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Abstract – Some recent works on intercellular communication pointed out an impaired trafficking of Cx43 proteins in early 
carcinogenesis.   In  collaboration  with  biologists,  we  propose  an  automatic  system  for  the  analysis  of  spatial  protein 
configurations  within cells  at  early tumor stages.  This system is  an essential  step towards the  future development  of a 
computer-aided  diagnosis  tool  and  the  statistical  validation  of  biological  hypotheses  about  Cx43  expressions  and 
configurations during tumorogenesis. The proposed system contains two dependent part: a segmentation part in which the 
cell structures of interest are automatically located on images and a characterization part in which some spatial features are 
computed for the classification of cells. Using immunofluorescent images of cells,  the  nucleus, cytoplasm and proteins 
structures within the cell are extracted. Then, some spatial features are computed to characterize spatial configurations of the 
proteins with regard to the nucleus and cytoplasm areas in the image. Last, the 3D cell images are classified into pathogenic 
or viable classes. The system has been quantitatively evaluated over 60 cell  images acquired by a deconvolution high-
resolution microscope and whose ground truth has been manually given by a biologist expert. As a perspective, a 3D spatial  
reasoning and visualization module is currently under development.

Key words: gap channel junctions, connexin, intercellular communication, carcinogenesis, immunofluorescent microscopy, 
image analysis, image processing, image segmentation, image classification, 3D cell visualization, spatial analysis.

INTRODUCTION
Since  its  emergence  from the  pioneer  work  of 

Lowenstein  (1),  the  biological  hypothesis  that  the 
cell-to-cell communication could be involved in the 
control  of  the  cell  growth  has  been  confirmed by 
various  experiments  (see  (2)  for  a  review).  Cells 
communicate to their neighboring cells thanks to gap 
junction  channels  (GJC)  which  allow  the  direct 
transfer of signal molecules across cell membranes. 
These  channels  are  formed  of  proteins  called 
connexins  (Cx),  among  which  Cx43  is  the  most 
representative  in  mammalians.  Recently,  impaired 
GJC and Cx expressions have been demonstrated in 
vivo  in some human tumors (see (3) for a review). 
Some experiments also suggested that genes coding 
for  Cx could be tumor-suppressor (4) and that  Cx 
could  be  used  in  pharmacological  treatments  of 
cancers(5).  However,  designing  such  a  clinical 
application  still  requires  a  better  understanding  of 
Cx expression during carcinogenesis.

In  the  last  few years,  Segretain and  colleagues 
focused  their  researches  on  early  stages  of  the 
testicular  carcinogenesis.  Using  transgenic  mouse 
model, they obtained initial evidence that Cx43 in

Leydig  cells  were  aberrantly  localized  in  cells  at 
early tumor stages (6). These results were obtained 
thanks  to  a  deconvolution  high-resolution 
microscope  (DVHR),  which  generates  sharp  cell 
images  at  a  sub-cellular  resolution  (67nm)  and 
allows to observe precisely various cell structures of 
interest.  For  the acquisition of the DVHR images, 
cell  structures  were  enhanced  with 
immunofluorescent  markers:  the  blue  marker 
diamidino-phenylindole (DAPI) for nuclei, the green 
marker fluorescein isothiocynanate (FITC) for Cx43 
and  the  red  marker  rhodamine  (RHOD)  for  cell 
cytoplasms.  The  enhanced  structures  were  made 
visible  separately  in  the  RGB  color  channels  of 
images.  Thanks  to  a  piezoelectric  translator,  the 
microscope also collected 2D color slices of cells at 
0.2µ m Z-intervals. In fig. 1, some typical examples 
of image slices generated by the DVHR microscope 
illustrate cases when the Cx expression in the cell is 
normal and the trafficking of Cx is impaired due to 
the  cancer.  As  it  can  be  seen,  Cx  are  normally 
aligned all  along cell  membranes (fig. 1.a), but, at 
early carcinogenesis, Cx migrate towards the nuclei 

and scatter within the cells (fig. 1.b). Some other illustrations may be found in (6).
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(a) (b)
Fig; 1 Some examples  of  2D cell  slices  obtained 
by Segretain et  al.  with the DVHR microscope (1). 
The nuclei, the cytoplasms and the Cx43 within the 
cells  can  be  observed  in  the  color  channels  of 
images:  blue,  red  and  green,  respectively.  Images 
show cells of a control case (a) and of a pathological 
case (b) (early carcinogenesis).

Observations of Segretain et al. (6) suggested 
that the spatial arrangements of Cx43 relative to 
cell  membrane  and  nucleus  positions  could 
characterized  the  pathological  cell  states  of 
carcinogenesis. The long-term goals of our work 
are  (a)  to  validate  statistically  biologist 
assumptions  and  (b)  to  build  a  tumor  detection 
system  which  could  be  used  as  a  tool  for 
computer-aided  diagnosis.  This  paper  presents 
the  preliminary  step  towards  the  realization  of 
these  goals.  It  consists  in  designing  and 
evaluating  an  automatic  system  which  analyzes 
spatial  arrangements  of  Cx43  within  the  cells. 
This  system  is  mainly  composed  of  two 
dependent parts, a segmentation part in which the 
cell  structures  of  interest  are  automatically 
localized  and  a  characterization  part  in  which 
some spatial features are computed with the aim 
to  classify  cell  states  (e.g.  control/pathological 
states).

Section  2  describes  the  various  parts  of  the 
analysis systems. In Section 3, based on a test set 
of  images annotated by an expert,  the results  of 
an evaluation of  the system are given and some 
improvements of the system are also presented.

MATERIALS AND METHODS
The three  channels  of  images generated by the  DVHR 

microscope  contain  complementary  information  about 
cellular structures and none of them are sufficient to obtain 
an  exhaustive  cell  description.  It  is  thus  necessary  to 
process all of the channels and to combine results. Besides, 
due to the nature of the acquisition, the image appearance is 
quite  different  from  a  channel  to  another.  Hence 
segmentation  techniques  have  to  be  specific  to  each 
channel.  In  what  follows,  we  focus  successively  on  the 
segmentation  of  cell  structures  in  each  image  channel 

directly converted into grey- level images.

DAPI image segmentation
By visual inspection of DAPI images, the nuclei can be 

easily located. Since these images are well-contrasted, it is 
also  possible  to  have  a  good  initial  estimate  of  nucleus 
positions using a thresholding operation (see fig. 2.a).

Fig. 2 (a)  DAPI  image  of  a  nucleus  (b)  ground 
truth or gold standard obtained by a biologist expert 
(c)  algorithmic  segmentation  of  the  nucleus  region 
with  the  gray  regions  corresponding  to  the 
difference with the ground truth in b).

However, the choice of the threshold value for nucleus 
segmentation  is  a  critical  implementation  issue.  Due  to 
DAPI image  variations,  there  is  no  threshold  which  is 
suitable for all images. Instead, a strategy must be defined 
for  computing  automatically  a  suitable  threshold  for  each 
image.  In  DAPI  images,  gray-level  values  in  nucleus 
regions  are  high  and  variable,  as  opposed  to  those  in  the 
background  which  are  quite  low  and  uniform.  As  a 
consequence,  gray-level  histograms  of  the  DAPI  images 
always show bimodal distributions (see fig. 3).

Fig. 3 Bimodal  histogram  of  the  DAPI  nucleus 
image of fig. 2.

Hence, gray-level values which separate the two modes 
are  relevant  candidates  for  thresholding  images.  Such 
values  can  be  optimally  computed  using  a  k-means 
clustering method (7).

The  segmentation  obtained  using  thresholds  cannot  be 
perfect.  Indeed,  the  automatic  thresholding  operator  does 
not  provide  a  filtered,  smooth  shape  of  the  nucleus  area. 
The  marker  used  for  the  nucleus  also  marks  some  small 
regions in the cell outside the nucleus (see fig. 4.a).



Ocular Immunity

Fig. 4 Segmentation  of  the  DAPI  nucleus  image  by 
automatic  thresholding  (a)  processed  by  morphological 
operators (b).

To fix the problem, morphological opening and closing operators 
are respectively used to delete small particles and to improve the 
under-segmentation of nucleus (8). The structuring element is a circle 
with a radius adapted to the resolution.

FITC image segmentation
As  protein  images  are  well-contrasted,  a  simple  contrast 

enhancement filter followed by an automatic Otsu-type thresholding 
technique (9) is sufficient to extract protein structures (see fig. 5). This 
basic operation can be improved by using a wavelet-based multi-
resolution analysis (10): as aAn automatic system for the analysis of 
intercellular communication and early carcinogenesis matter of fact, 
the multiscale correlation of the filtered wavelet coefficients allows to 
enhance  multiscale  peaks  due  to  spots  while  reducing  noise  by 
combining information coming from different levels of resolution. 
This method is more robust to the variability of biological images and 
to  the  high  level  of  noise  present  in  typical  immunomicroscopic 
images. To filter the shape of the obtained cytoplasm segmentation, 
the same opening and closing morphological operators as in the case 
of the nucleus segmentation are applied. Besides, the complementary 
segmentations of RHOD, DAPI and FITC images permit to infer a 
segmentation of the cell region: the cell mask is obtained as the union 
of the cytoplasm region (RHOD segmentation), the nucleus region 
(DAPI segmentation) and the protein regions (FITC segmentation). of 
of the preliminary cell segmentation mentioned in the previous parts 
(proteins  and nucleus) to obtain a complete.  An example of cell 
segmentation  is  shown  in  fig.  8.  Some  examples  of  complete 
segmentations of cell structures are also shown on fig. 9.

Fig. 5 (a) FITC proteins image (b) Image processed by 
a contrast enhancement operator (c) Extracted proteins in the 
image (a).

RHOD image segmentation
Because of the granular aspect of RHOD images (see fig. 6), 

thresholding  directly  these  images  is  not  a  relevant  segmentation 
technique. Indeed, such a technique would result in an incomplete 
segmentation of cytoplasm regions strewn with holes corresponding 
to dark image areas.  Hence,  instead of the raw RHOD image,  a 
feature image is derived from the raw image by computing the local 
variance of the gray levels within a window of size n centered around 

each pixel (see fig. 7). The feature image is then segmented using the 
same thresholding technique as in the case of DAPI images.

Fig. 6 An example of (a) a RH0D image and of (b) its 
associated cytoplasm area (union of the segmented nucleus 
area with the RHOD marked area).

Fig. 7 An example of a RH0D image (a) and of its 
associated  rugosity  measure  image  (b)  computed  with  a 
mobile window of fixed size.

Fig. 8 (a)  DVHR images and (b) the overlay of the 
computed  cell  segmentation  and  the  ground  truth  (gray 
regions  correspond  to  differences  between  the  computed 
segmentation and the ground truth).

Fig. 9 (a)  Immunofluorescent images  (b)  with  their 
corresponding cellular mask composed of the union of the three 
specific segmentation results : white contour for the cell membrane, 
gray region for the nucleus and white spots for the proteins.
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RESULTS
Image Segmentation

A database of images has been built up with 60 
different slices taken from a test set composed of 10 
control samples and 10 pathological samples. Each 
sample contains one or two cells. Three successive 
slices were taken from each sample of the test set. 
Besides,  the  segmentation  results  obtained  on 
control and pathological cells were equivalent. Each 
image  slice  has  been  manually  segmented  by  a 
biologist  expert.  Due  to  a  globally  low  signal-to-
noise ratio and to some labelling problems for a few 
images,  the  segmentation  results  are  actually 
evaluated on a set of 33 image slices taken from 11 
various cells (see fig. 10).

Fig. 10 Masks  for  the  ground  truth.  These  masks 
were manually segmented by a biologist.

Although these results are quantitatively good, it 
is  worth  giving  some  comments  about  achieved 
segmentations and some difficulties which arise. In 
images where several cells are present, membranes 
of  the  various  cells  are  often  in  contact. 
Consequently, the segmentation technique may not 
distinguish  between  neighboring  cells  and  may 
merge distinct  cells  into a single  structure (see an 
illustration in fig. 11.a and 11.b).

Fig. 11 (a)  The  segmentation  processing  merges 
neighboring  cells  (b)  The  segmentation  of  the 

corresponding  nuclei  (c)  Line  separating  the  nuclei 
regions (d) The correction of the segmentation in (a).

The segmentation evaluation is performed by the 
means  of  the  Dice  Similarity  Coefficient  (DSC) 
(11).  This  criterion  is  a  measure  of  the  spatial 
overlap between a region A (ground truth given by 
the expert) and a region B (computed automatically):

DSC(A,B) = 2 * (A∩B)/(|A|+|B|)

The value of  a  DSC ranges  from 0 (no spatial 
overlap) to 1 (perfect overlap). As recommended by 
Zijdenbos in (12), an overlap is good whenever DSC 
is above 0.7.  Results of  the evaluation on the test 
image set are given for each structure on table 1. For 
nuclei  and cells,  averages  of  DSC are  above 0.85 
and standard deviations are very low, showing that 
the  techniques  proposed  for  the  segmentation  of 
these  structures  are  reliable.  The  segmentation 
results for the proteins are not as good as those of 
the other structures, but they are still satisfactory.

Table 1 DSC  measures  and  evaluation  of  the 
segmentation results.

Image of DSC Mean Std. Dev.
Nucleus 0.89 0.07
Protein 0.75 0.18
Cell 0.86 0.04

In  the  following,  the  influence  of  the 
segmentation parameters is evaluated depending on 
the  size  of  the  structural  element  for  the 
morphological operators and the size of the texture 
window  for  the  rugosity  image.  Results  are 
presented in tables 2 and 3.
Table 2 Results for various texture window sizes.

Texture window 
size DSC Mean Std. Dev.

2 0.65 0.15
4 0.86 0.04
6 0.87 0.09

Table 3 Results  for  various  structural  element  sizes 
involved in the nucleus segmentation.

Structural Element Size DSC Mean 
Std. Dev.

6 0.8835 0.0712
5 0.8757 0.0694
4 0.8870 0.0679

The  same  problem  appeared  with  the  nucleus 
segmentation, but less often. For our system, it was 
crucial  to  deal  with  such  segmentation  errors, 
because  they  could  bias  values  of  spatial  features 
computed  for  characterizing  cell  states  (see  next 
Section). The problem mentioned above reveals that 
gray-level  information  used  for  thresholding 
operations is not sufficient for the nucleus and cell 
segmentations. The problem can be fixed by 
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combining information from successive slices and from 
various image channels. The idea is illustrated in fig. 11.c 
and fig. 11.d. The presence of several nuclei in the DAPI 
channel  is  usually  well  detected  by  the  segmentation 
algorithm, even when corresponding cells in the RHOD 
channel  are  merged.  Hence,  the  nucleus  segmentation 
results can be used to check if the number of segmented 
cells  is  correct  and,  if  necessary,  to  correct  cell 
segmentation results.

The  correction  relies  on  the  computation  of  the 
discriminant line which best separates the nucleus regions 
using a criterion of linear discriminant analysis (13). In the 
same  manner,  by  checking  the  coherence  of  nucleus 
segmentations over the slices and, combining results of 
various slices, possible merged segmentation are corrected. 
The database does not contain cases with more than two 
cells but the method can be easily extended for splitting 
several cells (it is a generalization of the linear discriminant 
analysis).  An  automatic  system  for  the  analysis  of 
intercellular communication and early carcinogenesis.

Spatial characterization
In this part, preliminary results are presented about the 

core of our global project: automatic spatial reasoning with 
these segmented images in the same way as biologists do. 
According  to  biological  hypothesizes,  pathological  cell 
states  are  characterized  by  specific  Cx43  spatial 
distributions  within  cells.  Relying  on  biological 
observations on 2D slices of the cell, we compute 2D 
spatial features for each cell (3 slices) such as:

• Number of proteins in the image,
• Average distance from the proteins to the nucleus,
• Average distance from the proteins to the cell 

membrane.
The  minimal  distance between the  protein  and the 

membrane was computed by successive morphological 
erosions  but  the  distance between the  protein  and the 
nucleus was only a point to point distance with the center 
of the nucleus. That questionable choice was required first 
for computing complexity problems but should be further 
investigated. Last, the values on the Y-axis are the average 
of the features on three successive slices of the sample

Despite an improvable cell segmentation quality, initial 
results allow us to point out significant differences between 
pathogens class and control class. Fig. 12 shows graphical 
results  for  each  index  indicating  that  the  automatic 
computation of distances between the various structures 
within a cell will give efficient measures to classify the 
pathogens cells and the control ones. These seminal results 
- which are mainly numerical - encourage us to imagine a 
symbolical representation of these spatial characteristics in 
the way that biologists express themselves: for instance, 
“proteins are quite aligned near the cell membrane” (13). 
As a matter of fact, control cell sample 3 indicates that the 
proteins are quite close from both the nucleus and the cell 

membrane. But these measures are absolute measures in 
pixels not taking into account the relative size of the cell for 
instance.

DISCUSSION
The  aim  of  this  primary  study  was  to  develop  a 

prototype  of  computer-assisted  tool  for  exploring  the 
mutual organization in 3D space of proteins, nucleus and 
cytoplasm within a cell. The manual classification and the 
ground truth for a set of 60 cell slices which were given by 
the  biologist  allowed  us  to  validate  quantitatively  the 
designed  image  analysis  tools.  The  cell  structures 
segmentation rates achieved in this study encourage us to 
go  further  into  the  spatial  characterization  of  3D 
configurations  of  these  cell  structures.  Preliminary 
statistical features were computed from a set of 11 cells 
belonging either to control or pathogens class (fig. 12). 
These measures gave the initial quantitative evidence that 
an automatic cell classification tool based on the qualitative 
spatial characterization within 3D images is possible.

Fig. 12 The  black  lines  corresponds  to  the  control 
class and the grey lines to the pathogens class.



Computing  more  criteria  is  indeed  a  possible 
extension  of  this  work  which  only  gives  some 
insights  into  cell  classification.  However,  a 
statistical  validation  of  criteria  and  feature  would 
require a larger database we do not have yet. Here 
our  aim  was  just  to  show  the  feasibility  of  the 
classification using the simplest features in terms of 
complexity.  In  the  meantime,  we  draw  some 
perspective  points  to  be  further  investigated  both 
technically  and  theoretically  at  the  next  step: 
develop an open source friendly user interface for 
the  interactive  exploration  of  the  3D  cell.  The 
computed features must be robust to low signal-to-
noise  ratios  and  hence  the  segmentation  module 
must  be  improved  by  much  more  sophisticated 
methods such as the multi-scale analysis (10). Last, 
a research effort has to be carried out for the formal 
definition of valid and semantically coherent spatial 
relationship between the cell structures such as the 
notion  of  proximity  or  the  very  idea  of  distance 
between two structures.
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