of a map $\mathcal{G} = (H, \sigma, \alpha)$ is always connected since σ and α act transitively on H. A combinatorial embedding (or embedding for short) of a connected graph G is a map $\mathcal{G} = (H, \sigma, \alpha)$ whose underlying graph is isomorphic to G (together with an explicit bijection between the set H and the set of half-edges of G). When an embedding \mathcal{G} of G is given we shall write the edges of G as pairs of half-edges (writing for instance $e = \{h, h'\}$). Moreover, we call root-vertex the vertex incident to the root and root-edge the edge containing the root. In the following, we use the terms *combinatorial map* and *embedded graph* interchangeably. We do not require our graphs to be planar.

FIGURE 2. Two embeddings of the same graph.

Intuitively, a combinatorial embedding corresponds to the choice of a cyclic order on the edges around each vertex. This order can also be seen as a local planar embedding. In fact there is a one-to-one correspondence between *combinatorial embeddings of graphs* and the *cellular embeddings of graphs in orientable surfaces* (defined up to homeomorphism); see [35, Thm. 3.2.4].

2.3. Orientations and outdegree sequences

Let G be a graph and let \mathcal{G} be an embedding of G. An orientation is a choice of a direction for each edge of G, that is to say, a function \mathcal{O} which associates to any edge $e = \{h_1, h_2\}$ one of the ordered pairs (h_1, h_2) or (h_1, h_2) . Note that loops have two possible directions. We call $\mathcal{O}(e)$ an *arc*, or *oriented edge*. If $\mathcal{O}(e) = (h_1, h_2)$ we call h_1 the *tail* and h_2 the *head*. We call *origin* and *end* of $\mathcal{O}(e)$ the endpoint of the tail and head respectively. Graphically, we represent an arc by an arrow going from the origin to the end (see Figure 3).

FIGURE 3. Half-edges and endpoints of arcs.

A directed path is a sequence of arcs (a_1, a_2, \ldots, a_k) such that the end of a_i is the origin of a_{i+1} for $1 \le i \le k-1$. A directed cycle is a simple directed closed path. A directed cocycle is a set of arcs a_1, \ldots, a_k whose deletion disconnects the graph into two components and such that all arcs are directed toward the same component. If the orientation \mathcal{O} is not clear from the context, we shall say that a path, cycle, or cocycle is \mathcal{O} -directed. An orientation is said to be acyclic (resp. totally cyclic or strongly connected) if there is no directed cycle (resp. cocycle).

We say that a vertex v is *reachable* from a vertex u if there is a directed path (a_1, a_2, \ldots, a_k) such that the origin of a_1 is u and the end of a_k is v. If v is *reachable* from u in the orientation \mathcal{O} denote it by $u \stackrel{\mathcal{O}}{\rightarrow} v$. An orientation is said to be *u*-connected if every vertex is reachable from u. It is known that every edge in an oriented graph is either in a directed cycle but not both [34]. Hence, an orientation \mathcal{O} is strongly connected if and only if the origin of every arc is reachable from its end. Equivalently, \mathcal{O} is strongly connected if every pair of vertices are reachable from one another.

The outdegree sequence (or score vector) of an orientation \mathcal{O} of the graph G = (V, E) is the function $\delta : V \mapsto \mathbb{N}$ which associates to every vertex the number of incident tails. We say that \mathcal{O} is a δ -orientation. The outdegree sequences are strongly related to the cycle flips, that is, the reversing of every edge in a directed cycle. Indeed, it is known that the outdegree sequences are in one-to-one correspondence with the equivalence classes of orientations up to cycle flips[19].

There are nice characterizations of the functions $\delta : V \mapsto \mathbb{N}$ which are the outdegree sequence of an orientation. Given a function $\delta : V \mapsto \mathbb{N}$, we define the *excess* of a subset of vertices $U \subseteq V$ by

$$exc_{\delta}(U) = \left(\sum_{u \in U} \delta(u)\right) - |G_U|,$$

where $|G_U|$ is the number of edges of G having both endpoints in U. By definition, if δ is the outdegree sequence of an orientation \mathcal{O} , the sum $\sum_{u \in U} \delta(u)$ is the number of tails incident with vertices in U. From this number, exactly $|G_U|$ are part of edges with both endpoints in U. Hence, the excess $exc_{\delta}(U)$ corresponds to the number of tails incident with vertices in U in the cut defined by U. This property is illustrated in Figure 4. It is clear that if $\delta : V \mapsto \mathbb{N}$ is an outdegree sequence, then the excess of V is 0 and the excess of any subset $U \subseteq V$ is non-negative. In fact, the converse is also true: every function $\delta : V \mapsto \mathbb{N}$ satisfying these two conditions is an outdegree sequence [19].

FIGURE 4. The excess of the subset U is $exc_{\delta}(U) = (4+2+1) - 4 = 3$.

We now prove that the reachability between two vertices in a directed graph only depends on the outdegree sequence of the orientation.

Lemma 1. Let G = (V, E) be a graph and let u, v be two vertices. Let \mathcal{O} be an orientation of G and let δ be its outdegree sequence. Then v is reachable from u if and only if there is no subset of vertices $U \subseteq V$ containing u and not v and such that $exc_{\delta}(U) = 0$.

Proof. Lemma 1 is illustrated in Figure 5. Observe that the excess of a subset $U \subseteq V$ is 0 if and only if the cut defined by U is directed toward U.

• Suppose there is a subset of vertices $U \subseteq V$ containing u and not v such that $exc_{\delta}(U) = 0$. Then, the cut defined by U is directed toward U. Thus, there is no directed path from U to \overline{U} . Hence v is not reachable from v.

• Conversely, suppose v is not reachable from u. Consider the set of vertices U reachable from u. The subset U contains u but not v. Moreover, the cut defined by U is directed toward U, hence $exc_{\delta}(U) = 0$.

6

FIGURE 5. Reachability is a property of the outdegree sequence.

Since reachability only depends on the outdegree sequence of the orientation, we can define an outdegree sequence δ to be *u*-connected or strongly connected if the δ -orientations are. The *u*-connected outdegree sequences were considered in [23] in connection with the cycle/cocycle reversing system (see Subsection 8.1).

Remark: From the characterization of outdegree sequences given above and Lemma 1 it is possible to characterize *u*-connected and strongly connected outdegree sequences. Let G = (V, E) be a graph and $\delta : V \mapsto \mathbb{N}$ be a mapping such that $\sum_{v \in V} \delta(v) = |E|$. The mapping δ is a strongly connected outdegree sequence if and only if the excess of any subset $U \subsetneq V$ is positive. The mapping δ is a *u*connected outdegree sequence if and only if the excess of any subset $U \subsetneq V$ is non-negative and is positive whenever $u \in U$.

2.4. The sandpile model

The sandpile model is a dynamical system introduced in statistical physics in order to study self-organized criticality [1, 16]. It appeared independently in combinatorics as the *chip firing game* [5]. Roughly speaking, the model consists of grains of sand toppling through edges when there are too many on the same vertex. *Recurrent configurations* play an important role in the model: they correspond to configurations that can be observed after a long period of time. The recurrent configuration are also equivalent to the *G*-parking functions introduced by Shapiro and Postnikov in the study of certain quotient of the polynomial ring [38]. Despite its simplicity, the sandpile model displays interesting enumerative [11, 17, 33] and algebraic properties [13, 18].

Let G = (V, E) be a graph with a vertex v_0 distinguished as the root-vertex. A configuration of the sandpile model (or sandpile configuration for short) is a function $S: V \mapsto \mathbb{N}$, where S(v) represents the number of grains of sand on v. A vertex v is unstable if S(v) is greater than or equal to its degree deg(v). An unstable vertex v can topple by sending a grain of sand through each of the incident edges. This leads to the new sandpile configuration S' defined by $S'(u) = S(u) + \deg(u, v)$ for all $u \neq v$ and $S'(v) = S(v) - \deg(v, *)$, where $\deg(u, v)$ is the number of edges with endpoints u, v and $\deg(v, *)$ is the number of non-loop edges incident to v. We denote this transition by $S_{\rightarrow \rightarrow}^{v} S'$. An evolution of the system is represented in Figure 6.

A sandpile configuration is *stable* if every vertex $v \neq v_0$ is stable. A stable configuration S is *recurrent* if $S(v_0) = \deg(v_0)$ and if there is a labeling of the vertices in V by $v_0, v_1, \ldots, v_{|V|-1}$ such that $S \xrightarrow{v_0} S_1 \xrightarrow{v_1} \ldots \xrightarrow{v_{|V|-1}} S_{|V|} = S$. This means that after toppling the root-vertex v_0 , there is a valid sequence of toppling involving each vertex once that gets back to the initial configuration. For instance, the configuration at the left of Figure 6 is recurrent. Lastly, the *level* of a recurrent configuration S is given by: $|eve|(S) = (\sum_{v \in V} S(v)) - |E|$.

FIGURE 6. A recurrent configuration and the evolution rule.

3. A GLIMPSE AT THE RESULTS

3.1. Tour of spanning trees and embedding-activities

We first define the tour of spanning trees. Informally, the tour of a tree is a walk around the tree that follows internal edges and crosses external edges. A graphical representation of the tour is given in Figure 7.

FIGURE 7. Intuitive representation of the tour of a spanning tree (indicated by thick lines).

Let $\mathcal{G} = (H, \sigma, \alpha)$ be an embedding of the graph G = (V, E). Given a spanning tree T, we define the *motion function* t on the set H of half-edges by:

$$t(h) = \begin{bmatrix} \sigma(h) & \text{if } h \text{ is external,} \\ \sigma\alpha(h) & \text{if } h \text{ is internal.} \end{bmatrix}$$
(3)

It was proved in [3] that t is a cyclic permutation on H. For instance, for the embedded graph of Figure 7, the motion function is the cyclic permutation (a, e, f, c, a', f', b, c', e', b', d, d'). The cyclic order defined by the motion function t on the set of half-edges is what we call the *tour of the tree* T.

We will now define the *embedding-activities* of spanning trees introduced in [3] in order to characterize the Tutte polynomial (see Theorem 4 below).

Definition 2. Let $\mathcal{G} = (H, \sigma, \alpha, h)$ be an embedded graph and let T be a spanning tree. We define the (\mathcal{G}, T) -order on the set H of half-edges by $h < t(h) < t^2(h) < \ldots < t^{|H|-1}(h)$, where t is the motion function. (Note that the (\mathcal{G}, T) -order is a linear order on H since t is a cyclic permutation.) We define the (\mathcal{G}, T) -order on the edge set by setting $e = \{h_1, h_2\} < e' = \{h'_1, h'_2\}$ if $\min(h_1, h_2) < \min(h'_1, h'_2)$. (Note that this is also a linear order.)

Example: Consider the embedded graph \mathcal{G} rooted on a and the spanning tree T represented in Figure 7. The (\mathcal{G}, T) -order on the half-edges is a < e < f < c < a' < f' < b < c' < e' < b' < d < d'. Therefore, the (\mathcal{G}, T) -order on the edges is $\{a, a'\} < \{e, e'\} < \{f, f'\} < \{c, c'\} < \{b, b'\} < \{d, d'\}$.

Definition 3. Let \mathcal{G} be a rooted embedded graph and T be a spanning tree. We say that an external (resp. internal) edge is (\mathcal{G}, T) -active (or embedding-active if \mathcal{G} and T are clear from the context) if it is minimal for the (\mathcal{G}, T) -order in its fundamental cycle (resp. cocycle).

Example: In Figure 7, the (\mathcal{G}, T) -order on the edges is $\{a, a'\} < \{e, e'\} < \{f, f'\} < \{c, c'\} < \{b, b'\} < \{d, d'\}$. Hence, the internal active edges are $\{a, a'\}$ and $\{d, d'\}$ and there is no external active edge. For instance, $\{e, e'\}$ is not active since $\{a, a'\}$ is in its fundamental cycle.

The following characterization of the Tutte polynomial was proved in [3].

Theorem 4. Let \mathcal{G} be any rooted embedding of the connected graph G (with at least one edge). The Tutte polynomial of G is equal to

$$T_G(x,y) = \sum_{T \text{ spanning tree}} x^{\mathcal{I}(T)} y^{\mathcal{E}(T)}, \qquad (4)$$

where the sum is over all spanning trees and $\mathcal{I}(T)$ (resp. $\mathcal{E}(T)$) is the number of (\mathcal{G},T) -active internal (resp. external) edges.

Example: We represented the spanning trees of K_3 in Figure 8. If the embedding is rooted on the half-edge a, then the embedding-active edges are the one indicated by a \star . Hence, the spanning trees (taken from left to right) have respective contributions x, x^2 and y and the Tutte polynomial is $T_{K_3}(x, y) = x^2 + x + y$.

FIGURE 8. The embedding-activities of the spanning trees of K_3 .

Note that the characterization (4) of the Tutte polynomial 4 implies that the sum in (4) does not depend on the embedding, whereas the summands clearly depends on it. This characterization is reminiscent but inequivalent to the one given by Tutte in [42].

From now on we adopt the following conventions. If an embedding \mathcal{G} and a spanning tree T are clear from the context, the (\mathcal{G}, T) order is denoted by <. If F is a set of edges and h is a half-edge, we say that h is in F if the edge e containing h is in F. A half-edge h is said to be *internal*, *external* or (\mathcal{G}, T) -active if the edge e is.

We now make some elementary remarks about embedding-activities that will be useful throughout the paper.

Lemma 5. Let \mathcal{G} be an embedded graph. Let T be a spanning tree and let $e = \{h_1, h_2\}$ be an internal edge. Assume that $h_1 < h_2$ (for the (\mathcal{G}, T) -order) and denote by v_1 and v_2 the endpoints of h_1 and h_2 respectively. Then, v_1 is the father of v_2 in T. Moreover, the half-edges h such that $h_1 < h \leq h_2$ are the half-edges incident to a descendant of v_2 .

Proof. Let t be the motion function associated to the tree T (t is defined by (3)). We consider the subtrees T_1 and T_2 obtained from T by deleting e with the convention that h_1 is incident to T_1 and h_2 is incident to T_2 . Let h be any half-edge distinct from h_1 and h_2 . By definition of t, the half-edges h and t(h) are incident to the same subtree T_i . Therefore, the (\mathcal{G}, T) -order is such that $h_0 < l_1 < \cdots < l_i < h_1 < l'_1 < \cdots < l'_j < h_2 < l''_1 < \cdots < l'_k$ where l'_1, \ldots, l'_j, h_2 are the half-edges incident with the subtree T_2 not containing the root-vertex v_0 . Since the subtree T_2 does not contain v_0 its vertices are the descendants of v_2 in T.

Lemma 6. With the same assumption as in Lemma 5, let $e = \{h_1, h_2\}$ with $h_1 < h_2$ be an internal edge and let $e' = \{h'_1, h'_2\}$ with $h'_1 < h'_2$ be an external edge.

Then, e is in the fundamental cycle of e' (equivalently, e' is in the fundamental cocycle of e) if and only if h₁ < h'₁ < h₂ < h'₂ or h'₁ < h₁ < h'₂ < h₂.
Suppose that e is in the fundamental cycle of e' and denote by v₁, v₂, v'₁, v'₂ the

• Suppose that e is in the fundamental cycle of e' and denote by v_1, v_2, v'_1, v'_2 the endpoints of h_1, h_2, h'_1, h'_2 respectively. Recall that v_1 is the father of v_2 in T (Lemma 5) and that exactly one of the vertices v'_1, v'_2 is a descendant of v_2 . If e < e', then v'_1 is the descendant of v_2 , else it is v'_2 .

Proof.

• Let V_2 be the set of descendants of v_2 . Recall that the edge e' is in the fundamental cocycle of e if and only if it has one endpoint in V_2 and the other in $\overline{V_2}$. By Lemma 5, this is equivalent to the fact that exactly one of the half-edges h'_1, h'_2 is in $\{h': h_1 < h' \leq h_2\}$. Thus, e' is in the fundamental cocycle of e if and only if $h_1 < h'_1 < h'_2 < h'_2$ or $h'_1 < h_2 < h_2$.

• Suppose that e is in the fundamental cycle of e'. By the preceding point, e < e' implies $h_1 < h'_1 < h_2 < h'_2$. In this case, h'_1 is incident to a descendant of v_2 by Lemma 5. Similarly, e' < e implies $h'_1 < h_1 < h'_2 < h_2$, hence h'_2 is incident to a descendant of v_2 .

Lemma 7. An external edge $e' = \{h'_1, h'_2\}$ with $h'_1 < h'_2$ is (\mathcal{G}, T) -active if and only if the endpoint of h'_1 is an ancestor of the endpoint of h'_2 .

Proof. Denote by v'_1 and v'_2 the endpoints of h'_1 and h'_2 respectively.

• Suppose v'_1 is an ancestor of v'_2 . We want to prove that e' is active. Let $e = \{h_1, h_2\}$ with $h_1 < h_2$ be an internal edge in the fundamental cycle of e'. The edge e is in the path of T between v'_1 and v'_2 . Denote by v_1 and v_2 the endpoints of h_1 and h_2 respectively. Recall that v_1 is the father of v_2 (Lemma 5). Since v'_2 is a descendant of v_2 , we have e' < e by Lemma 6. The edge e' is less than any edge in its fundamental cycle hence it is (\mathcal{G}, T) -active.

• Suppose that v'_1 is not an ancestor of v'_2 . Then the edge $e = \{h_1, h_2\}$ with $h_1 < h_2$ linking v'_1 to its father in T is in the fundamental cycle of e'. If we denote by v_1 and v_2 the endpoints of h_1 and h_2 respectively, we get $v_2 = v'_1$ by Lemma 5. Since the endpoint v'_1 of h'_1 is a descendant of the endpoint v_2 of h_2 , we get e < e' by Lemma 6. Thus, e' is not (\mathcal{G}, T) -active.

3.2. A mapping from spanning trees to orientations and some related bijections

We now take a glimpse at the results to be developed in the following sections. In order to present these results, we define a mapping Φ from spanning trees to orientations. The mapping Φ will be extended into a bijection between subgraphs and orientations in Section 5. Related to the mapping Φ , we define two other mappings Γ and Λ on the set of spanning trees. The mapping Γ is a bijection between spanning trees and root-connected outdegree sequences while Λ is a bijection between spanning trees and recurrent sandpile configurations.

Consider an embedded graph $\mathcal{G} = (H, \sigma, \alpha, h_0)$ and a spanning tree T. Recall that the tour of T defines a linear order, the (\mathcal{G}, T) -order, on H for which the root h_0 is the least element. We associates with the spanning tree T the orientation \mathcal{O}_T of \mathcal{G} defined by:

For any edge $e = \{h_1, h_2\}$ with $h_1 < h_2$, $\mathcal{O}_T(e) = \begin{vmatrix} (h_1, h_2) & \text{if } e \text{ is internal,} \\ (h_2, h_1) & \text{if } e \text{ is external.} \end{vmatrix}$ (5)

This definition is illustrated in Figure 9 (left).

FIGURE 9. Left: Orientation \mathcal{O}_T associated the spanning tree T (indicated by thick lines) and active edges (indicated by a star). Middle: outdegree sequence $\Gamma(T)$. Right: recurrent sandpile configuration $\Lambda(T)$.

Observe that the spanning tree T is oriented from its root-vertex v_0 to its leaves in \mathcal{O}_T . Indeed, it is clear from the definitions and Lemma 5 that every internal edge is oriented from father to son. This property implies that for every spanning tree T the orientation \mathcal{O}_T is v_0 -connected.

The mapping $\Phi: T \mapsto \mathcal{O}_T$ from spanning trees to v_0 -connected orientations is not bijective. However, it is injective and in Section 5 we will extend it into a bijection between subgraphs and orientations. For the time being, let us observe (the proof will be given in Section 5) that the tree T can be recovered from the orientation \mathcal{O}_T by the following procedure:

Procedure Construct-tree:

Initialization: Initialize the *current half-edge* h to be the root h_0 . Initialize the tree T and the set of visited arcs F to be empty.

Core: Do:

- C1: If the edge e containing h is not in F and h is a tail then add e to T. Add e to F.
- C2: Move to the next half-edge around T:

If e is in T, then set the current half-edge h to be $\sigma\alpha(h)$, else set it to be $\sigma(h)$. Repeat until the current half-edge h is h_0 .

End: Return the tree T.

In the procedure **Construct-tree** we keep track of the set F of edges already visited. The decision of adding an edge e to the tree T or not is taken when e is visited for the *first* time. The principle of procedure **Construct-tree**, which consists

in constructing a tree T while making its tour, will appear again in the next sections.

Building on the mapping $\Phi: T \mapsto \mathcal{O}_T$, we define two mappings Γ and Λ .

Definition 8. Let \mathcal{G} be an embedded graph. The mapping Γ associates with any spanning tree T the outdegree sequence of the orientation \mathcal{O}_T .

Definition 9. Let \mathcal{G} be an embedded graph and let V be the vertex set. The mapping Λ associates with any spanning tree T the sandpile configuration \mathcal{S}_T : $V \mapsto \mathbb{N}$, where $\mathcal{S}_T(v)$ is the number of tails plus the number of external (\mathcal{G}, T) -active heads incident to v in the orientation \mathcal{O}_T .

The mappings Γ and Λ are illustrated in Figure 9.

As observed above, the orientation \mathcal{O}_T is always v_0 -connected hence the image of any spanning tree by the mapping Γ is a v_0 -connected outdegree sequence. We shall prove in Section 6 that Γ is a bijection between spanning tree and v_0 -connected outdegree sequences. We will also show how to extend it into a bijection between forests and outdegree sequences. Regarding the mapping Λ , we shall prove in Section 7 that it is a bijection between spanning trees and recurrent sandpile configurations. Moreover, the number of external (\mathcal{G}, T) -active edges is easily seen to be the level of the configuration $\Lambda(T)$. This gives a new bijective proof of a result by Merino linking external activities to the level of recurrent sandpile configurations [11, 33].

The two mappings Γ and Λ coincide on *internal* trees, that is, trees that have external activity 0. Thus, the mapping $\Gamma \circ \Lambda^{-1}$ is a bijection between recurrent sandpile configurations and v_0 -connected outdegree sequences that leaves the configurations at level 0 unchanged. This answers a problem raised by Gioan [23]. As an illustration we represented the 5 spanning trees of a graph in Figure 10 and their image by the mappings Φ , Γ and Λ (the first two spanning trees are internal).

FIGURE 10. Spanning trees (embedding-active edges are indicated by a star) and their image by the mappings Φ , Γ and Λ .

We now highlight a relation (to be exploited in Section 6) between the embeddingactivities of the spanning tree T and the acyclicity or strong connectivity of the associated orientation \mathcal{O}_T . **Lemma 10.** Let \mathcal{G} be an embedded graph ant let T be a spanning tree. The fundamental cycle (resp. cocycle) of an external (resp. internal) edge e is \mathcal{O}_T -directed if and only if e is (\mathcal{G}, T) -active.

Lemma 10 is illustrated by Figures 11 and 12. From this lemma we deduce that if \mathcal{O}_T is acyclic (resp. strongly connected) then T is *internal* (resp. *external*), that is, has no external (resp. internal) active edge. In fact, we shall prove in Section 6 that the converse is true: if the tree T is internal (resp. external), then the orientation \mathcal{O}_T is acyclic (resp. strongly connected). For instance, in Figure 10 the two first (last) spanning trees are internal (resp. external) and the corresponding orientations are acyclic (resp. strongly connected).

FIGURE 11. Fundamental cocycles of an active internal edge (left) and of a non-active internal edge (right).

FIGURE 12. Fundamental cycles of an active external edge (left) and of a non-active external edge (right).

Proof. Consider an edge $e = \{h_1, h_2\}$ with $h_1 < h_2$ and denote by v_1 and v_2 the endpoints of h_1 and h_2 respectively.

• Suppose that e is internal. We want to prove that the fundamental cocycle D of e is directed if and only if e is (\mathcal{G}, T) -active. Recall that v_1 is the father of v_2 by Lemma 5. Let V_2 be the set of descendants of v_2 . Recall that D is the cocycle defined by V_2 . By definition, the arc $\mathcal{O}_T(e)$ is directed toward $v_2 \in V_2$. By Lemma 6, for all edge $e' = \{h'_1, h'_2\}$ with $h'_1 < h'_2$ in D - e, the arc $\mathcal{O}_T(e') = (h'_2, h'_1)$ is directed toward V_2 if and only if e < e'. Therefore, the fundamental cocycle D is directed if and only if e is minimal in D, that is, if e is (\mathcal{G}, T) -active.

• Suppose that e is external. We want to prove that the fundamental cycle C of e is directed if and only if e is (\mathcal{G}, T) -active. Recall that C - e is the path in T between v_1 and v_2 . Since $\mathcal{O}_T(e)$ is directed toward v_1 , the cycle C is directed if and only if the path C - e is directed from v_1 to v_2 . Since every edge in $C - e \subseteq T$ is directed from father to son (Lemma 5), the cycle C is directed if and only if v_1

is an ancestor of v_2 . This is precisely the characterization of external (\mathcal{G}, T) -active edges given by Lemma 7.

Up to this point we have considered mappings defined on the set of spanning trees. In order to extend these mappings to general subgraphs we will associate a spanning tree to every subgraph. This is the task of the next section.

4. A PARTITION OF THE SET OF SUBGRAPHS

In this section we define a partition of the set of subgraphs for any embedded graph. Each part of this partition is associated with a spanning tree.

Let \mathcal{G} be an embedded graph. Given a spanning tree T, we consider the set of subgraphs that can be obtained from T by removing some internal (\mathcal{G}, T) -active edges and adding some external (\mathcal{G}, T) -active edges. Observe that this set is an interval in the boolean lattice of the subgraphs of \mathcal{G} (i.e. subsets of edges). We call *tree-interval* and denote by $[T^-, T^+]$ the set of subgraphs obtained from a spanning tree T. We represented the tree-intervals corresponding to each of the 5 spanning trees of the embedded graph in Figure 13.

FIGURE 13. The tree-intervals corresponding to each spanning tree. The active edges are indicated by a \star .

We prove some properties of the subgraphs in the tree-interval $[T^-, T^+]$.

Lemma 11. Let \mathcal{G} be an embedded graph and let T be a spanning tree. Let e be an internal (resp. external) (\mathcal{G}, T) -active edge. The fundamental cocycle (resp. cycle) of e is contained in $\overline{S} + e$ (resp. S + e) for any subgraph S in $[T^-, T^+]$.

Proof. If e is internal and (\mathcal{G}, T) -active, no edge in its fundamental cocycle D is (\mathcal{G}, T) -active (since their fundamental cycle contains e). Since no edge of D - e is in T nor is (\mathcal{G}, T) -active, none is in S. Hence, $D \subseteq \overline{S} + e$. Similarly, if e is external (\mathcal{G}, T) -active, its fundamental cycle is contained in S + e.

Lemma 12. Let \mathcal{G} be an embedded graph. Let T be a spanning tree and let S be a subgraph in $[T^-, T^+]$ having c(S) connected components. Then c(S) - 1, (resp. e(S) + c(S) - |V|) is the number of edges in $\overline{S} \cap T$ (resp. $S \cap \overline{T}$).

Proof. Consider any subgraph S in $[T^-, T^+]$. By Lemma 11, removing an internal (\mathcal{G}, T) -active edge from S increases c(S) by one and leaves e(S) + c(S) unchanged. Similarly, adding an external (\mathcal{G}, T) -active edge to S leaves c(S) unchanged and increases e(S) + c(S) by one. Moreover, c(T) - 1 = 0 and e(T) + c(T) - |V| = 0. Therefore, Lemma 12 holds for every subgraph S in $[T^-, T^+]$ by induction on the number of edges in $S \vartriangle T$.

By Lemma 12, the connected subgraphs in $[T^-, T^+]$ are the subgraphs in the interval $[T, T^+]$ (the subgraphs obtained from T by adding some external (\mathcal{G}, T) -active edges). Similarly, the forests in $[T^-, T^+]$ are the subgraphs in the interval $[T^-, T]$ (the subgraphs obtained from T by removing some internal (\mathcal{G}, T) -active edges). These properties are illustrated in Figure 14.

FIGURE 14. The tree-interval $[T^-, T^+]$, the sub-interval $[T, T^+]$ of connected subgraphs and the sub-interval $[T^-, T]$ of forests.

We are now ready to state and comment on the main result of this section.

Theorem 13. Let G = (V, E) be a graph and let \mathcal{G} be an embedding of G. The tree-intervals form a partition of the set of subgraphs of G:

$$2^E = \biguplus_{T \ spanning \ tree} [T^-, T^+],$$

where the disjoint union is over all spanning trees of G.

The counterpart of Theorem 13 is known for the notion of (internal and external)*activities* defined by Tutte in [42]. This property has been used to extract informations about the Tutte polynomial in [2, 14, 25].

Theorem 13 constitutes the key link between the subgraph expansion (1) and spanning tree expansion (2) of the Tutte polynomial. Indeed, given Lemma 12, we get

$$\sum_{S \in [T^-, T^+]} (x-1)^{c(S)-1} (y-1)^{e(S)+c(S)-|V|} = (x-1+1)^{\mathcal{I}(T)} (y-1+1)^{\mathcal{E}(T)} = x^{\mathcal{I}(T)} y^{\mathcal{E}(T)},$$

where $\mathcal{I}(T)$ (resp. $\mathcal{E}(T)$) is the number of internal (resp. external) (\mathcal{G}, T)-active edges. Summing over all spanning trees gives the identity:

$$\sum_{S \text{ subgraph}} (x-1)^{c(S)-1} (y-1)^{e(S)+c(S)-|V|} = \sum_{T \text{ spanning tree}} x^{\mathcal{I}(T)} y^{\mathcal{E}(T)}.$$

Remark. As observed in [25], the partition of the set of subgraphs gives several other expansions of the Tutte polynomial. For instance, the tree-intervals can be partitioned into *forest-intervals*. The *forest-interval* of a forest F in $[T^-, T^+]$ is the set $[F, F^+]$ of subgraphs obtained from F by adding some external (\mathcal{G}, T) -active edges. Since

$$[T^-, T^+] = \biguplus_{F \text{ forest in } [T^-, T^+]} [F, F^+],$$

the partition into tree-intervals given by Theorem 13 leads to a partition into forest-intervals:

$$2^E = \biguplus_{F \text{ forest}} [F, F^+].$$

Given Lemma 12, we get

$$\sum_{S \in [F,F^+]} (x-1)^{c(S)-1} (y-1)^{e(S)+c(S)-|V|} = (x-1)^{c(F)-1} (y-1+1)^{\mathcal{E}(T)} = (x-1)^{c(F)-1} y^{\mathcal{E}(T)} = (x-1)^{c(F)-1} y^{\mathcal{E}(T)} = (x-1)^{c(F)-1} (y-1+1)^{\mathcal{E}(T)} = (x-1)^{\mathcal{E}(T)} (y-1+1)^{\mathcal{E}(T)} = (x-1)^{\mathcal{E}(T)} (y-1+1)^{\mathcal{E}(T)} = (x-1)^{\mathcal{E}(T)} (y-1+1)^{\mathcal{E}(T)} = (x-1)^{\mathcal{E}(T)} (y-1+1)^{\mathcal{E}(T)} (y-1+1)^{\mathcal{E}(T)} (y-1+1)^{\mathcal{E}(T)} = (x-1)^{\mathcal{E}(T)} (y-1+1)^{\mathcal{E}(T)} (y-1+1)^{\mathcal{E}$$

for any forest in $[T^-, T^+]$. Summing up over forests, gives the *forest expansion*

$$T_G(x,y) = \sum_{F \text{ forest}} (x-1)^{c(F)-1} y^{\mathcal{E}(F)},$$

where $\mathcal{E}(F)$ is the number of (\mathcal{G}, T) -active edges for the spanning tree T such that $F \in [T^-, T^+]$. Let us mention that several alternative notions of *external activities* have been defined, each of which gives a forest expansion [22, 28] which can be used to obtain enumerative results about the Tutte polynomial [21, 22].

In order to prove Theorem 13 we define a mapping Δ from subgraphs to spanning trees.

Definition 14. Let \mathcal{G} be an embedded graph rooted on h_0 and let S be a subgraph. The spanning tree $T = \Delta(S)$ is defined by the following procedure:

Initialization: Initialize the *current half-edge* h to be the root h_0 . Initialize the tree T and the set of visited edges F to be empty.

Core: Do:

C1: If the edge e containing h is not in F, then decide whether to add e to T according to the following rule:

If (e is in S and is in no cycle $C \subseteq S \cap \overline{F}$) or

(e is not in S and is in a cocycle $D \subseteq \overline{S} \cap \overline{F}$),

Then add e to T.

Endif.

Endif.

Add e to F.

C2: Move to the next half-edge around T:

If e is in T, then set the current half-edge h to be $\sigma\alpha(h)$, else set it to be $\sigma(h)$. Repeat until the current half-edge h is h_0 .

End: Return the tree T.

An execution of the procedure Δ is illustrated in Figure 15.

16

FIGURE 15. The mapping Δ and some intermediate steps. The dashed lines correspond to the set \overline{F} of unvisited edges.

There is a *direct* proof that the mapping Δ is well defined on every subgraph (that is, the procedure terminates and returns a spanning tree). But we shall only prove an (a priory weaker) result: the mapping Δ is well defined on every tree-interval and $\Delta(S) = T$ for any subgraph S in $[T^-, T^+]$ (Proposition 15). This will prove that the tree-intervals are disjoint. Moreover, the cardinality of the tree-interval $[T^-, T^+]$ is $2^{\mathcal{I}(T) + \mathcal{E}(T)}$, where $\mathcal{I}(T)$ and $\mathcal{E}(T)$ are the number of internal and external (\mathcal{G}, T) -active edges. Therefore, the number of subgraphs contained in some tree-intervals is

$$\left| \bigcup_{T \text{ spanning tree}} [T^-, T^+] \right| = \sum_{T \text{ spanning tree}} \left| [T^-, T^+] \right| = \sum_{T \text{ spanning tree}} 2^{\mathcal{I}(T) + \mathcal{E}(T)}.$$

By Theorem 4, this sum is the specialization $T_G(2,2)$ of the Tutte polynomial counting the subgraphs of G (as is clear from (1)). This counting argument proves that every subgraph belongs to a tree-interval. Thus, we only need to prove the following proposition.

Proposition 15. Let \mathcal{G} be an embedded graph. Let T be a spanning tree and let S be a subgraph in the tree-interval $[T^-, T^+]$. The procedure Δ is well defined on S and returns the tree T.

Before proving Proposition 15, we need to recall a classical result of graph theory.

Lemma 16. The symmetric difference of two cycles (resp. cocycles) C and C' is a union of cycles (resp. cocycles).

Lemma 16 is illustrated by Figure 16.

We now characterize the edges in the symmetric difference $S \triangle T$.

Lemma 17. Let \mathcal{G} be an embedded graph. Let T be a spanning tree and let S be a subgraph in the tree-interval $[T^-, T^+]$.

(i) An edge e is in $S \cap \overline{T}$ if and only if e is minimal (for the (\mathcal{G}, T) -order) in a cycle $C \subseteq S$.

(ii) An edge e is in $\overline{S} \cap T$ if and only if e is minimal (for the (\mathcal{G}, T) -order) in a cocycle $D \subseteq \overline{S}$.

Proof. We give the proof of (i); the proof of (ii) is similar.

• Suppose e is in $S \cap \overline{T}$. Then e is (\mathcal{G}, T) -active, that is, e is minimal in its fundamental cycle C. Moreover, by Lemma 11, C is contained in S.

FIGURE 16. Left: Two cycles (thin and thick lines) and their intersection (dashed lines). Right: two cocycles.

• Suppose e is minimal in a cycle $C \subseteq S$. We want to prove that e is in \overline{T} . Suppose the contrary. Then, there is an edge $e' \neq e$ in $C \cap \overline{T}$ (since T has no cycle). Take the least edge e' in $C \cap \overline{T}$ and consider its fundamental cycle C'. The edge e'is (\mathcal{G}, T) -active, that is, e' is minimal in C'. In particular, e is not in C'. This situation is represented in Figure 17. Since e is in $C \triangle C'$ and e' is not, there is a cycle $C_1 \subseteq C \triangle C'$ containing e and not e' (Lemma 16). By Lemma 11, the fundamental cycle C' of e' is contained is S + e', thus $C_1 \subseteq C \triangle C' \subseteq S$. Note that e is minimal in the cycle $C_1 \subseteq S$ (since e is minimal in C and e' > e is minimal in C'). Moreover, the least edge in $C_1 \cap \overline{T}$ (this edge exists since T has no cycle) is in $C \cap \overline{T} - e'$ (since $C' \subseteq T + e'$), hence is greater than e'. We can repeat this operation again in order to produce an infinite sequence $C_0 = C, C_1, C_2, \ldots$ of cycles with eminimal in C_i and $C_i \subseteq S$ for all $i \ge 0$. But the minimal element of $C_i \cap \overline{T}$ is strictly increasing with i. This is impossible.

FIGURE 17. The cycle C (circle), some edges in the tree T (indicated by thick lines) and the edges e and e'.

Proof of Proposition 15. We consider a subgraph S in the tree-interval $[T_0^-, T_0^+]$. We denote by H the set of half-edges. We denote by t the motion function associated with spanning tree T_0 and we denote by $h_i = t^i(h_0)$ the i^{th} half-edge for the (\mathcal{G}, T_0) -order. For any half-edge h, we denote $F_h = \{e = \{h_1, h_2\}/\min(h_1, h_2) < h\}$ and $T_h = T_0 \cap F_h$.

We adopt the notations h, e, F and T of the procedure Δ (for instance, h denotes the current half-edge) and we compare half-edges according to the (\mathcal{G}, T_0) -order. We want to prove that, for all $i \leq |H|$, at the beginning of the i^{th} core step, $h = h_i$, $F = F_h$ and $T = T_h$. We proceed by induction on i. The property holds for the first core step (i = 0) since $h = h_0$ and $F_{h_0} = T_{h_0} = \emptyset$. Consider now the i^{th} core step. Suppose first that the edge e containing the current half-edge h is not in F. By the induction hypothesis, $F = F_h$ thus e is greater than any edge in F and less than any edge in $\overline{F} - e$. By Lemma 17, if e is in S, then it is in $\overline{T_0}$ if and only if it is in a cycle $C \subseteq S \cap \overline{F}$. Also, if e is in \overline{S} , then it is in T_0 if and only if it is in a cocycle $D \subseteq \overline{S} \cap \overline{F}$. Therefore, the edge e is added to T at the step **C1** if and only if it is in T_0 . Suppose now that the edge e is already in Fat the beginning of the i^{th} core step. Then, by the induction hypothesis, e is in $T = T_h = T_0 \cap F_h = T_0 \cap F$ if and only if it is in T_0 . Whether the edge e is in For not at the beginning of the step **C1**, the edge e is in T at the beginning of the step **C2** if and only if it is in T_0 . Therefore, the current half-edge at the beginning of the $(i + 1)^{th}$ core step, is $t(h) = h_{i+1}$. Thus, the property holds for all $i \leq |H|$ by induction. In particular, the procedure Δ stops after |H| core steps and returns the spanning tree $T = T_{h|H|-1} = T_0$.

This concludes the proof of Theorem 13.

Before we close this section we define some families of subgraphs counted by the evaluations $T_G(i, j), 0 \leq i, j \leq 2$ of the Tutte polynomial. Consider an embedded graph \mathcal{G} and a spanning tree T. Recall that the spanning tree T is said to be *internal* (resp. *external*) if it has no external (resp. internal) (\mathcal{G}, T)-active edge. For instance, among the spanning trees represented in Figure 13, the two first (resp. last) are internal (resp. external). We say that a subgraph S in $[T^-, T^+]$ is *internal* or *external* if the spanning tree T is. The notion of *internal subgraph* is close to Whitney's notion of subgraphs without broken circuit [43]. Observe that by Lemma 12 any internal subgraph is a forest and any external subgraph is connected (the converse is, of course, false). In Figure 24 we represented the subgraphs of figure 13 in each of the categories defined by the four criteria forest, internal, connected, external.

Proposition 18. Let \mathcal{G} be an embedded graph. The number of subgraphs in each category defined by the criteria forest, internal, connected, external is given by the following evaluation of the Tutte polynomial:

	General	Connected	External
General	$T_G(2,2) = 2^{ E }$	$T_G(1,2)$	$T_G(0,2)$
Forest	$T_G(2,1)$	$T_G(1,1)$	$T_G(0,1)$
Internal	$T_G(2,0)$	$T_G(1,0)$	$T_G(0,0) = 0$

Proof. Let T be a spanning tree with $\mathcal{I}(T)$ internal and $\mathcal{E}(T)$ external (\mathcal{G}, T) active edges. By Lemma 12, the connected subgraphs in $[T^-, T^+]$ are obtained by adding some external (\mathcal{G}, T) -active edges to T. Hence, there are $1^{\mathcal{I}(T)}2^{\mathcal{E}(T)}$ connected subgraphs in $[T^-, T^+]$. Thus, given the partition of the set of subgraphs into tree-intervals given by Theorem 13, the graph \mathcal{G} has

$$\sum_{T \text{ spanning tree}} 1^{\mathcal{I}(T)} 2^{\mathcal{E}(T)}$$

connected subgraphs. This sum is equal to $T_G(1,2)$ by the characterization (4) of the Tutte polynomial. Observe that there are $0^{\mathcal{I}(T)}2^{\mathcal{E}(T)}$ external (connected) subgraphs in the interval $[T^-, T^+]^1$. Hence there are $T_G(0,2)$ external subgraphs of G. Every other category admits a similar treatment.

¹Here, as everywhere in this paper, the convention is that $0^0 = 1$.

In the next section we will define a bijection Φ between subgraphs and orientations. In the following one we will study how Φ specializes to each of the families of subgraphs defined by the criteria *forest*, *internal*, *connected*, *external* and deduce from it an interpretation for each of the evaluations $T_G(i, j), 0 \leq i, j \leq 2$ of the Tutte polynomial in terms of orientations.

5. A BIJECTION BETWEEN SUBGRAPHS AND ORIENTATIONS

In this section we define a bijection Φ between subgraphs and orientations. The bijection Φ is an extension of the correspondence $T \mapsto \mathcal{O}_T$ between spanning trees and orientations defined in Section 3. For instance, the image by Φ of the spanning tree T and the image of a subgraph S in $[T^-, T^+]$ are shown in Figure 18.

Definition 19. Let \mathcal{G} be an embedded graph. Let T be a spanning tree and let S be a subgraph in the tree-interval $[T^-, T^+]$. The orientation $\mathcal{O}_S = \Phi(S)$ is defined as follows. For any edge $e = \{h_1, h_2\}$ with $h_1 < h_2$ (for the (\mathcal{G}, T) -order), the arc $\mathcal{O}_S(e)$ is (h_1, h_2) if and only if - either e is in T and its fundamental cocycle contains no edge in the symmetric difference $S \vartriangle T$ - or if e is not in T and its fundamental cycle contains some edges in $S \bigtriangleup T$; the arc $\mathcal{O}_S(e)$ is (h_2, h_1) otherwise.

Recall that a subgraph S is in the tree-interval $[T^-, T^+]$ if and only if every edge in the symmetric difference S riangle T is (\mathcal{G}, T) -active. Let S be a subgraph in $[T^-, T^+]$ and let e be any edge of \mathcal{G} . We say that the arc $\mathcal{O}_S(e)$ is reverse if $\mathcal{O}_S(e) \neq \mathcal{O}_T(e)$. Observe that the arc $\mathcal{O}_S(e)$ is reverse if and only if the fundamental cycle or cocycle of e (with respect to the spanning tree T) contains an edge of S riangle T (compare for instance the orientations \mathcal{O}_S and \mathcal{O}_T in Figure 18). In particular, Definition 19 of the mapping Φ extends the definition (5) given for spanning trees in Section 3.

FIGURE 18. Right. The orientation \mathcal{O}_T associated with a spanning tree T. The active edges are indicated by a \star . Left. The orientation \mathcal{O}_S associated with a subgraph S in $[T^-, T^+]$. The edges in the symmetric difference $S \vartriangle T$ are indicated by a \vartriangle .

The main result of this section is that the mapping Φ is a bijection between subgraphs and orientations. For instance, we have represented in Figure 19 the image by Φ of the subgraphs represented in Figure 13.

Theorem 20. Let \mathcal{G} be an embedded graph. The mapping Φ establishes a bijection between the subgraphs and the orientations of G.

In order to prove Theorem 20, we define a mapping Ψ from orientations to subgraphs. We shall prove that Ψ is the inverse of Φ .

Definition 21. Let \mathcal{G} be an embedded graph and let \mathcal{O} be an orientation. We define the subgraph $S = \Psi(\mathcal{O})$ by the procedure described below. The procedure Ψ visits the half-edges in sequential order. The set of visited edges is denoted by F. If

FIGURE 19. The image by Φ of the subgraphs in Figure 13.

C is a set of edges that intersects the set F of visited edges, we denote by $e_{\text{first}}(C)$ and $h_{\text{first}}(C)$ the first visited edge and half-edge of C respectively $(e_{\text{first}}(C) \text{ contains } h_{\text{first}}(C))$. In this case, C is said to be *tail-first* if $h_{\text{first}}(C)$ is a tail and *head-first* otherwise.

Initialization: Initialize the *current half-edge* h to be the root h_0 . Initialize the subgraph S, the tree T and the set of visited edges F to be empty. **Core:** Do:

C1: If the edge e containing h is not in F, then decide whether to add e to S and T:

• If h is a tail, then

(a) If e is in a directed cycle $C \subseteq \overline{F}$, then add e to S but not to T.

(b) If e is in a head-first directed cocycle $D \nsubseteq \overline{F}$ such that for all directed cocycle D' with $e_{\text{first}}(D') = e_{\text{first}}(D)$ either $e \in D'$ or $(D \bigtriangleup D' \nsubseteq \overline{F})$ and $e_{\text{first}}(D \bigtriangleup D') \in D')$, then do not add e to S nor to T. (c) Else, add e to S and to T.

• If h is a head, then

(a') If e is in a directed cocycle $D \subseteq \overline{F}$, then add e to T but not to S. (b') If e is in a tail-first directed cycle $C \nsubseteq \overline{F}$ such that for all directed cycle C' with $e_{\text{first}}(C') = e_{\text{first}}(C)$ either $e \in C'$ or $(C \bigtriangleup C' \nsubseteq \overline{F})$ and $e_{\text{first}}(C \bigtriangleup C') \in C'$, then add e to S and to T. (c') Else, do not add e to S nor to T.

Add e to F.

C2: Move to the next half-edge around T:

If e is in T, then set the current half-edge h to be $\sigma\alpha(h)$, else set it to be $\sigma(h)$. Repeat until the current half-edge h is h_0 .

End: Return the subgraph S.

In the procedure Ψ the conditions (a) and (b) (resp. (a') and (b')) are incompatible. Indeed the following lemma is a classical result of graph theory [34].

Lemma 22 ([34]). Every arc (of an oriented graph) is either in a directed cycle or a directed cocycle but not both.

Proof. (Hint) is the origin of the arc reachable from its end?

We are now going to prove that Φ and Ψ are inverse mappings.

Proposition 23. Let \mathcal{G} be an embedded graph and let S be a subgraph. The mapping Ψ is well defined on the orientation $\Phi(S)$ (the procedure terminates) and $\Psi \circ \Phi(S) = S$.

Proposition 23 implies that the mapping Φ is injective. Since there are as many subgraphs and orientations $(2^{|E|})$, it implies that Φ is bijective and that Ψ and Φ are reverse mappings. The rest of this section is devoted to the proof of proposition 23. Observe that Ψ is a variation on the procedure **Construct-tree** presented in Section 3. The difference lies in the extra Conditions (a), (b), (a'), (b') which are now needed in order to cope with reverse edges. In Lemmas 24 to 28 we express some properties characterizing reverse edges.

We first need some definitions. Let \mathcal{G} be an embedded graph and \mathcal{O} be an orientation. Suppose that the edges and half-edges of \mathcal{G} are linearly ordered. For any set of edges C, we denote by $e_{\min}(C)$ and $h_{\min}(C)$ the minimal edge and half-edge of C respectively. We say that C is *tail-min* if $h_{\min}(C)$ is a tail and *head-min* otherwise. A directed cycle (resp. cocycle) is *tight* if any directed cycle (resp. cocycle) $C' \neq C$ with $e_{\min}(C') = e_{\min}(C)$ satisfies $e_{\min}(C \Delta C') \in C'$. For instance, if the edges of the graph in Figure 20 are ordered by a < b < c < d < e < f < g, the directed cycles (a, h, g, f, e, c) and (b, g, f, e, c) are tight whereas (a, h, g, d, c) is not.

FIGURE 20. The directed cycles (a, h, g, f, e, c) and (b, g, f, e, c) are tight whereas (a, h, g, d, c) is not.

In Lemmas 24 to 28 we consider an embedded graph \mathcal{G} , a spanning tree T and a subgraph S in the tree-interval $[T^-, T^+]$. We consider the orientation $\mathcal{O}_S = \Phi(S)$ and compare edges and half-edges according to the (\mathcal{G}, T) -order.

Lemma 24. The fundamental cycle (resp. cocycle) of any edge in $S \cap \overline{T}$ (resp. $\overline{S} \cap T$) is \mathcal{O}_S -directed and tail-min (resp. head-min).

Proof. If e is in $S \cap \overline{T}$ (resp. $\overline{S} \cap T$), then every edge e' in its fundamental cycle (resp. cocycle) C is reverse ($\mathcal{O}_S(e') \neq \mathcal{O}_T(e')$). By Lemma 10, the cycle (resp. cocycle) C is \mathcal{O}_T -directed, hence it is \mathcal{O}_S -directed. Since e is (\mathcal{G}, T)-active, the minimal edge $e_{\min}(C)$ is e. Hence, $h_{\min}(C)$ is the least half-edge of e. By definition of \mathcal{O}_S , the least half-edge of $\mathcal{O}_S(e)$ is a tail (resp. head). Hence, C is tail-min (resp. head-min).

Lemma 25. Let e be a reverse edge $(\mathcal{O}_S(e) \neq \mathcal{O}_T(e))$. Then, e is in S if an only if it is in a directed cycle (otherwise it is in a directed cocycle by Lemma 22).

Proof.

• Suppose that e is in S. We want to prove that e is in a directed cycle. If e is in $S \cap \overline{T}$, its fundamental cycle is directed by Lemma 24. If e is in $S \cap T$ there is an edge $e' \in S \cap \overline{T}$ in its fundamental cocycle (since e is reverse). Therefore, e is in the fundamental cycle of e' which is directed by Lemma 24.

• A similar argument proves that if e is in \overline{S} , then it is in a directed cocycle. In this case, e is not in a directed cycle by Lemma 22.

23

We now need to recall a classical result of graph theory (which is closely related to the axioms of oriented matroid theory [4]).

Lemma 26 (Orthogonality). Let D be a cocycle and let V_1 and V_2 be the connected components after deletion of D. If a directed cycle C contains an arc oriented from V_1 to V_2 then it also contains an arc oriented from V_2 to V_1 .

Lemma 26 is illustrated by Figure 21.

FIGURE 21. A directed cycle crossing a cocycle.

Lemma 27. An edge e is in $S \cap \overline{T}$ (resp. $\overline{S} \cap T$) if and only if it is minimal in a tail-min (resp. head-min) directed cycle (resp. cocycle).

Proof. We only prove that if an edge is minimal in a tail-min directed cycle then it is in $\in S \cap \overline{T}$. The reverse implication is given by Lemma 24. The proof of the dual equivalence (*e* is minimal in a tail-min directed cycle if and only if *e* is in $\overline{S} \cap T$) is similar.

Let $e = \{h_1, h_2\}$ with $h_1 < h_2$ be a minimal edge in a tail-min directed cycle C. We want to prove that e is in $S \cap \overline{T}$. Observe first that $\mathcal{O}_S(e) = (h_1, h_2)$ (since $h_{\min}(C) = h_1$ and C is tail-min). We now prove successively the following points. - The edge e is not in $\overline{S} \cap T$. Otherwise, the edge e would be both in a directed cycle C and in a directed cocycle by Lemma 24.

- The edge e is not in $S \cap T$. Suppose the contrary. Since e is in T, the arc $\mathcal{O}_S(e) = (h_1, h_2) = \mathcal{O}_T(e)$ is not reverse. Let D be the fundamental cocycle of e. Let v_1 and v_2 be the endpoints of h_1 and h_2 respectively and let V_2 be set of descendants of v_2 . Recall that v_1 is the father of v_2 in T (Lemma 5) and that D is the cocycle defined by V_2 . Since the cycle C is directed and the arc $\mathcal{O}_S(e)$ in $C \cap D$ is directed toward V_2 , there is an edge e' in $C \cap D$ with $\mathcal{O}_S(e')$ directed away from V_2 by Lemma 26. This situation is represented in Figure 22. Since e is minimal in the cycle C, we have e < e'. Therefore, the arc $\mathcal{O}_T(e')$ is directed toward V_2 by Lemma 6. Thus, e' is reverse. The edge e' is reverse and contained in a directed cycle, therefore it is in S by Lemma 25. We have shown that e' is in $S \cap \overline{T}$. But this is impossible since e < e' is in the fundamental cycle of e'.

- The edge e is in $S \cap \overline{T}$. We know from the preceding points that e is in \overline{T} . Hence, $\mathcal{O}_T(e) = (h_2, h_1) \neq \mathcal{O}_S(e)$. Thus, e is reverse in a directed cycle. Therefore, e is in S by Lemma 25.

Lemma 28. The fundamental cycle (resp. cocycle) of any edge in $S \cap \overline{T}$ (resp. $\overline{S} \cap T$) is tight.

Proof. We prove that the fundamental cycle of an edge in $S \cap \overline{T}$ is tight. The proof of the dual property (concerning edges in $\overline{S} \cap T$) is similar. Let e^* be in $S \cap \overline{T}$. Recall that $e^* = e_{\min}(C)$. By Lemma 24, the fundamental cycle C of e^* is

FIGURE 22. The directed cycle C, the fundamental cocycle D and the edges e and e'.

directed. We want to prove that C is tight. Suppose not and consider a directed cycle C' with $e_{\min}(C') = e_{\min}(C) = e^*$ and $e = e_{\min}(C \triangle C') \in C$. The edge e is in the fundamental cycle C of e^* , hence e^* is in fundamental cocycle D of e. This situation is represented in Figure 23. Let v_1 and v_2 be the endpoints of e with v_1 father of v_2 in T. Let V_2 be the set of descendants of v_2 . Recall that D is the cocycle defined by V_2 . The edge e is in the fundamental cycle of e^* which is (\mathcal{G}, T) active, hence $e^* < e$. Therefore, the arc $\mathcal{O}_T(e^*)$ is directed away from V_2 by Lemma 6. Since e^* is in $S \cap \overline{T}$, the arc $\mathcal{O}_S(e^*)$ is reverse, hence is directed toward V_2 . Since the cycle C' is directed and the arc $\mathcal{O}(e^*)$ in $C' \cap D$ is directed toward V_2 , there is an arc $\mathcal{O}_S(e')$ in $C' \cap D$ oriented away from V_2 by Lemma 26. Observe that e' is not in the fundamental cycle C since $C \subseteq T + e^*$ and $D \subseteq \overline{T} + e$. Thus, e' is in $C \triangle C'$ and e' > e. Hence, by Lemma 6, the arc $\mathcal{O}_T(e')$ in the fundamental cocycle D of e is directed toward V₂. Thus, the arc $\mathcal{O}_S(e') \neq \mathcal{O}_T(e')$ is reverse. Since e' is reverse and contained in a directed cycle, it is in S by Lemma 25. We have shown that e' is in $S \cap \overline{T}$. But this is impossible. Indeed e' is not (\mathcal{G}, T) -active since its fundamental cycle contains e which is less than e'.

FIGURE 23. The directed cycles C and C' and the cocycle D.

Proof of Proposition 23. We consider a subgraph S_0 in the tree-interval $[T_0^-, T_0^+]$ and the orientation $\mathcal{O}_{S_0} = \Phi(S_0)$. We want to prove that the procedure Ψ returns the subgraph S_0 . We compare edges and half-edges according to the (\mathcal{G}, T_0) -order denoted by $\langle :$ we say that an edge or half-edge is greater or less than another. We also compare edges and half-edges according to their order of visit during the algorithm: we say that an edge or half-edge is before or after another. We denote by t the motion function associated with T_0 . We denote by $h_i = t^i(h_0)$ the i^{th} half-edge for the (\mathcal{G}, T_0) -order. Also, for every half-edge h, we denote $F_h = \{e =$ $\{h_1, h_2\}$ such that $\min(h_1, h_2) < h\}$, $T_h = T_0 \cap F_h$ and $S_h = S_0 \cap F_h$. We want to prove that at the beginning of the i^{th} core step, $h = h_i$, $F = F_h$,

We want to prove that at the beginning of the i^{in} core step, $h = h_i$, $F = F_h$, $T = T_h$, $S = S_h$, where h is the current half-edge. We proceed by induction on the number of core steps. The property holds for the first (i = 0) core step since $h = h_0$ and $F_{h_0} = T_{h_0} = S_{h_0} = \emptyset$. Suppose the property holds for all $i \leq k$. By the induction hypothesis, the (\mathcal{G}, T_0) -order and the order of visit coincide on the edges and half-edges of F. In particular, if C is any set not contained in \overline{F} , then $h_{\min}(C) = h_{\text{first}}(C)$ and $e_{\min}(C) = e_{\text{first}}(C)$. Suppose the edge e containing the current half-edge h is not in $F = F_h$. In this case, the current half-edge h (resp. edge e) is less than any other half-edge (resp. edge) in \overline{F} . We consider the different cases (a), (b), (c), (a'), (b'), (c'). We will prove successively the following properties.

- Condition (a) is equivalent to e ∈ S₀ ∩ T₀.
 Suppose Condition (a) holds: h is a tail and e is in a directed cycle C ⊆ F.
 Since, C ⊆ F, the current half-edge h is minimal in C. Since h is a tail, the directed cycle C is tail-min. Thus, e is in S₀ ∩ T₀ by Lemma 27.
 Conversely, if e is in S₀ ∩ T₀, then e is minimal in a tail-min directed cycle C by Lemma 27. Therefore, h is a tail and C ⊆ F.
- Condition (a') is equivalent to $e \in \overline{S_0} \cap T_0$.
- The proof is the similar to the proof of the preceding point.
- Condition (b) is equivalent to $e \in \overline{S_0} \cap \overline{T_0}$ and $\mathcal{O}_{S_0}(e)$ is reverse.

- Suppose Condition (b) holds: h is a tail and e is in a head-first directed cocycle $D \notin \overline{F}$ such that for all directed cocycle D' with $e_{\text{first}}(D') = e_{\text{first}}(D)$ either $e \in D'$ or $D \land D' \notin \overline{F}$ and $e_{\text{first}}(D \land D') \in D'$. Since the (\mathcal{G}, T_0) order and the order of visit coincide on F we have $h_{\min}(D) = h_{\text{first}}(D)$. Since the cocycle D is head-first, it is tail-min. The edge $e^* := e_{\min}(D)$ is minimal in a head-min directed cocycle, hence e^* is in $\overline{S_0} \cap T_0$ by Lemma 27. Let D^* be the fundamental cocycle of e^* . Recall that $e_{\min}(D^*) = e^* =$ $e_{\min}(D)$ We want to prove that e is in D^* . Suppose e is not in D^* . By Condition (b), we have $D \land D^* \notin \overline{F}$ and $e_{\text{first}}(D \land D^*) \in D^*$. But this is impossible since $e_{\min}(D \land D^*) = e_{\text{first}}(D \land D^*)$ and D^* is tight by Lemma 28. Thus, e is indeed in the fundamental cocycle D^* of e^* . Since e^* is in $\overline{S_0} \cap T_0$, the edge e is in $\overline{T_0}$ and also in $\overline{S_0}$ by Lemma 11. Moreover the arc $\mathcal{O}_{S_0}(e)$ is reverse.

- Conversely, suppose that e is in $\overline{S_0} \cap \overline{T_0}$ and that the arc $\mathcal{O}_{S_0}(e)$ is reverse. The current half-edge h is the least half-edge of e. Since e is external, h is the head of the arc $\mathcal{O}_{T_0}(e)$ and the tail of the reverse arc $\mathcal{O}_{S_0}(e)$. Since $\mathcal{O}_{S_0}(e)$ is reverse, the external edge e is in the fundamental cocycle D of an edge $e^* \in \overline{S_0} \cap T_0$. The cocycle D is head-min, directed and tight by Lemmas 24 and 28. Since $e^* = e_{\min}(D)$, the edge e^* is less than e. Therefore e^* is before e and $D \nsubseteq \overline{F}$. The cocycle D is head-first since $h_{\text{first}}(D) = h_{\min}(D)$. Consider any directed cocycle D' such that $e_{\text{first}}(D') = e_{\text{first}}(D) = e^*$ and $e \notin D'$. We want to prove that $D \bigtriangleup D' \nsubseteq \overline{F}$ and $e_{\text{first}}(D \bigtriangleup D') \in D'$. Since D is tight, the edge $e' = e_{\min}(D \bigtriangleup D')$ is in D'. Since e is in $D \bigtriangleup D'$, the edge e' is less than e, hence it is in F. Therefore, $D \bigtriangleup D' \nsubseteq \overline{F}$ and $e_{\text{first}}(D \bigtriangleup D') = e_{\min}(D \bigtriangleup D') = e'$ is in D'.

- Condition (b') is equivalent to $e \in S_0 \cap T_0$ and $\mathcal{O}_{S_0}(e)$ is reverse. The proof is the similar to the proof of the preceding point.
- Condition (c) is equivalent to $e \in S_0 \cap T_0$ and is not reverse.
- Suppose Condition (c) holds. In this case, Conditions (a), (a'), (b), (b') do not hold. Hence (by the preceding points), the edge e is not in $S_0 \Delta T_0$ and the arc $\mathcal{O}_{S_0}(e)$ is not reverse. Since $\mathcal{O}_{S_0}(e)$ is not reverse and the half-edge h (which is the least half-edge of e) is a tail, the edge e is in T_0 . Since e is not in $S_0 \Delta T_0$, it is in S_0 .

- Conversely, suppose that e is in $S_0 \cap T_0$ and that $\mathcal{O}_{S_0}(e)$ is not reverse. By the preceding points, none of the conditions (a), (a'), (b), (b') holds. Moreover, the half-edge h (which is the least half-edge of e) is a tail.

• Condition (c') is equivalent to $e \in \overline{S_0} \cap \overline{T_0}$ and is not reverse. The proof is the similar to the proof of the preceding point.

By the preceding points, e is added to S (resp. T) in the procedure Ψ if and only if e is in S_0 (resp. T_0). Hence, the next half-edge will be $t(h) = \sigma \alpha(h)$ if h is in T_0 and $\sigma(h)$ otherwise. Thus, all the properties are satisfied at the beginning of the $(k+1)^{th}$ core step.

This concludes the proof of Theorem 20. We have also proved the following property that will be useful in the next section.

Lemma 29. During the execution of the procedure Ψ on an orientation \mathcal{O} , the half-edges are visited in (\mathcal{G}, T) -order, where T is the spanning tree $\Delta \circ \Psi(\mathcal{O})$.

6. SPECIALIZATIONS OF THE BIJECTION BETWEEN SUBGRAPHS AND ORIENTATIONS

In this section we study several restrictions of the bijection Φ between subgraphs and orientations. More precisely we shall look at the restriction of Φ to each family of subgraphs defined by combining the four criteria *forest*, *internal*, *connected*, *external*. In Figure 24 we organized the subgraphs according to these criteria. We also represented the orientations associated to each subgraph by the mapping Φ . As Figure 24 suggests, there are nice correspondence, which it is the goal of this section to explicit, between the properties of the subgraph and the properties of the associated orientations. Recall from Proposition 18 that the families of subgraphs defined by combining the criteria *forest*, *internal*, *connected*, *external* are counted by the evaluations $T_G(i, j), 0 \leq i, j \leq 2$ of the Tutte polynomial. By studying the restriction of Φ to each of these families we shall obtain a combinatorial interpretation for each of the evaluations $T_G(i, j), 0 \leq i, j \leq 2$ in terms of orientations or outdegree sequences (see Theorem 46).

6.1. Connected subgraphs and external subgraphs

In this subsection we study the restriction of Φ to connected and to external subgraphs.

Proposition 30. Let \mathcal{G} be an embedded graph and let v_0 be the root-vertex. The orientation \mathcal{O}_S is v_0 -connected if and only if the subgraph S is connected.

Lemma 31. Let \mathcal{G} be an embedded graph and let T be a spanning tree. Let D be a cut and let \mathcal{G}_0 be the connected component of \mathcal{G} containing the root-vertex v_0 after D is removed. Then, the half-edge $h_{\min}(D)$ is incident to \mathcal{G}_0 . Moreover, every half-edge not in \mathcal{G}_0 is greater than or equal to $h_{\min}(D)$.

Proof. Let t be the motion function of T. If a half-edge h is incident to \mathcal{G}_0 and is not in D then t(h) is incident to \mathcal{G}_0 . Since the root h_0 is incident to \mathcal{G}_0 , the half-edge $h_{\min}(D)$ is also incident to \mathcal{G}_0 and is less than any half-edge not in \mathcal{G}_0 . \Box

Lemma 32. An orientation is v_0 -connected if and only if it has no head-min directed cocycle.

Proof.

• If there is a head-min directed cocycle, this cocycle is directed toward the component containing v_0 by Lemma 31. Therefore, the vertices in the other components are not reachable from v_0 and the orientation is not v_0 -connected.

• If the orientation is not v_0 -connected we consider the cut D defined by the set V_0

26

FIGURE 24. Subgraphs in each category defined by the four criteria *forest*, *internal*, *connected*, *external* and the corresponding orientations. The categories goes from the most general to the most constrained from left to right and from up to down. The nonconnected subgraphs (resp. non-external connected subgraphs, external subgraphs) are in column 1 (resp. 2, 3). The subgraphs that are not forests (resp. the forests that are not internal, the internal forests) are in line 1 (resp. 2, 3).

of vertices reachable from v_0 . The cut D is directed toward V_0 , hence is head-min by Lemma 31. Let v_1 be the endpoint of the edge $e = e_{\min}(D)$ that is not in V_0 . Let V_1 be the set of vertices in the connected component containing v_1 after the cut D is deleted. The set of edges D_1 with one endpoint in V_0 and one endpoint in V_1 is a cocycle contained in D. Since every edge in D_1 is directed away from V_0 the cocycle D_1 directed. Since $h_{\min}(D_1) = h_{\min}(D)$ is a head, the cocycle D_1 is head-min.

Proof of Proposition 30. Let S be a subgraph in $[T^-, T^+]$. The orientation \mathcal{O}_S is v_0 -connected if and only if there is no head-min directed cocycle by Lemma 32. An edge is in $\overline{S} \cap T$ if and only if it is minimal in a head-min directed cocycle by Lemma 27. Thus, \mathcal{O}_S is v_0 -connected if and only if $\overline{S} \cap T = \emptyset$. And $\overline{S} \cap T = \emptyset$ if and only if S is connected by Lemma 12.

We now study the restriction of the bijection Φ to external subgraphs.

Proposition 33. Let \mathcal{G} be an embedded graph and let S be a subgraph. The orientation \mathcal{O}_S is strongly connected if and only if S is external.

Lemma 34. Let T be a spanning tree and let e be an edge of T. Let u and v be the endpoints of e with the convention that u is the father of v. For any connected subgraph S in $[T^-, T^+]$, the vertex v is \mathcal{O}_s -reachable from its father u.

Proof. For any connected subgraph S in $[T^-, T^+]$, the set $\overline{S} \cap T$ is empty by Lemma 12. If the fundamental cocycle of the edge e contains no edge of $S \cap \overline{T}$, then the arc $\mathcal{O}_S(e)$ is not reverse. In this case, the arc $\mathcal{O}_S(e) = \mathcal{O}_T(e)$ is directed from u to v by Lemma 5. Suppose now that the fundamental cocycle of e contains an edge e^* of $S \cap \overline{T}$. In this case, e is in the fundamental cycle C^* of e^* which is \mathcal{O}_S -directed by Lemma 24. Therefore, the vertex v is \mathcal{O}_s -reachable from u (and vice-versa).

Lemma 35. Let \mathcal{G} be an embedded graph. Let T be a spanning tree and let S be a connected subgraph in $[T^-, T^+]$. An edge e is minimal in an \mathcal{O}_S -directed cocycle if and only if e is an internal (\mathcal{G}, T) -active edge.

Proof. Since the subgraph S is connected, the subset $\overline{S} \cap T$ is empty by Lemma 12 and the orientation \mathcal{O}_S is v_0 -connected by Lemma 30.

• Suppose that the edge e is an internal (\mathcal{G}, T) -active edge. The edge e is minimal in its fundamental cocycle D. We want to prove that D is \mathcal{O}_S -directed. Note first that e is not in $S \bigtriangleup T$ (since e is in T and $\overline{S} \cap T = \emptyset$). No other edge of D is in $S \bigtriangleup T$ since none is (\mathcal{G}, T) -active. Hence, $\mathcal{O}_S(e) = \mathcal{O}_T(e)$. Let $e' \neq e$ be an edge in the fundamental cocycle D of e. The fundamental cycle of e' does not contain any edge of $\overline{S} \cap T$ since this edge is empty. Hence, $\mathcal{O}_S(e') = \mathcal{O}_T(e')$. Thus, the orientations \mathcal{O}_S and \mathcal{O}_T coincide on the cocycle D. By Lemma 10, the cocycle Dis \mathcal{O}_T -directed, hence it is \mathcal{O}_S -directed.

• Suppose that $e = \{h_1, h_2\}$ with $h_1 < h_2$ is minimal in an \mathcal{O}_S -directed cocycle D. We want to prove that e is an internal (\mathcal{G}, T) -active edge. We prove successively the following properties:

- The half-edge h_1 is a tail. Otherwise, the cocycle D is head-min. (This is impossible by Lemma 32 since \mathcal{O}_S is is v_0 -connected.) - The edge e is in T. If e is not in T, then the arc $\mathcal{O}_S(e) = (h_1, h_2)$ is reverse. Thus, the fundamental cycle C of e contains an edge of $S \vartriangle T$. Since $C \subseteq T + e$ and $\overline{S} \cap T = \emptyset$, the edge e is in $S \cap \overline{T}$.

Thus, the cycle C is \mathcal{O}_S -directed by Lemma 24. This is impossible since e cannot be both is a directed cycle and a directed cocycle.

- The edge e is (\mathcal{G}, T) -active. Since the edge e is in T, the arc $\mathcal{O}_S(e) = (h_1, h_2) = \mathcal{O}_T(e)$ is not reverse. Let v_1 and v_2 be the endpoints of h_1 and h_2 respectively. Let \mathcal{G}_2 be the connected component of \mathcal{G} containing v_2 once the cocycle D is removed. The arc $\mathcal{O}_S(e)$ is directed toward v_2 , thus the cocycle D is directed toward \mathcal{G}_2 . By Lemma 34, all the descendants of v_2 are reachable from v_2 , hence they are all in \mathcal{G}_2 . Let e' be an edge in the fundamental cocycle D' of e. Since one of the endpoints of e' is a descendant of v_2 , the edge e' is either in D or in \mathcal{G}_2 . Since the minimal half-edge h_1 of D is not incident to \mathcal{G}_2 , every edge in $D \cup \mathcal{G}_2$ is greater than or equal to e by Lemma 31. Thus, e' is greater than e. The edge e is minimal in its fundamental cocycle D, that is, e is (\mathcal{G}, T) -active.

Proof of Proposition 33. Let S be a subgraph in $[T^-, T^+]$.

• Suppose that the subgraph S is external. The subgraph S is connected and there is no (\mathcal{G}, T) -active edge, hence there is no \mathcal{O}_S -directed cocycle by Lemma 35. Thus, the orientation \mathcal{O}_S is strongly connected.

• Suppose that the orientation \mathcal{O}_S is strongly connected. The subgraph S is connected (since \mathcal{O}_S is v_0 -connected) and there is no \mathcal{O}_S -directed cocycle, hence there is no (\mathcal{G}, T) -active edge by Lemma 35. Thus, the subgraph S is external.

6.2. Forests and internal forests

In this subsection we study the restriction of the bijection Φ to forests and to internal subgraphs.

Let \mathcal{G} be an embedded graph and let \mathcal{O} be an orientation. We compare half-edges according to the (\mathcal{G}, T) -order, where $T = \Delta \circ \Psi(\mathcal{O})$. We say that the orientation \mathcal{O} is *minimal* if there is no tail-min \mathcal{O} -directed cycle. We shall see (Lemma 39) that for any out degree sequence δ there is a unique minimal δ -orientation.

Proposition 36. The orientation \mathcal{O}_S is minimal if and only if the subgraph S is a forest.

Proof. Let $T = \Delta(S)$. By Lemma 27, an edge is in $S \cap \overline{T}$ if and only if it is minimal in a tail-min directed cycle. Thus, the orientation \mathcal{O}_S is minimal if and only if $S \cap \overline{T} = \emptyset$. And $S \cap \overline{T} = \emptyset$ if and only if S is a forest by Lemma 12.

Proposition 37. The orientation \mathcal{O}_S is acyclic if and only if the subgraph S is internal.

In order to prove Proposition 37 we need to define a linear order, the *postfix* order, on the vertex set. For any vertex $v \neq v_0$ we denote by h_v the half-edge incident to v and contained in the edge linking v to its father in T. The *postfix* order, denoted by $<_{\text{post}}$, is defined by $v <_{\text{post}} v_0$ for $v \neq v_0$ and $v <_{\text{post}} v'$ if $h_v < h_{v'}$ for $v, v' \neq v_0$. The postfix order is illustrated in Figure 25.

Lemma 38. Let T be a spanning tree and let e be an edge. The arc $\mathcal{O}_T(e)$ is directed toward its greatest endpoint (for the postfix order) if and only if the edge e is external (\mathcal{G}, T) -active.

Lemma 38 is illustrated by Figure 25.

Proof. Recall from Lemma 6 that a half-edge h is incident to a descendant of v if and only if $h'_v < h \le h_v$, where $h'_v = \alpha(h_v)$ is the other half of the edge containing h_v .

• Consider an internal edge e. Let u and v be the endpoints of e with u father of v. By Lemma 5, the arc $\mathcal{O}_T(e)$ is directed toward v. We want to prove that $v <_{\text{post}} u$. If $u = v_0$, the inequality holds. Else, the half-edges h_u and h_v exist. Moreover, the half-edge h_v is incident to a descendant of u, hence $h_v < h_u$ and $v <_{\text{post}} u$.

• Consider an external edge e. We write $e = \{h_1, h_2\}$ with $h_1 < h_2$ and denote by u and v the endpoints of h_1 and h_2 respectively. By definition, the arc $\mathcal{O}_T(e)$ is directed toward u. We want to prove that $v \leq_{\text{post}} u$ if and only if e is (\mathcal{G}, T) -active. - Suppose the edge e is (\mathcal{G}, T) -active. Then, the vertex v is a descendant of u by Lemma 7. The half-edge h_v is incident to a descendant of u, hence $h_v \leq h_u$ and $v \leq_{\text{post}} u$.

- Suppose that $v \leq_{\text{post}} u$. If $u = v_0$, the vertex v is a descendant of u and the edge e is (\mathcal{G}, T) -active by Lemma 7. Else, the half-edges h_u and h_v exist and $h_v \leq h_u$. In this case, $\alpha(h_u) < h_1 < h_2 < h_v \leq h_u$ (indeed, $h_2 < h_v$ since h_2 is incident to v and $\alpha(h_u) < h_1$ since h_1 is incident to u), hence v is a descendant of u by Lemma 6. Thus, the edge e is (\mathcal{G}, T) -active by Lemma 7.

FIGURE 25. A spanning tree T, the postfix order, the orientation \mathcal{O}_T and the external active edges (indicated by a \star).

Proof of Proposition 37. Let S be a subgraph in the tree-interval $[T^-, T^+]$. We compare half-edges according to the (\mathcal{G}, T) -order.

• Suppose that the subgraph S is internal (i.e. the tree T is internal). Recall that $S \cap \overline{T} = \emptyset$. We want to prove that the orientation \mathcal{O}_S is acyclic. Observe first that the orientation \mathcal{O}_T is acyclic since the vertices are strictly decreasing (for the postfix order) along any \mathcal{O}_T -directed path by Lemma 38. Suppose now that there is an \mathcal{O}_S -directed cycle C. The \mathcal{O}_S -directed cycle C contains a reverse arc $\mathcal{O}(e)$ or C would be \mathcal{O}_T -directed. Since $S \cap \overline{T} = \emptyset$, the reverse edges are in the fundamental cocycle of an edge of $\overline{S} \cap T$. Thus, the edge e is in the fundamental cocycle D of an edge of $\overline{S} \cap T$. The cocycle D is directed by Lemma 24. This is impossible since e cannot be both in a directed cycle and in a directed cocycle.

• Suppose that the orientation \mathcal{O}_S is acyclic. We want to prove that the subgraph S is internal (i.e. the tree T is internal). Suppose there is an external (\mathcal{G}, T) -active edge e. Let C be the fundamental cycle of e. Since \mathcal{O}_S is minimal, we know (by Proposition 36) that $S \cap \overline{T}$ is empty. Therefore, the reverse edges are in the fundamental cocycle of an edge of $\overline{S} \cap T$. Since e is active, it is not in the

30

fundamental cocycle of an edge of $\overline{S} \cap T$. Since the other edges of C are not active (they are less than e) they are not in $\overline{S} \cap T$. Moreover, since they are in T, they are not in the fundamental cocycle of an edge of $\overline{S} \cap T$. Thus, the orientations \mathcal{O}_S and \mathcal{O}_T coincide on the cycle C. By Lemma 10, the cycle C is \mathcal{O}_T -directed, hence it is \mathcal{O}_S -directed. This is impossible since \mathcal{O}_S is acyclic.

6.3. Minimal orientations and outdegree sequences

In the previous subsection we proved that the bijection Φ induces a bijection between forests and minimal orientations (Proposition 36). We are now going to link minimal orientations and outdegree sequences.

Proposition 39. Let \mathcal{G} be an embedded graph. For any outdegree sequence δ there exists a unique minimal δ -orientation.

The rest of this subsection is devoted to the proof of Proposition 39. We first recall the link between outdegree sequences and the *cycle-flips*.

Consider an orientation \mathcal{O} and an \mathcal{O} -directed cycle (resp. cocycle) C. Flipping the \mathcal{O} -directed cycle (resp. cocycle) C means reversing every arc in C. We shall talk about cycle-flips and cocycle-flips. Observe that flipping a directed cycle does not change the outdegree sequence. Therefore, any orientation \mathcal{O}' obtained from \mathcal{O} by a sequence of cycle-flips has the same outdegree sequence as \mathcal{O} . It was proved in [19] that the converse is also true.

Lemma 40. [19] Two orientations \mathcal{O} and \mathcal{O}' have the same outdegree sequence if and only if they can be obtained from one another by a sequence of cycle-flips. Moreover, the flipped cycles can be chosen to be contained in the set $\{e/\mathcal{O}(e) \neq \mathcal{O}'(e)\}$.

Lemma 40 is a direct consequence of the following result proved in [19].

Lemma 41. [19] Let G be a graph and let \mathcal{O} and \mathcal{O}' be two orientations having the same outdegree sequence. For any edge e in the set $K = \{e'/\mathcal{O}(e) \neq \mathcal{O}'(e)\}$, there is an \mathcal{O} -directed cycle $C \subseteq K$ containing e.

Proof. (Hint) Start from the end v of $\mathcal{O}(e)$ and look for an edge e_1 in K directed away from v. This edge exists except if v is also the origin of e (since the number of edges directed away from v is the same in \mathcal{O} and \mathcal{O}'). Repeat the process until arriving to the origin of e.

Recall that any very arc of an oriented graph is either in a directed cycle or a directed cocycle but not both (Lemma 22). We say that an arc a is cyclic or acyclic depending on a being in a directed cycle or in a directed cocycle. We call cyclic part (resp. acyclic part) of an orientation the set of cyclic (resp. acyclic) edges.

It is well known that the cyclic and acyclic parts are unchanged by a cycle-flip or a cocycle flip [19, 23, 37]. Indeed, it is easily seen that the cyclic part of an orientation can only grow when a directed cocycle D is flipped (since no directed cycle intersects with D). Since we return to the original orientation by flipping Dtwice, we conclude that the cyclic and acyclic parts are unchanged by a cocycle-flip. Similarly, the cyclic and acyclic parts are unchanged by a cycle-flip.

We will also need the following classical result (closely related to an axioms of oriented matroids theory [4]).

Lemma 42 (Elimination). Let \mathcal{O} be an orientation and let C and C' be two \mathcal{O} directed cycles (resp. cocycles). Let \mathcal{O}' be the orientation obtained from \mathcal{O} by flipping C'. Then, the symmetric difference of C and C' is a union of \mathcal{O}' -directed cycles (resp. cocycles). In particular, any edge in the \mathcal{O} -directed cycle (resp. cocycle) C is in an \mathcal{O}' -directed cycle (resp. cocycle) $C'' \subseteq C \cup C'$.

Lemma 42 is illustrated by Figure 26.

FIGURE 26. The \mathcal{O} -directed cycles (resp. cocycles) C and C' (thin and thick lines) and their intersection (dashed lines).

We are now ready to prove Proposition 39. A *false* proof of the uniqueness of the minimal δ -orientation in this proposition is as follows. If there are two different δ -orientations \mathcal{O} and \mathcal{O}' , then these orientations differ on a directed cycle C. Hence, the cycle C is tail-min in either \mathcal{O} or \mathcal{O}' . A *false* proof of the existence (of a minimal δ -orientation) is as follows. Take any δ -orientation and starts flipping cycles until no more tail-min directed cycle remains. Of course, both the uniqueness and existence proofs are false in this version since flipping a cycle changes the associated subgraph, hence the spanning tree and the order on the half-edges. However being a bit careful, one can make both proofs correct.

We consider the procedure Ψ on orientations (see Definition 21). For an orientation \mathcal{O} we denote by $\Psi[\mathcal{O}]$ the execution of Ψ on \mathcal{O} . Recall (from Lemma 29) that the half-edges are visited in (\mathcal{G}, T) -order during $\Psi[\mathcal{O}]$, where T is the spanning tree $\Delta \circ \Psi(\mathcal{O})$. Therefore, the orientation \mathcal{O} is minimal if and only if Condition (a) never holds during the execution $\Psi[\mathcal{O}]$.

Lemma 43. Let \mathcal{O} be an orientation. Consider the current half-edge h, the edge e and the sets F, S and T at the beginning of a given core step of the execution $\Psi[\mathcal{O}]$. Let $C_f \subseteq \overline{F+e}$ be an \mathcal{O} -directed cycle and let \mathcal{O}' be the orientation obtained from \mathcal{O} by flipping C_f . We want to prove that Condition (a) (resp. (b), (c), (a'), (b'), (c')) holds for the orientation \mathcal{O} if and only if it holds for the orientation \mathcal{O}' . (Let us insist that when evaluating the Conditions $(a), \dots, (c')$ for the orientation \mathcal{O}' , the symbols F, S, T, h_{first} and e_{first} continue to refer to the execution of $\Psi[\mathcal{O}]$.)

Proof. Note first that the orientations \mathcal{O} and \mathcal{O}' coincide on the current half-edge h since $e \notin C_f$. We now study separately the different conditions.

• Recall that \mathcal{O} and \mathcal{O}' coincide on their acyclic part: the directed cocycles of \mathcal{O} and \mathcal{O}' are the same. Therefore, Condition (b) (resp. (a')) holds for \mathcal{O} if and only if it holds for \mathcal{O}' .

• Suppose now that Condition (a) holds for \mathcal{O} : the current half-edge h is a tail and the edge e is in an \mathcal{O} -directed cycle $C \subseteq \overline{F}$. By Lemma 42, the edge e is also in

an \mathcal{O}' -directed cycle $C' \subseteq C \cup C_f \subseteq \overline{F}$. Thus, Condition (a) holds for \mathcal{O}' . The same argument proves that if Condition (a) holds for \mathcal{O}' , then it holds for \mathcal{O} (\mathcal{O} is obtained from \mathcal{O}' by flipping the \mathcal{O}' -directed cycle C_f).

• Suppose now that Condition (b') holds for \mathcal{O} : the current half-edge h is a head and the edge e is in a tail-first \mathcal{O} -directed cycle $C \not\subseteq \overline{F}$ such that for all \mathcal{O} -directed cycle C' with $e_{\text{first}}(C') = e_{\text{first}}(C)$ either $e \in C'$ or $(C \bigtriangleup C' \nsubseteq \overline{F} \text{ and } e_{\text{first}}(C \bigtriangleup C') \in C')$. By Lemma 42, the edge $e^* = e_{\text{first}}(C)$ is in an \mathcal{O}' -directed cycle $C_1 \subseteq C \cup C_f$. Note that $e_{\text{first}}(C_1) = e^*$. We want to prove that Condition (b') holds for \mathcal{O}' by considering the \mathcal{O}' -directed cycle C_1 . We prove successively the following properties.

• The edge e is in C_1 .

The edge e^* is in the \mathcal{O}' -directed cycle C_1 and not in C_f . By Lemma 42, there is an \mathcal{O} -directed cycle $C_2 \subseteq C_1 \cup C_f$ containing e^* (since \mathcal{O} is obtained from \mathcal{O}' by flipping C_f). Note that $e_{\text{first}}(C_2) = e^*$. Suppose that e is not in C_2 . By Condition (b') on C, we have $C riangle C_2 \notin \overline{F}$ and $e_{\text{first}}(C riangle C_2) \in C_2$. This is impossible since $\overline{C} \cap C_2 \subseteq C_f$ (since $C_2 \subseteq C_1 \cup C_f \subseteq C \cup C_f$) and the edge e in $C \cap \overline{C_2}$ is visited before any edge in C_f . Thus $e \in C_2$. Since $e \in C_2 \subseteq C_1 \cup C_f$ and e is not in C_f , it is in C_1 .

• For all \mathcal{O}' -directed cycle C'_1 with $e_{first}(C'_1) = e_{first}(C_1)$ either $e \in C'_1$ or $(C_1 \vartriangle C'_1 \nsubseteq \overline{F} \text{ and } e_{first}(C_1 \vartriangle C'_1) \in C'_1).$ (This proves that Condition (b')is satisfied for \mathcal{O}').

Let C'_1 be an \mathcal{O}' -directed cycle not containing e and such that $e_{\text{first}}(C'_1) =$ $e_{\text{first}}(C_1) = e^*$. We want to prove that $C_1 \vartriangle C'_1 \subseteq \overline{F}$ and $e_{\text{first}}(C_1 \vartriangle C'_1) \in C'_1$. The edge e^* is in the \mathcal{O}' -directed cycle C'_1 but not in C_f . By Lemma 42, there exists an \mathcal{O} -directed cycle $C' \subseteq C'_1 \cup C_f$ containing e^* . Note that $e_{\text{first}}(C') = e^*$ and that $e \notin C'$ (since e is not in C_f nor in C'_1 by hypothesis). By Condition (b') on C, we have $C \bigtriangleup C' \not\subseteq \overline{F}$ and $e^{\bigtriangleup} = e_{\text{first}}(C \bigtriangleup C') \in C'$. We now prove the following properties.

- The edge e^{\vartriangle} is in $\overline{C_1} \cap C'_1$. The edge e^{\backsim} is in C'_1 since $e^{\circlearrowright} \notin C_f$ and $e^{\circlearrowright} \in C' \subseteq C'_1 \cup C_f$. Moreover, e^{\circlearrowright} is not in C_1 since $e^{\Delta} \notin C$, $e^{\Delta} \notin C_f$ and $C_1 \subseteq C \cup C_f$. Thus, e^{Δ} is in $\overline{C_1} \cap C'_1$. - Any edge in $C_1 \cap \overline{C'_1}$ is visited after e^{Δ} during the execution $\Psi[\mathcal{O}]$.

Let e' be an edge in $C_1 \cap \overline{C'_1}$. If e' is in C_f , it is visited after e^{Δ} . Else, e'is in C since $e' \in C_1$, $e' \notin C_f$ and $C_1 \subseteq C \cup C_f$. Moreover, e' is not in C' since $e' \notin C'_1$, $e' \notin C_f$ and $C' \subseteq C_1 \cup C_f$. Since $e' \in C \bigtriangleup C'$, the edge e' is visited after $e^{\Delta} = e_{\text{first}}(C \Delta C')$ during the execution $\Psi[\mathcal{O}]$.

Since e^{Δ} is in $\overline{C_1} \cap C'_1$ and any edge in $C_1 \cap \overline{C'_1}$ is visited after e^{Δ} , the edge $e_{\text{first}}(C_1 \bigtriangleup C'_1)$ is in C'_1 . Thus, Condition (b') holds for \mathcal{O}' .

We have proved that if Condition (b') holds for \mathcal{O} , then it holds for \mathcal{O}' . The same argument proves that if Condition (b') holds for \mathcal{O}' , then it holds for \mathcal{O} .

• Condition (c) holds for \mathcal{O} if h is a tail and Conditions (a) and (b) do not hold for \mathcal{O} By the preceding points this is true if and only if h is a tail and Conditions (a) and (b) do not hold for \mathcal{O}' . Therefore, Condition (c) holds for \mathcal{O} if and only if it holds for \mathcal{O}' . Similarly, Condition (c') holds for \mathcal{O} if and only if it holds for \mathcal{O}' .

Lemma 44. Consider two orientations \mathcal{O} and \mathcal{O}' having the same outdegree sequence. We consider the executions $\Psi[\mathcal{O}]$ and $\Psi[\mathcal{O}']$. For all $0 \leq i < |H|$, we denote by h_i , F_i , T_i and S_i the current half-edge and the sets F, T and S at the beginning of the i^{th} core step of the execution $\Psi[\mathcal{O}]$ (see Definition 21). We define h'_i, F'_i, T'_i and S'_i similarly for the orientation \mathcal{O}' . We want to prove that if the orientations \mathcal{O} and \mathcal{O}' coincide on h_i for all i < k (that is, $\mathcal{O}(e_i) = \mathcal{O}'(e_i)$ where

 e_i is the edge containing h_i), then the k first core steps of the executions $\Psi[\mathcal{O}]$ and $\Psi[\mathcal{O}']$ are the same. In particular, $h_i = h'_i$, $F_i = F'_i$, $S_i = S'_i$, and $T_i = T'_i$ for all $i \leq k$.

Proof. We proceed by induction on k. Recall from Lemma 40 that the orientation \mathcal{O}' can be obtained from \mathcal{O} by a sequence of cycle-flips such that the flipped cycles are contained in the set $K = \{e/\mathcal{O}(e) \neq \mathcal{O}'(e)\}$. For k = 0 the property obviously holds. Now suppose that the property holds for k and suppose that \mathcal{O} and \mathcal{O}' coincide on $h_i, i < k+1$. By the induction hypothesis the current half-edge $h_k = h'_k$ and the sets $F = F_k = F'_k$, $S = S_k = S'_k$, and $T = T_k = T'_k$ are the same at the beginning of the $(k + 1)^{th}$ core step of the procedures $\Psi[\mathcal{O}]$ and $\Psi[\mathcal{O}']$. Moreover, the set $K = \{e'/\mathcal{O}(e') \neq \mathcal{O}'(e')\}$ of reverse edges is contained in $\overline{F + e}$. Since \mathcal{O}' is obtained from \mathcal{O} by a sequence of flips of cycles contained in $\overline{F + e}$, we know by induction on Lemma 43 that Condition (a) (resp. (b), (c), (a'), (b'), (c')) holds for the orientation \mathcal{O} if and only if it holds for the orientation \mathcal{O}' . Therefore, the $(k + 1)^{th}$ core step is the same for the two executions $\Psi[\mathcal{O}]$ and $\Psi[\mathcal{O}']$. In particular, the sets F, S, and T are modified in the same way in both executions and $h_{k+1} = h'_{k+1}$. Thus, the property holds by induction.

Proof of Proposition 39. Recall that an orientation \mathcal{O} is minimal if and only if Condition (a) never holds during the execution $\Psi[\mathcal{O}]$. Thus, we need to prove that for any outdegree sequence δ there exists a unique δ -orientation \mathcal{O} such that Condition (a) never holds during the execution $\Psi[\mathcal{O}]$.

• Uniqueness: Let \mathcal{O} and \mathcal{O}' be two (distinct) orientations having the same outdegree sequence. We take the same notations h_i , F_i , T_i , S_i , h'_i , F'_i , T'_i , S'_i as in Lemma 44. Let k be the first index such that \mathcal{O} and \mathcal{O}' differ on h_k . By Lemma 44, we have $h_k = h'_k$ and $F_k = F'_k$, $T_k = T'_k$, $S_k = S'_k$. We can suppose without loss of generality that h_k is a tail in \mathcal{O} and a head in \mathcal{O}' . We now prove that Condition (a) holds for \mathcal{O} . By hypothesis, the edge e containing h is such that $\mathcal{O}(e) \neq \mathcal{O}'(e)$. Hence, by Lemma 41, the edge e is contained in an \mathcal{O} -directed cycle $C \subseteq K = \{e/\mathcal{O}(e) \neq \mathcal{O}'(e)\}$. Since \mathcal{O} and \mathcal{O}' coincide on h_i for i < k, the set K is contained in $\overline{F_i}$. Since $C \subseteq \overline{F_i}$ is \mathcal{O} -directed, Condition (a) holds for \mathcal{O} .

• Existence: Let δ be an outdegree sequence. We want to find a δ -orientation \mathcal{O} such that Condition (a) never holds during the execution $\Psi[\mathcal{O}]$. Let \mathcal{O}_0 be any δ -orientation. We are going to define a set of δ -orientations $\mathcal{O}_0, \mathcal{O}_1, \ldots, \mathcal{O}_{|H|}$ such that Condition (a) is not satisfied during the *i* first core steps of the execution $\Psi[\mathcal{O}_i]$. We prove that \mathcal{O}_k exists by induction on k. Suppose the δ -orientation \mathcal{O}_{k-1} exists. We consider the current half-edge h, the edge e and the sets F, S and Tat the beginning of the k^{th} core step of $\Psi[\mathcal{O}_{k-1}]$. If either $e \in F$ or Condition (a) does not hold, we define $\mathcal{O}_k = \mathcal{O}_{k-1}$. Else, the current half-edge h_k is a tail (for the orientation \mathcal{O}_{k-1}) and there is an \mathcal{O}_k -directed cycle $C \subseteq \overline{F}$ containing e. In this case, we define \mathcal{O}_k to be the orientation obtained from \mathcal{O}_{k-1} by flipping the cycle C. Observe that \mathcal{O}_k is a δ -orientation in which h_k is a head. Moreover, since $C \subseteq \overline{F}$ the two orientations \mathcal{O}_{k-1} and \mathcal{O}_k coincide on the half-edges h_i for i < k, where h_i is the current half-edge at the beginning of the i^{th} core step of the execution $\Psi[\mathcal{O}_{k-1}]$. Thus, by Lemma 44, the k first core steps of the executions $\Psi[\mathcal{O}_{k-1}]$ and $\Psi[\mathcal{O}_k]$ are the same. Moreover, the current half-edge $h = h_k$ at the beginning of the k^{th} core step of $\Psi[\mathcal{O}_k]$ is a head (for the orientation \mathcal{O}_k). Hence, Condition (a) does not hold at this core step. Thus, \mathcal{O}_k is a δ -orientation such that Condition (a) does not hold during the k^{th} first core steps of the execution $\Psi[\mathcal{O}_k]$. The orientations $\mathcal{O}_0, \mathcal{O}_1, \ldots, \mathcal{O}_{|H|}$ exist by induction. In particular, the δ -orientation $\mathcal{O}_{|H|}$ is such that Condition (a) never holds during the execution $\Psi[\mathcal{O}_{|H|}]$.

From Proposition 36 and 39 one obtains the following bijection between outdegree sequences and forests.

Proposition 45. Let \mathcal{G} be an embedded graph. The mapping Γ which associates with any subgraph S the outdegree sequence of the orientation \mathcal{O}_S establishes a bijection between the forests and the outdegree sequences of \mathcal{G} .

Another bijection between outdegree sequences and forests was established in [27] after Stanley asked for such a bijection [40].

6.4. Summary of the specializations and further refinements

From Propositions 30, 33, 36 and 37 we can characterize the orientations associated with each class of subgraphs defined by the criteria *forest, internal, connected, external.* Each class of subgraphs is counted by a specialization of the Tutte polynomial given in Proposition 18. Our results are summarized in the following theorem.

Theorem 46. Let \mathcal{G} be an embedded graph and let v_0 be the root-vertex.

- (1) The v_0 -connected orientations are in bijection with the connected subgraphs counted by $T_G(1,2)$.
- (2) The strongly connected orientations are in bijection with the external subgraphs counted by $T_G(0,2)$.
- (3) The outdegree sequences are in bijection with minimal orientations, which are in bijection with forests, counted by $T_G(2, 1)$.
- (4) The acyclic orientations are in bijection with internal forests counted by $T_G(2,0)$.
- (5) The v_0 -connected outdegree sequences are in bijection with v_0 -connected minimal orientations which are in bijection with spanning trees counted by $T_G(1,1)$.
- (6) The strongly connected outdegree sequences are in bijection with strongly connected minimal orientations which are in bijection with external spanning trees counted by $T_G(0, 1)$.
- (7) The v_0 -connected acyclic orientations are in bijection with internal spanning trees counted by $T_G(1,0)$.

Theorem 46 is illustrated by Figure 24. The enumeration of acyclic orientations by $T_G(2,0)$ was first established by Winder in 1966 [44] and rediscovered by Stanley 1973 [39]. The result of Winder was stated as an enumeration formula for the number of faces of hyperplanes arrangements and was independently extended to reel arrangements by Zaslavsky [45] and to orientable matroids by Las Vergnas [29]. The enumeration of v_0 -connected acyclic orientations by $T_G(1,0)$ was found by Greene and Zaslavsky [26]. In [22], Gessel and Sagan gave a bijective proof of both results. In [20], Gebhard and Sagan gave three other proofs of Greene and Zaslavsky's result. The enumeration of strongly connected orientations by $T_G(0,2)$ is a direct consequence of Las Vergnas' characterization of the Tutte polynomial [30]. The enumeration of outdegree sequences by $T_G(2,1)$ was discovered by Stanley [8, 40] and a bijective proof was established in [27]. The enumeration of v_0 -connected orientations by $T_G(1,2)$, the enumeration of v_0 -connected outdegree sequences by $T_G(1,1)$ and the enumeration of strongly connected outdegree sequences by $T_G(0,1)$ were proved by Gioan [23].

Refinements. It is possible to refine the results of Theorem 46. For instance, we have proved that the acyclic orientations of a graph G are counted by $T_G(2,0)$. This is the sum of the coefficients of the polynomial $T_G(1 + x, 0)$ (which is closely related to the chromatic polynomial of G). We denote by $[x^i]P(x)$ the coefficient of x^i in a polynomial P(x). The identities

$$\sum_{i \in \mathbb{N}} [x^i] T_G(1+x,0) = T_G(2,0) = |\{\text{acyclic orientations}\}|,$$

and

 $\sum_{i \in \mathbb{N}} [x^i] T_G(x,0) = T_G(1,0) = |\{v_0 \text{-connected acyclic orientations}\}|,$

make it appealing to look for a partition of the acyclic orientations (resp. rootconnected acyclic orientations) in parts of size $[x^i]T_G(1+x,0)$ (resp. $[x^i]T_G(x,0)$). Such partitions were defined by Lass in [31] using set functions algebra. The partition defined by Lass is linked to former constructions by Cartier, Foata, Gessel, Stanley and Viennot (see references in [31]). More generally, one can try to interpret the coefficients of $T_G(x,1)$, $T_G(1+x,1)$, $T_G(x,2)$, $T_G(1+x,2)$ etc. in terms of orientations in order to interpolate between the different specializations $T_G(i,j), 0 \le i, j \le 2$. Observe that the coefficients of each of these polynomials can be given an interpretation in terms of subgraphs. For instance, $[x^i]T_G(1+x,0)$ counts internal forests with i + 1 trees (by Theorem 13 and Lemma 12) and $[x^i]T_G(x,0)$ counts internal spanning trees with i internal embedding-active edges (by Theorem 4).

We will give an interpretation of the coefficients $[x^i]T_G(1+x,j)$ for $i \ge 0$ and j = 0, 1, 2 in terms of orientations. Let \mathcal{O} be an orientation. We define the partition of the vertex set V into root-components $V = \biguplus_{0\le i\le k} V_i$ as follows. The first root-component V_0 is the set of vertices reachable from the root-vertex v_0 . If $W_k = \bigcup_{0\le i\le k} V_i \subsetneq V$, we consider the minimal edge e_k with one vertex in W_k and one vertex v_k in $\overline{W_k}$ (the edges are compared according to the (\mathcal{G}, T) -order, where $T = \Delta(\Psi(\mathcal{O}))$). Then, the $(k+1)^{th}$ root-components have been indicated for the orientation in Figure 27 (left). It is clear that v_0 -connected orientations have only one root-component U_0 is the set of vertices that can reach the root-vertex v_0 . If first root-strong-component U_0 is the set of vertices that can reach the root-vertex v_0 . If $W_k = \bigcup_{0\le i\le k} U_i \subsetneq V$, we consider the minimal edge e_k with one vertex in W_k and one vertex set V into root-strong-components $V = \biguplus_{0\le i\le k} U_i$ as follows. The first root-strong-component U_0 is the set of vertices that can reach the root-vertex v_0 . If $W_k = \bigcup_{0\le i\le k} U_i \subsetneq V$, we consider the minimal edge e_k with one vertex in W_k and one vertex v_k in $\overline{W_k}$. Then, the $(k+1)^{th}$ root-strong-component is the set of vertices in the set of vertices in W_k and one vertex v_k in $\overline{W_k}$. Then, the $(k+1)^{th}$ root-strong-component is the set of vertices in W_k that can reach v_k . For instance, the root-strong-components have been indicated for the vertex in $\overline{W_k}$ that can reach v_k . For instance, the root-strong-components have been indicated for the v_0 -connected orientation in Figure 27 (right).

Theorem 47. Let \mathcal{G} be an embedded graph and let v_0 be the root-vertex. The coefficient $[x^i]T_G(1+x,2)$ (resp. $[x^i]T_G(1+x,1), [x^i]T_G(1+x,0)$) counts orientations (resp. minimal orientations, acyclic orientations) with i + 1 (non-empty) root-components. The coefficient $[x^i]T_G(x,2)$ (resp. $[x^i]T_G(x,1), [x^i]T_G(x,0)$) counts v_0 -connected orientations (resp. minimal v_0 -connected orientations, acyclic v_0 -connected orientations) with i + 1 (non-empty) root-strong-components.

As mentioned above, the coefficients $[x^i]T_G(1+x,0)$ and $[x^i]T_G(x,0)$ had already been interpreted by Lass in [31]. We now prove Theorem 47.

FIGURE 27. Left: root-components of an orientation. Right: rootstrong-components of a v_0 -connected orientation. The thick edges correspond to the subgraph associated with the orientation by the bijection Ψ .

Lemma 48. Let \mathcal{G} be an embedded graph and let \mathcal{O} be an orientation. We consider the spanning tree $T = \Delta(\Psi(\mathcal{O}))$ and compare the half-edges and edges according to the (\mathcal{G}, T) -order. Let V_0, \ldots, V_k be the root-components and let $W_i = \bigcup_{0 \le j \le i} V_j$. Let D_i for $i = 1 \ldots k$ be the cut defined by W_{i-1} and let e_i be the minimal edge in D_i . Then, an edge is minimal in a head-min directed cocycle if and only if it is in the set $\{e_1, \ldots, e_k\}$.

Proof.

• We first prove that for all $1 \leq i \leq k$ the edge e_k is minimal in a head-min directed cocycle. Clearly, every edge in the set D_i is directed toward the vertices in W_{i-1} . Let v_i be the endpoint of $e_i = e_{\min}(D)$ which is not in W_{i-1} . Let X_i be the set of vertices contained in the connected component containing v_i once the cut D is removed. The set D of edges with one endpoint in W_{i-1} and one endpoint in X_i is a directed cocycle contained in D_i . Thus, the edge e_i is minimal in the directed cocycle D directed toward W_{i-1} . Since the cocycle D is directed toward the component containing the root-vertex, it is head-min by Lemma 31.

• Consider an edge e minimal in a head-min directed cocycle D. We want to prove that e is in $\{e_1, \ldots, e_k\}$. Let \mathcal{G}_0 and \mathcal{G}_1 be the connected components after the cocycle D is removed with the convention that \mathcal{G}_0 contains the root-vertex v_0 . The directed cocycle D is head-min, hence it is directed toward \mathcal{G}_0 by Lemma 31. Let i be the first index such that the root-component V_i contains a vertex v of \mathcal{G}_1 . The cocycle D is directed toward \mathcal{G}_0 , hence no edge of \mathcal{G}_1 is reachable from v_0 and the index i is positive. Let u_i and v_i be the endpoints of e_i in W_{i-1} and $\overline{W_{i-1}}$ respectively. By definition, the endpoint u_i is in \mathcal{G}_0 . Moreover, the vertex $v \in \mathcal{G}_1$ is reachable from v_i , hence the endpoint v_i is in \mathcal{G}_1 . Thus, the edge e_i is in D and $e_i \geq e = e_{\min}(D)$. We will now prove that $e_i \leq e$. The subset of vertices W_{i-1} contains the root-vertex and the subset of edges D_i separate W_{i-1} and $\overline{W_{i-1}}$, hence every edge with one endpoint in $\overline{W_{i-1}}$ is greater than $e_i = e_{\min}(D_i)$ by Lemma 31. The edge e has one endpoint in $\mathcal{G}_1 \subseteq \overline{W_{i-1}}$, hence $e_i \leq e$. Thus, $e = e_i$.

Here is a counterpart of Lemma 48 for root-strong-components.

Lemma 49. Let \mathcal{G} be an embedded graph and let \mathcal{O} be a v_0 -connected orientation. We consider the spanning tree $T = \Delta(\Psi(\mathcal{O}))$ and compare the half-edges and edges according to the (\mathcal{G}, T) -order. Let U_0, \ldots, U_k be the root-strong-components and let $W_i = \bigcup_{0 \leq j \leq i} U_j$. Let D_i for $i = 1 \ldots k$ be the cut defined by W_{i-1} and let e_i be the minimal edge in D_i . Then, an edge is minimal in a directed cocycle if and only if it is in the set $\{e_1, \ldots, e_k\}$. **Proof.** The proof of Lemma 49 very similar to the proof of Lemma 48 and is left to the reader. \Box

Proof of Theorem 47.

• We first prove that the coefficient $[x^i]T_G(1+x,2)$ (resp. $[x^i]T_G(1+x,1), [x^i]T_G(1+x,2)$ (x,0) counts orientations (resp. minimal orientations, acyclic orientations) with i+1 root-components. Let T be a spanning tree with $\mathcal{I}(T)$ internal and $\mathcal{E}(T)$ external (\mathcal{G}, T) -active edges. By Lemma 12, the coefficient $[x^i](1+x)^{\mathcal{I}(T)}2^{\mathcal{E}(T)}$ counts the subgraphs S in the tree-interval $[T^-, T^+]$ having i edges in $\overline{S} \cap T$. Given that the tree-intervals form a partition of the set of subgraphs, the coefficient $[x^i] \sum_{T \text{ spanning tree}} (1+x)^{\mathcal{I}(T)} 2^{\mathcal{E}(T)}$ counts the subgraphs S having i edges in $\overline{S} \cap \Delta(S)$. Moreover, by the characterization (4) of the Tutte polynomial, the sum $\sum_{T} (1+x)^{\mathcal{I}(T)} 2^{\mathcal{E}(T)}$ is equal to $T_G(1+x,2)$. Similarly, the coefficient $[x^i]T_G(1+x,1)$ (resp. $[x^i]T_G(1+x,0)$) counts the forests (resp. internal forests) S having i edges in $\overline{S} \cap \Delta(S)$. By Theorem 46 and Lemma 27, the coefficient $[x^i]T_G(1+x,2)$ (resp. $[x^i]T_G(1+x,1), [x^i]T_G(1+x,0))$ counts the orientations (resp. minimal orientations, acyclic orientations) having exactly i edges which are minimal in some head-min directed cocycle. Moreover, by Lemma 48, an orientation has i edges which are minimal in some head-min directed cocycle if and only if it has i + 1root-components.

• We now prove that the coefficient $[x^i]T_G(x,2)$ (resp. $[x^i]T_G(x,1), [x^i]T_G(x,0)$) counts v_0 -connected orientations (resp. minimal v_0 -connected orientations, acyclic v_0 -connected orientations) with i+1 root-strong-components. Let T be a spanning tree with $\mathcal{I}(T)$ internal (\mathcal{G}, T) -active edges and $\mathcal{E}(T)$ external (\mathcal{G}, T) -active edges. By Lemma 12, the coefficient $[x^i]x^{\mathcal{I}(T)}2^{\mathcal{E}(T)}$ is the number of connected subgraphs in the tree-interval $[T^-, T^+]$ if $\mathcal{I}(T) = i$ and 0 otherwise. Given that the tree-intervals form a partition of the set of subgraphs, the coefficient $[x^i] \sum_{T \text{ spanning tree}} x^{\mathcal{I}(T)} 2^{\mathcal{E}(T)}$ counts the connected subgraphs S such that the tree $T = \Delta(S)$ has i internal $(\mathcal{G},T)\text{-}\mathrm{active}$ edges. Moreover, by the characterization (4) of the Tutte polynomial, the sum $\sum_T x^{\mathcal{I}(T)} 2^{\mathcal{E}(T)}$ is equal to $T_G(x,2)$. Similarly, the coefficient $[x^i]T_G(x,1)$ (resp. $[x^i]T_G(x,0)$) counts the spanning trees (resp. internal spanning trees) T having i internal (\mathcal{G}, T) -active edges. By Theorem 46 and Lemma 35, the coefficient $[x^i]T_G(x,2)$ (resp. $[x^i]T_G(x,1), [x^i]T_G(x,0)$) counts the v₀-connected orientations (resp. minimal v_0 -connected orientations, acyclic v_0 -connected orientations) having exactly i edges which are minimal in some directed cocycle. Moreover, by Lemma 48, an orientation has i edges which are minimal in some directed cocycle if and only if it has i + 1 root-strong-components.

One specialization of this result is of special interest: the coefficient $[x^1]T_G(x,0)$ counts bipolar orientations. Given two vertices u and v, a (u, v)-bipolar orientation is an acyclic orientation such that u is the unique source and v is the unique sink. The bipolar orientations are important for many graph algorithms [32]. In addition, a bijection between spanning trees having activities (1,0) with respect to Tutte's definition [42] and bipolar orientations is the building block used in [24] in order to define a general correspondence between spanning trees and orientations. This correspondence explains the link between the activities of spanning trees defined by Tutte in [42] and the activities of orientations defined by Las Vergnas in [30].

Proposition 50. Let \mathcal{G} be an embedded graph, let v_0 be the root-vertex and let v_1 be the other endpoint of the root-edge. The mapping Φ establishes a bijection between

the spanning trees having embedding-activities $(\mathcal{I}(T), \mathcal{E}(T)) = (1, 0)$ (counted by $[x^1]T_G(x, 0)$) and the (v_0, v_1) -bipolar orientations.

Proposition 50 is illustrated by Figure 28.

FIGURE 28. A bipolar orientation and the corresponding spanning tree (indicated by thick lines).

Proof. Observe first that an acyclic orientation \mathcal{O} is (v_0, v_1) -bipolar if and only if any vertex is reachable from v_0 and can reach v_1 . By Theorem 47 the coefficient $[x^1]T_G(x,0)$ counts acyclic v_0 -connected orientation having 2 root-strongcomponents. No vertex $v \neq v_0$ can reach v_0 in an acyclic v_0 -connected orientation (there would be a directed path from v_0 to v and back). Hence the first root-component U_0 of an acyclic v_0 -connected orientation is reduced to $\{v_0\}$. The minimal edge with one endpoint in $U_0 = \{v_0\}$ and one endpoint outside U_0 is the root-edge. Hence an acyclic v_0 -connected orientation has 2 root-strong-components if and only if every vertex can reach v_1 . Thus, the coefficient $[x^1]T_G(x,0)$ counts (v_0, v_1) -bipolar orientations.

7. A BIJECTION BETWEEN BETWEEN SPANNING TREES AND RECURRENT SANDPILE CONFIGURATIONS

In Section 3, we defined a mapping $\Lambda : T \mapsto S_T$ from spanning trees to sandpile configurations. Recall from Definition 9 that the number of grains $S_T(v)$ on the vertex v in the configuration $S_T = \Lambda(T)$ is the number of tails plus the number of external (\mathcal{G}, T) -active heads incident to v in the orientation $\mathcal{O}_T = \Phi(T)$. In this section, we prove that the mapping Λ is a bijection between spanning trees and recurrent sandpile configurations.

Theorem 51. Let \mathcal{G} be an embedded graph. The mapping $\Lambda : T \mapsto \mathcal{S}_T$ is a bijection between the spanning trees and the recurrent sandpile configurations of \mathcal{G} .

Let G = (V, E) be the graph underlying the embedding \mathcal{G} . Observe that the *level* of the configuration \mathcal{S}_T , that is, $\sum_{v \in V} \mathcal{S}_T(v) - |E|$, is the number of external (\mathcal{G}, T) -active edges. Indeed, every edge of G has contribution 1 to the sum $\sum_v \mathcal{S}_T(v)$ except the external (\mathcal{G}, T) -active edges which have contribution 2.

Corollary 52. Let \mathcal{G} be an embedded graph. The number of recurrent sandpile configurations at level *i* is the number $[y^i]T_G(1, y)$ of spanning trees having *i* external (\mathcal{G}, T) -active edges.

As mentioned above, Corollary 52 is not new. It was first proved recursively in [33] and then bijectively in [11] (using Tutte's notion of *activity* [42]). The Theorem 51 and Corollary 52 are illustrated by Figure 29.

40

FIGURE 29. The spanning trees (thick lines) and the corresponding sandpile configurations. The external active edges are indicated by a \star .

We first prove that the image of any spanning tree is a recurrent sandpile configuration.

Proposition 53. Let \mathcal{G} be an embedded graph. For any spanning tree T, the sandpile configuration $\mathcal{S}_T = \Lambda(T)$ is recurrent.

Proof. Let v_0 be the root-vertex. We consider the orientation \mathcal{O}_T and prove successively the following properties.

• The sandpile configuration S_T is stable. Let v be any vertex distinct from v_0 . We want to prove that $S_T(v) < \deg(v)$. Observe that any half-edge incident to v has contribution at most one to $S_T(v)$. Moreover, the half-edge h_v incident to v and contained in the edge of T linking v to its father is a head by Lemma 5. Thus, h_v has no contribution to $S_T(v)$, and $S_T(v) \leq \deg(v) - 1$.

• $S_T(v_0) = \deg(v_0)$. We must prove that every half-edge incident to v_0 has contribution 1 to $S_T(v_0)$. By Lemma 5, the internal edges are oriented from father to son in \mathcal{O}_T . Therefore any internal half-edge incident to v_0 is a tail, hence has contribution 1 to $S_T(v_0)$. Let h be an external half-edge incident to v_0 . By definition, if the half-edge h is greater than the half-edge $h' = \alpha(h)$, then h is a tail. Else, the edge $e = \{h, h'\}$ is (\mathcal{G}, T) -active by Lemma 7 (since the endpoint v_0 of h is an ancestor of the endpoint of h'). Thus, any external half-edge incident to v_0 has contribution 1 to $S_T(v_0)$.

• The sandpile configuration S_T is recurrent. We want to prove that there is a labeling of the vertices $v_0, v_1, \ldots, v_{|V|-1}$ such that the sequence of topplings $\mathcal{S}_T \xrightarrow{v_0} \mathcal{S}_T^1 \xrightarrow{v_1} \cdots \xrightarrow{v_{|V|-1}} \mathcal{S}_T^{|V|}$ is valid. Observe that in this case the configuration \mathcal{S}_T is recurrent. Indeed, the final configuration $\mathcal{S}_T^{|V|}$ is equal to \mathcal{S}_T since every vertex v has been toppled once, hence has sent and received exactly $\deg(v, *)$ grains during the sequence of topplings (recall that $\deg(v, *)$ is the number of non-loop edges incident to v). In Section 6, we defined a linear order, the *postfix order*, on the vertex set V (see Lemma 38). The root-vertex v_0 is the maximal element for this order. We want to prove that taking the unique labeling such that $v_0 > v_1 > \cdots > v_{|V|-1}$ for the postfix order, the sequence of topplings $S_T \xrightarrow{v_0} S_T^1 \xrightarrow{v_1} \cdots \xrightarrow{v_{|V|-1}} S_T^{|V|}$ is valid. From the preceding point, the toppling of v_0 is valid. Suppose that the sequence $\mathcal{S}_T \xrightarrow{v_0} \mathcal{S}_T^1 \xrightarrow{v_1} \cdots \xrightarrow{v_{i-1}} \mathcal{S}_T^i$ is valid. After these topplings, the number of grains on the vertex v_i is $\mathcal{S}_T^i(v_i) = \mathcal{S}_T(v_i) + \sum_{j < i} \deg(v_i, v_j)$ (recall that $\deg(v_i, v_j)$ is the number of edges linking v_i and v_j). We want to prove that v_i can be toppled, that is, $\mathcal{S}_T^i(v_i) \geq \deg(v_i)$. By Lemma 38, any arc $\mathcal{O}_T(e)$ is directed toward its least endpoint (for the postfix order) unless e is external (\mathcal{G}, T) -active. Let h be an half-edge in an edge linking v_i to a vertex v_j , $j \ge i$. The vertex v_j is less than or equal to v_i for the postfix order, hence h is either a tail or an external (\mathcal{G}, T) -active half-edge. In both cases, the half-edge h has contribution 1 to $S_T(v_i)$. Hence,

$$\mathcal{S}_T(v_i) \ge \sum_{j\ge i} \deg(v_i, v_j).$$

Thus,

$$\mathcal{S}_T^i(v_i) = \mathcal{S}_T(v_i) + \sum_{j \ge i} \deg(v_i, v_j) \ge \sum_{j \ge 0} \deg(v_i, v_j) = \deg(v_i)$$

and v_i can be toppled. By induction, the sequence of topplings $\mathcal{S}_T \xrightarrow{v_0} \mathcal{S}_T^{1 v_1} \cdots \cdots \xrightarrow{v_{|V|-1}} \mathcal{S}_T^{|V|}$ is valid.

It remains to prove that $\Lambda: T \mapsto S_T$ is a bijection between the spanning trees and the recurrent sandpile configurations. For this purpose we define a mapping Υ that we shall prove to be the inverse of Λ . The mapping Υ is a variant of the *burning algorithm* introduced by Dhar in order to distinguish between recurrent and non-recurrent sandpile configurations [16]. The spanning tree returned by the algorithm can be seen as the path through which the *fire* (the sequence of topplings) propagates. The intuitive principle of the algorithm is to decompose each toppling and consider its effect grain after grain. When a grain makes another vertex topple, we add the edge by which the grain has traveled into the tree. Different variants of this algorithm have been proposed [11, 9]. These variants differ by the rule used for choosing the next grain to be sent, and also differ from the procedure Υ given below. Let us insist that the variants considered in [11, 9] do not contain our bijection Λ as a special case.

If v is a vertex and $F \subseteq E$ be a subgraph, we denote by $\deg_F(v)$ the degree of v in the subgraph F.

Definition 54. Let $\mathcal{G} = (H, \sigma, \alpha, h_0)$ be an embedded graph. The mapping Υ associates with a recurrent sample configuration \mathcal{S} the spanning tree defined by the following procedure.

Initialization: Initialize the *current half-edge* h to be $h'_0 = \sigma^{-1}(h_0)$. Initialize the tree T and the set of visited edges F to be empty.

Core: Do:

C1: Let e be the edge containing h, let u be the vertex incident to h and let v be the other endpoint of e.

If e is not in F, then

- Add e to F.

- If u is not connected to v by T and $S(v) + \deg_F(v) \ge \deg(v)$ then Add e to T.

C2: Move to the next half-edge clockwise around T:

If e is in T, then set the current half-edge h to be $\sigma^{-1}\alpha(h)$, else set it to be $\sigma^{-1}(h)$. Repeat until the current half-edge h is h'_0 . End: Return the tree T.

We represented the intermediate steps of the procedure Υ in Figure 30.

Observe that during the procedure Υ our motion (step C2) around the span-

ning tree is reverse (compared to our previous algorithms). This way of visiting the half-edges would be the usual tour of the spanning tree in the embedded graph $\mathcal{G}' = (H, \sigma^{-1}, \alpha, h'_0)$.

We will now prove that Υ and Λ are inverse bijections. We first prove that the mapping Υ is well defined on recurrent configurations and returns a spanning tree (Proposition 55). Then we prove that Υ and Λ are inverse mappings (Propositions 62 and 63).

FIGURE 30. The mapping Υ . In the middle line, some intermediate steps are represented. The set \overline{F} of unvisited edges is indicated by dashed lines. The number associated to each vertex v is equal to $\mathcal{S}(v) + deg_F(v)$. In the bottom line, the *burning algorithm* representation of each of the intermediate steps is given.

Proposition 55. The procedure Υ is well defined on recurrent configurations and returns a spanning tree.

Lemma 56. Let S be a recurrent configuration. Then, at any time of the execution of the procedure Υ on S, the endpoint u of the current half-edge h is connected to v_0 by T.

Proof. The property holds at the beginning of the execution. Clearly, it remains true each time a step C2 is performed.

Proof of Proposition 55. Let S be a recurrent configuration. We denote by $\Upsilon[S]$ the execution of the procedure Υ on S. We prove successively the following properties on the execution $\Upsilon[S]$.

• At any time of the execution, the subgraph T is a tree incident to v_0 . The property holds at the beginning of the execution. Suppose that it holds at the beginning of a given core step and consider the edge e with endpoints u and v containing the current half-edge. If the edge e is added to T, the subgraph T remains acyclic since u is not connected to v by T. Moreover the subgraph T remains connected and incident to v_0 since (by Lemma 56) the vertex u is connected to v_0 by T.

• No half-edge is visited twice, hence the execution terminates. Suppose that a half-edge h is visited twice during the execution. We consider the first time this situation happens. First note that $h \neq h'_0$ or the execution would have stopped just before the second visit to h. Let h_1 and h_2 be respectively the current half-edge just before the first and second visit to h. Let T_1 and T_2 be the trees constructed by the procedure Υ at the time of the first and second visit to h. Let e be the edge containing $\sigma^{-1}(h)$. For i = 1, 2 we have $h = \sigma^{-1}\alpha(h_i)$ if e is in T_i and $h = \sigma^{-1}(h_i)$ otherwise. Since $h_1 \neq h_2$ and $T_1 \subseteq T_2$, the edge e is in T_2 but not in T_1 . This is impossible since after the visit of h_1 the edge e is in F and cannot be added to the tree T anymore.

We denote by T_0 the tree returned by the execution $\Upsilon[S]$ and by F_0 the set of visited edges at the end of this execution.

• If $e = \{h_1, h_2\}$ is an edge in $T_0 = \Upsilon(S)$ and the endpoint of h_1 is the father of the endpoint of h_2 , then h_1 is visited during the execution $\Upsilon[S]$. Consider the core step at which the edge e is added to the tree T. Let h be the current half-edge, let u be the vertex incident to h and let v be the other endpoint of e. By Lemma 56, the vertex u is connected to v_0 by $T \subseteq T_0 - e$, hence u is the father of v. Hence $h_1 = h$ is visited during the execution Υ .

• At the end of the execution, any edge adjacent to T_0 is in F_0 . We want to show that any half-edge incident to T_0 is visited during the execution $\Upsilon[\mathcal{S}]$. First observe that no edge can be added to T after its first visit. Therefore, when a step C2 is performed, the edge e containing the current half-edge is in T if and only if it is in T_0 . Let h be a half-edge incident to T_0 which has not been visited during the execution Υ . If the half-edge $\sigma^{-1}(h)$ is not in T_0 then it has not been visited (or h would have been the next half-edge visited during the execution). Thus by applying σ^{-1} repeatedly we find an unvisited half-edge h such that $\sigma^{-1}(h)$ is in T_0 . Then, the half-edge $\alpha \sigma^{-1}(h)$ has not been visited during the execution Υ (or h would have been the next half-edge visited during the execution). Thus (by the preceding point) the endpoint of $\alpha \sigma^{-1}(h)$ is the son of the endpoint of $\sigma^{-1}(h)$. We have proved that if there is an unvisited half-edge h incident to T_0 , then there is an unvisited half-edge incident to one of its sons in T_0 . We reach an impossibility. • The tree $T_0 = \Upsilon(S)$ is spanning. Let $v_0, v_1, \ldots, v_{|V|-1}$ be a labeling of the vertices such that the sequence $\mathcal{S}_{\xrightarrow{v_0}} \mathcal{S}_{\xrightarrow{v_1}}^1 \cdots \stackrel{v_{|V|-1}}{\longrightarrow} \mathcal{S}^{|V|}$ is valid. In the configuration \mathcal{S}_i , the number of sand grains on the vertex v_i is $\mathcal{S}^i(v_i) = \mathcal{S}(v_i) + \sum_{j < i} \deg(v_j, v_i)$ and is more than the degree of v_i . Suppose now that the tree T_0 is not spanning and consider the least index i such that v_i is not connected to v_0 by T. Each vertex v_i for j < i is incident to T, hence (by the preceding point) every edge joining v_i and v_i is in F_0 . Moreover v_i is adjacent to at least one of the vertices $v_j, j < i$ since $\mathcal{S}(v_i)$ is less than its degree and $\mathcal{S}^i(v_i)$ is not. Consider the last edge e (in order of visit) joining v_i to a vertex v_j , j < i. When the edge e is visited, we have $\deg_F(v_i) \ge$ $\sum_{i \leq i} \deg(v_i, v_j)$. Therefore, the condition $\mathcal{S}(v_i) + \deg_F(v_i) \geq \deg(v_i)$ holds and the edge e should have been added to the tree T. We reach a contradiction. \square

We proceed to prove that Λ and Υ are inverse mappings.

Lemma 57. Consider a given core step of the procedure Υ . Let e be the edge containing the current half-edge h and let v be the endpoint of $\alpha(h)$. If the edge e is added to T, then the inequality $S(v) + \deg_F(v) \ge \deg(v)$ (tested in the procedure Υ) is an equality.

Proof. Observe first that the vertex v is distinct from v_0 , otherwise adding e to the tree T would create a cycle by Lemma 56. While v is not connected to v_0 by T, it is not the endpoint of the current half-edge h (Lemma 56). Thus, each time the quantity $\deg_F(v)$ increases, that is, each time an edge incident to v is added to F, the condition $S(v) + \deg_F(v) \ge \deg(v)$ is tested and the edge is added to T if the condition holds.

Lemma 58. Let $\mathcal{G} = (H, \sigma, \alpha, h_0)$ be an embedded graph and let T be a spanning tree. We consider the (\mathcal{G}, T) -order on half-edges. Let v be a vertex distinct from v_0 and let h_v be the half-edge incident to v in the edge of T linking v to its father. Any half-edge h incident to v and such that $\alpha(h) > h_v$ is external. Moreover, there are $\deg(v) - \mathcal{S}_T(v) - 1$ such half-edges.

Proof. We consider the orientation \mathcal{O}_T . Recall from Lemma 5 that $\alpha(h_v) < h_v$ and that the half-edges h incident to a descendant of v are characterized by $\alpha(h_v) < h \leq h_v$. In particular, the inequalities $\alpha(h_v) < h \leq h_v$ hold for the half-edges incident to v. We now prove successively the following properties.

• Any half-edge h incident to v and such that $\alpha(h) > h_v$ is external. Suppose that the half-edge h is internal and consider the edge e containing h. If e links v to its father, then $h = h_v$ and $\alpha(h) = \alpha(h_v) < h_v$. If e links v to one of its sons, then $\alpha(h)$ is incident to a descendant of v and $\alpha(h) \leq h_v$. In either cases, the hypothesis $\alpha(h) > h_v$ does not hold.

• An external half-edge h incident to v is a non-active head if and only if $\alpha(h) > h_v$. The three following properties are sufficient to prove the equivalence:

- If h is a tail then $\alpha(h) < h_v$. Indeed, we have $\alpha(h) < h$ since h is a tail and $h \leq h_v$ since h is incident to v.

- If h is a head and $\alpha(h) < h_v$ then h is (\mathcal{G}, T) -active. Since h is a head, we have $h < \alpha(h)$ hence, $\alpha(h_v) < h < \alpha(h) < h_v$. Thus, $\alpha(h)$ is incident to a descendant of v and the edge $e = \{h, \alpha(h)\}$ is (\mathcal{G}, T) -active by Lemma 7.

- If h is a head and $\alpha(h) > h_v$ then h is not (\mathcal{G}, T) -active. Since h is a head we have $h < \alpha(h)$. Since $\alpha(h) > h_v$, the half-edge $\alpha(h)$ is not incident to a descendant of v and the edge $e = \{h, \alpha(h)\}$ is not (\mathcal{G}, T) -active by Lemma 7.

• There are $\deg(v) - S_T(v) - 1$ half-edges h incident to v and such that $\alpha(h) > h_v$. By definition, $S_T(v)$ is the number of tails plus the number of external (\mathcal{G}, T) -active heads incident to v. Hence, $\deg(v) - S_T(v)$ is the number of heads incident to v which are not external (\mathcal{G}, T) -active. By Lemma 5, internal edges are oriented from father to son. Hence, the vertex v is incident to exactly one internal head. Thus $\deg(v) - S_T(v) - 1$ is the number of external non-active heads. By the preceding point, these half-edges are characterized by the condition $\alpha(h) > h_v$.

We now define the *clockwise-tour* of a tree. Let $\mathcal{G} = (H, \sigma, \alpha, h_0)$ be an embedded graph. Given a spanning tree T, we define the *clockwise-motion function* τ on half-edges by

 $\tau(h) = \sigma^{-1}\alpha(h)$ if h is internal and $\tau(h) = \sigma^{-1}(h)$ otherwise.

As observed above, the clockwise-motion function τ is the usual motion function for the embedded graph $\mathcal{G}^{-1} = (H, \sigma^{-1}, \alpha, \sigma^{-1}(h_0))$. This defines the (\mathcal{G}^{-1}, T) -order on the half-edge set H for which $h'_0 = \sigma^{-1}(h_0)$ is the least element. The (\mathcal{G}, T) -order denoted by < and the (\mathcal{G}^{-1}, T) -order denoted by $<^{-1}$ are closely related.

Lemma 59. Let \mathcal{G} be an embedded graph and let T be a spanning tree. The (\mathcal{G}, T) order and (\mathcal{G}^{-1}, T) -order are related by h < h' if and only if $\beta(h') <^{-1} \beta(h)$, where β is the involution defined by $\beta(h) = h$ if h is external and $\beta(h) = \alpha(h)$ otherwise.

Proof. Let t be the usual motion function and let τ be the clockwise-motion function. Observe that $t\beta = \sigma$ and $\tau\beta = \sigma^{-1}$. Thus, $\tau = \beta t^{-1}\beta$. Let us write $t = (h_0, h_1, \ldots, h_{|H|-1})$ in cyclic notation. Then $t^{-1} = (h_{|H|-1}, \ldots, h_1, h_0)$ and $\tau = \beta t^{-1}\beta = (\beta(h_{|H|-1}), \ldots, \beta(h_1), \beta(h_0))$. Moreover, $\sigma\beta(h_{|H|-1}) = t(h_{|H|-1}) = h_0$, hence $\beta(h_{|H|-1}) = h'_0 = \sigma^{-1}(h_0)$. Therefore, $h_i < h_j$ if and only if i < j if and only if $\beta(h_j) <^{-1} \beta(h_i)$.

Lemma 60. Let S be a recurrent configuration and let $T_0 = \Upsilon(S)$ be the spanning tree returned by the procedure Υ . The half-edges of G are visited in (G^{-1}, T_0) -order during the procedure Υ .

Proof. During the procedure Υ , no edge can be added to the tree T after its first visit. Therefore, when a step **C2** is applied, the edge e containing the current half-edge is in T if and only if it is in T_0 . Hence, a step **C2** corresponds to an application of the clockwise-motion function τ of the spanning tree T_0 . Since the first visited half-edge is $h'_0 = \sigma^{-1}(h_0)$, the half-edges are visited in (\mathcal{G}^{-1}, T_0) -order.

Lemma 61. Let \mathcal{G} be an embedded graph and let T be a spanning tree. Let v be a vertex distinct from v_0 and let e_v be the edge of T linking v to its father. There are $\deg(v) - \mathcal{S}_T(v) - 1$ edges incident to v and less than e_v for the (\mathcal{G}^{-1}, T) -order.

Proof. Let h_v be the half-edge of e_v incident to v. Let $h \neq h_v$ be a half-edge incident to v and let e be the edge containing h. We prove successively the following properties.

• The edge e is less than e_v if and only if $\alpha(h) <^{-1} \alpha(h_v)$. Moreover, in this case e is not a loop. By Lemma 5 applied to the embedded graph \mathcal{G}^{-1} , the half-edges h incident to v are such that $\alpha(h_v) <^{-1} h \leq^{-1} h_v$. Hence, the edge containing h is less than e_v for the (\mathcal{G}^{-1}, T) -order if and only if $\alpha(h) <^{-1} \alpha(h_v)$. In this case, $\alpha(h)$ is not incident to v by Lemma 5, that is, e is not a loop.

• The conditions $\alpha(h) <^{-1} \alpha(h_v)$ and $\alpha(h) > h_v$ are equivalent. Moreover, there are $\deg(v) - \mathcal{S}_T(v) - 1$ half-edges satisfying this condition. Suppose $\alpha(h) <^{-1} \alpha(h_v)$. In this case, h external. Indeed, h is not in e_v and is not incident to a son of v by Lemma 5 applied to the embedded graph \mathcal{G}^{-1} . Hence, by Lemma 59, we get $\alpha(h) > h_v$. Conversely, if $\alpha(h) > h_v$, the edge e is external by Lemma 58, hence $\alpha(h) <^{-1} \alpha(h_v)$ by Lemma 59. Moreover, there are $\deg(v) - \mathcal{S}_T(v) - 1$ half-edges satisfying this condition by Lemma 58.

Proposition 62. The mapping $\Lambda \circ \Upsilon$ is the identity on recurrent configurations.

Proof. Let S be a recurrent configuration and let $T = \Upsilon(S)$. We want to prove that the recurrent configuration $S_T = \Lambda(T)$ is equal to S. We already know that $S_T(v_0) = \deg(v_0) = S(v_0)$ since S_T and S are recurrent configurations. Let v be a vertex distinct from v_0 and let e_v be the edge of T linking v to its father. Let F be the set of visited edges when e_v is added to T during the execution $\Upsilon[S]$. We know that $S(v) = \deg(v) - \deg_F(v)$ by Lemma 57. It remains to prove that $S_T(v) = \deg(v) - \deg_F(v)$. By Lemma 60, the half-edges are visited in (\mathcal{G}^{-1}, T) order during the execution $\Upsilon[S]$. Therefore, the value $\deg_F(v)$ is the number of edges incident to v which are less or equal to e_v for the (\mathcal{G}^{-1}, T) -order. There are $\deg(v) - S_T(v)$ such edges by Lemma 61. We obtain $\deg_F(v) = \deg(v) - S_T(v)$, or equivalently, $S_T(v) = \deg(v) - \deg_F(v)$. Thus, $S_T(v) = S(v)$.

Proposition 63. The mapping $\Upsilon \circ \Lambda$ is the identity on spanning trees.

Proof. Let T_0 be a spanning tree. We denote by $T_1 = \Upsilon(S_{T_0})$ the image of T_0 by $\Upsilon \circ \Lambda$ and want to prove that $T_1 = T_0$. Recall that every edge of \mathcal{G} is visited during the execution $\Upsilon[S_{T_0}]$. Hence, it is sufficient to prove that at the beginning of any core step of the execution $\Upsilon[S_{T_0}]$, the tree T constructed by the procedure Υ is $T_0 \cap F$, where F denotes the set of visited edges. We proceed by induction on the number of core steps. The property holds at the beginning of the first core step. Suppose that it holds at the beginning of the k^{th} core step. If the edge e containing the current half-edge is already in the set F of visited edges, then the set F and the tree T

are unchanged during this core step and the property holds at the beginning of the $k + 1^{th}$ core step. Suppose now that the edge e is not in F at the beginning of the k^{th} core step. By the induction hypothesis, the tree T constructed by the procedure Υ is $T_0 \cap F$. Moreover, no edge is added to the tree T after its first visit, hence $T = T_1 \cap F$. In other words, the spanning trees T_0 and T_1 coincide on F. By Lemma 60, the half-edges are visited in (\mathcal{G}^{-1}, T_1) -order during the execution $\Upsilon[\mathcal{S}_{T_0}]$, hence the edges visited before e during the execution $\Upsilon[\mathcal{S}_{T_0}]$ have been visited in (\mathcal{G}^{-1}, T_0) order. Thus, the edges visited before e during the execution $\Upsilon[S_{T_0}]$ are the edges which are less than e for the (\mathcal{G}^{-1}, T_0) -order. Suppose now that the edge e is in the tree T_0 . In this case the endpoints u and v of e are not connected by $T \subseteq T_0 - e$. Moreover, the value $\deg_{F+e}(v)$ which corresponds to the number of edges incident to v and visited before e during the execution $\Upsilon[S_{T_0}]$, that is, the edge which are less or equal to e for the (\mathcal{G}^{-1}, T_0) -order, is deg $(v) - \mathcal{S}_{T_0}(v)$ by Lemma 61. Thus, the condition $\mathcal{S}_{T_0}(v) + \deg_{F+e}(v) \ge \deg(v)$ (tested by the procedure Υ) holds and the edge e is added to the tree T. Suppose now that e is not in T_0 . In this case, the edge e_v linking v to its father in T_0 is greater than e for the (\mathcal{G}^{-1}, T_0) -order. Hence, the value $\deg_{F+e}(v)$ is less or equal to the number of edges incident to v which are less than e_v for the (\mathcal{G}^{-1}, T_0) -order. Thus, $\deg_{F+e}(v) < \deg(v) - \mathcal{S}_{T_0}(v) - 1$ by Lemma 61. The condition $\mathcal{S}_{T_0}(v) + \deg_{F+e}(v) \geq \deg(v)$ (tested by the procedure Υ) does not hold, hence the edge e is not added to the tree T. In any case, the property holds at the beginning of the $k + 1^{th}$ core step. \square

This concludes our proof of Theorem 51.

8. CONCLUDING REMARKS

8.1. The cycle and cocycle reversing systems

We consider the *cycle reversing system* and the *cocycle reversing system*. A transition in the cycle (resp. cocycle) reversing system consists in flipping a directed cycle (resp. cocycle). The cycle and cocycle reversing systems appear implicitly in many works (e.g. [19, 15, 37, 7]).

It is known from [37] that there is a unique v_0 -connected orientation (equivalently, orientation without head-min directed cocycle by Lemma 32) in each equivalence class of the cocycle reversing system. The counterpart of this property for the cycle reversing system is given by Proposition 39. Indeed, the equivalence classes of the cycle reversing system are in one-to-one correspondence with outdegree sequences [19]. Thus, Proposition 39 proves that there is a unique minimal orientation (that is, orientation without tail-min directed cycle) in each equivalence class of the cycle reversing system.

The cycle-cocycle reversing system in which a transition consists in flipping either a directed cycle or a directed cocycle was introduced in [23]. It was observed in this paper that the cycle and cocycle flips are really independent since they act on the cyclic part and acyclic part respectively and do not modify the other part. As a consequence it was shown that the equivalence classes of the cycle-cocycle reversing system are in one-to-one correspondence with root-connected outdegree sequences. Since the cycle and cocycle flips are independent, the unicity of the v_0 -connected orientation in the classes of the cocycle reversing system ([37]) and the unicity of minimal orientation in the classes of the cycle reversing system (Proposition 39) proves that there is a unique v_0 -connected minimal orientation in each equivalence class of the cycle-cocycle reversing system.

As observed in [23], the enumerative results of Theorem 46 can be expressed in terms of cycle/cocycle reversing systems. For instance, the equivalence classes of the cocycle reversing system (in bijection with minimal orientations) are counted by $T_G(1,2)$, the equivalence classes of the cocycle reversing system reduced to one element (equivalently, the strongly connected orientations) are counted by $T_G(0,2)$ etc.

8.2. The planar case and duality

In this subsection we restrict our attention to planar graphs. Our goal is to highlight some nice properties of our bijections with respect to duality. Therefore we will handle simultaneously a planar embedding and its *dual*. In order to avoid confusion we shall indicate the implicit embedding \mathcal{G} for the tree-intervals and the mapping Φ by writing $[T^-, T^+]_{\mathcal{G}}$ and $\Phi_{\mathcal{G}}$.

Let G = (V, E) be a planar graph. The graph G can be embedded in the sphere, that is, drawn in such a way the edges only intersect at their endpoints. An embedding of G in the oriented sphere defines a combinatorial embedding $\mathcal{G} = (H, \sigma, \alpha)$ where the permutation σ corresponds to the counterclockwise order around each vertex. There is a one-to-one correspondence between the embedding of graphs in the oriented sphere and combinatorial embeddings having *Euler characteristic* 0, where the Euler characteristic is the number of vertices (cycles of σ) plus the number of *faces* (cycles of $\sigma\alpha$) minus the number of *edges* (cycles of α) minus 2. We call these embeddings planar. If $\mathcal{G} = (H, \sigma, \alpha, h_0)$ is a (combinatorial) planar embedding, then $\mathcal{G}^* = (H, \sigma\alpha, \alpha, h_0)$ correspond to the graphical dual of \mathcal{G} in the reverse-oriented sphere (the graphical dual of a graph embedded in the sphere is obtained by putting a vertex in each face and an edge across each edge). Observe, by the way that $\mathcal{G}^{**} = \mathcal{G}$.

Consider a planar embedding \mathcal{G} . Observe that the edges, subgraphs and orientations of \mathcal{G} can also be considered as edges, subgraphs and orientations of \mathcal{G}^* . Given a subgraph S of \mathcal{G} we denote by \overline{S}^* the *co-subgraph*, that is, the complement of S considered as a subgraph of \mathcal{G}^* . Given an orientation \mathcal{O} of \mathcal{G} we denote by $\overline{\mathcal{O}}^*$ the co-orientation, that is, the orientation obtained from \mathcal{O} by reversing all arcs considered as an orientation of \mathcal{G}^* . Observe that for any subgraph S and any orientation \mathcal{O} , we have $\overline{\overline{S}^{**}} = S$ and $\overline{\overline{\mathcal{O}}^{**}} = \mathcal{O}$. From the Jordan Lemma, a subgraph S is connected if and only if the co-subgraph \overline{S}^* is acyclic. This implies the well known property (see [36]) that a subgraph T is a spanning tree of \mathcal{G} if and only if the co-subgraph \overline{T}^* is a spanning tree of \mathcal{G}^* . From this property, it follows that the fundamental cycle (resp. cocycle) of an internal (resp. external) edge ewith respect to \mathcal{G} and T is the fundamental cocycle (resp. cycle) of e with respect to \mathcal{G}^* and \overline{T}^* . Moreover, it follows directly from the definitions that the motion function of the spanning tree T of \mathcal{G} and the motion function of the spanning tree \overline{T}^* of \mathcal{G}^* are equal. In particular, the (\mathcal{G},T) -order and the $(\mathcal{G}^*,\overline{T}^*)$ -order are the same. Hence, an edge is (\mathcal{G}, T) -active if and only if it is $(\mathcal{G}^*, \overline{T}^*)$ -active. Thus, the mapping $S \mapsto \overline{S}^*$ induces a bijection between the tree-intervals $[T^-, T^+]_{\mathcal{G}}$ and $[\overline{T}^{*-}, \overline{T}^{*+}]_{\mathcal{G}^{*}}$. It follows directly from this property and the definitions that the mappings $\Phi_{\mathcal{G}}$ and $\Phi_{\mathcal{G}^*}$ are related by :

for any subgraph S of \mathcal{G} , $\overline{\Phi_{\mathcal{G}}(S)}^* = \Phi_{\mathcal{G}^*}(\overline{S}^*)$.

Acknowledgments: This work has benefited from discussions with Eric Fusy, Emeric Gioan, Yvan Le Borgne, Igor Pak, Gilles Schaeffer and Michel Las Vergnas. I am deeply indebted to Mireille Bousquet-Mélou for her very patient reading of early versions of this paper and for her constant support and guidance.

References

- P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett., 59(4):381–384, 1987.
- [2] R.A. Bari. Chromatic polynomials and the internal and external activities of Tutte. In A Bondy and eds. USR Murty, editors, *Graph Theory and related topics (Academic Press)*, pages 41–52, 1979.
- [3] O. Bernardi. A characterization of the Tutte polynomial via combinatorial embedding. To appear in Ann. Comb., Special volume on the Tutte polynomial, 2006.
- [4] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler. Oriented Matroids, volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1993.
- [5] A. Björner, I. Lovász, and P.W. Shor. Chip-firing game on graphs. *European J. Combin.*, 12:283–291, 1991.
- [6] B. Bollobás. Modern Graph Theory, chapter 10 in Modern Graph Theory. Springer (Graduate Texts in Mathematics), 1998.
- [7] N. Bonichon. A bijection between realizers of maximal plane graphs and pairs of non-crossing dyck paths. *Discrete Math.*, 298:104–114, 2005.
- [8] T. Brylawski and J.G. Oxley. The Tutte polynomial and its applications, chapter 6 in Matroid Applications. Cambridge University Press, 1991.
- [9] D. Chebikin and P. Pylyavskyy. A family of bijections between G-parking functions and spanning trees. J. Combin. Theory Ser. A, 110:31–41, 2005.
- [10] R. Cori. Un code pour les graphes planaires et ses applications. Soc. Math. de France, Astérisque 27, 1975.
- [11] R. Cori and Y. Le Borgne. The sand-pile model and Tutte polynomial. Adv. in Appl. Math., 30:44–52, 2003.
- [12] R. Cori and A. Machi. Maps, hypermaps and their automorphisms: a survey. I, II, III. Exposition. Math., 10(5):403-467, 1992.
- [13] R. Cori and D. Rossin. On the sandpile group of dual graphs. European J. Combin., 21(4):447– 459, 2000.
- [14] H.H. Crapo. The tutte polynomial. Aequationes Math., 3:211-229, 1969.
- [15] H. de Fraysseix and P. Ossona de Mendez. On topological aspects of orientations. Discrete Math., 229:57–72, 2001.
- [16] D. Dhar. Self-organized critical state of sandpile automaton models. Phys. Rev. Lett., 64, 1990.
- [17] D. Dhar and S.N. Majumdar. Equivalence between the abelian sandpile model and the q→0 limit of the Potts model. Phys. A, 185:129–145, 1992.
- [18] D. Dhar, P. Ruelle, and D.N. Verma. Algebraic aspects of Abelian sandpile model. J. Phys. A, 28:805–831, 1995.
- [19] S. Felsner. Lattice structures from planar graphs. Electron. J. Combin., 11(1), 2004.
- [20] D.D. Gebhard and B.E. Sagan. Sinks in acyclic orientations of graphs. J. Combin. Theory Ser. B, 80:130–146, 2000.
- [21] I.M. Gessel. Enumerative applications of a decomposition for graphs and digraphs. *Discrete Math.*, 139:257–271, 1995.
- [22] I.M. Gessel and B.E. Sagan. The Tutte polynomial of a graph, depth-first search, and simplicial complex partitions. *Electron. J. Combin.*, 3(2):R9, 1996.
- [23] E. Gioan. Enumerating degree sequences in digraphs and a cycle-cocycle reversing system. European J. Combin., 2006. To appear.
- [24] E. Gioan and M. Las Vergnas. Activity preserving bijections between spanning trees and orientations in graphs. *Discrete Math.*, 298:169–188, 2005.

- [25] G. Gordon and L. Traldi. Generalized activities and the Tutte polynomial. Discrete Math., 85:167–176, 1990.
- [26] C. Greene and T. Zaslavsky. On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs. *Trans. Amer. Math. Soc.*, 280:97–126, 1983.
- [27] D.J. Kleitman and K.J. Winston. Forests and score vectors. Combinatorica, 1:49-54, 1981.
- [28] D. Kostic and C.H. Yan. Multiparking functions, graph searching and the tutte polynomial. ArXiv: math.CO/0607602, 2006.
- [29] M. Las Vergnas. Matroïdes orientables. C. R. Acad. Sci. Paris Sér. A-B, 280, 1975.
- [30] M. Las Vergnas. The Tutte polynomial of a morphism of matroids II. Activities of orientations. Progress in Graph Theory (Waterloo, Ont.), pages 367–380, 1984.
- [31] B. Lass. Orientations acycliques et le polynôme chromatique. Europ. J. Combinatorics, 22:1001–1023, 2001.
- [32] P. Ossona De Mendez. Orientations bipolaires. PhD thesis, École des Hautes Études en Sciences Sociales, Paris, 1994.
- [33] C. Merino. Chip firing game and the Tutte polynomial. Ann. Combin., 3:253–259, 1997.
- [34] G.J. Minty. On the axiomatic foundations of the theories of directed linear graphs, electrical networks and network programming. *Indiana Univ. Math. J.*, 15:485–520, 1966.
- [35] B. Mohar and C. Thomassen. Graphs on surfaces. J. Hopkins Univ. Press, 2001.
- [36] R.C. Mullin. On the enumeration of tree-rooted maps. Canad. J. Math., 19:174–183, 1967.
- [37] J. Propp. Lattice structure for orientations of graphs. Manuscript: www.math.wisc.edu/~propp/orient.html, 1993.
- [38] B. Shapiro and A. Postnikov. Trees, parking functions, syzygies, and deformation of monomial ideals. Trans. Amer. Math. Soc., 356(8):3109–3142, 2004.
- [39] R.P. Stanley. Acyclic orientations of graphs. Discrete Math., 5:171–178, 1973.
- [40] R.P. Stanley. Decomposition of rational polytopes. Ann. Discrete Math., 6:333-342, 1980.
- [41] W.T. Tutte. A ring in graph theory. Proc. Cambridge Philos. Soc., 43:26–40, 1947.
- [42] W.T. Tutte. A contribution to the theory of chromatic polynomials. Canad. J. Math., 6:80– 91, 1954.
- [43] H. Whitney. A logical expansion in mathematics. Bull. Amer. Math. Soc., 38:572–579, 1932.
- [44] R.O. Winder. Partitions of n-space by hyperplanes. SIAM J. Appl. Math., 14:811–818, 1966.
- [45] T. Zaslavsky. Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Mem. Amer. Math. Soc., 1975.

LABRI, UNIVERSITÉ BORDEAUX 1, 351 COURS DE LA LIBÉRATION, 33405 TALENCE, FRANCE *E-mail address*: bernardi@labri.fr