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Numerical transport of an arbitrary number of components.

This study takes place in the general framework of the numerical treatment of multima-
terial fluid flows. One of the main issues in this thematic concerns the computation of the
transport of interfaces separating components. Intrinsic finite volume methods, discretizing the
conservation equation of the mass of each component, are usually not retained because of their
numerical diffusion leading to the artificial spreading of interfaces. The usual way to avoid this
phenomenon is to compute the position of the interface itself before determining the fluxes of
each component exchanged between cells. To do so, various methods, commonly referred as
volume tracking or interface reconstruction methods, have been published since the mid-1970s.
Among the better known algorithms are the Simple Line Interface Calculation (SLIC) method
of [8], the Volume Of Fluid method initiated in [5] and the method of Youngs [15]. For a precise
and clear historical presentation of these methods, as well as recent works and improvements in
this area, see [9] and [10].

A common feature of these methods is that they are all based on geometrical considerations.
In this paper, we adopt a different formalism: we propose to use a finite volume method to
transport the mass fraction of each component of the fluid without reconstructing interfaces.
To avoid numerical diffusion, this has to be performed using an antidissipative algorithm. We
choose the limited downwind scheme developed in [2], which proved to be well suited for such
studies: this scheme, equivalent to the Ultrabee limiter in the case of a simple linear advection
problem, has already been used in [3] to treat the evolution of a fluid with 2 components governed
by the compressible Euler equations. But, as shown in section 1 below, the problem is much
more complex from the numerical point of view when dealing with more than 2 components.
This is precisely the subject of the present paper. Let us mention that the limited downwind
scheme in [2], equivalent to the Ultrabee limiter (cf. [13]) in the case of advection with constant
velocity, has been extended in [1] to satisfy entropy properties, and in [14] to achieve order 2.

For the sake of clarity, we restrict the discussion to the simplified problem of advection
equations of several components, that is to say that pressure and velocity in the Euler equations
of the fluid are assumed to be constant in space (and time). Following the ideas exposed in [3]
for example, the extension to the full Euler problem is straightforward.

Therefore, we consider the transport of m ∈ N quantities (ck)
m
k=1 in R

d with the same
constant velocity u ∈ R

d, with d ∈ N:

{

∂tck + u · ∇ck = 0 ∀(t, x) ∈ R
+∗ × R

d, k ∈ {1, . . . ,m},

ck(0, ·) = c0
k(·) ∈ L∞(Rd) ∀k ∈ {1, . . . ,m},

(1)

and we assume that the initial conditions are such that










c0
k(x) ∈ [0, 1] ∀x ∈ R

d, k ∈ {1, . . . ,m},
m

∑

k=1

c0
k(x) = 1 ∀x ∈ R

d,
(2)

so that the unique solution satisfies










ck(t, x) ∈ [0, 1] ∀(t, x) ∈ R
+ × R

d, k ∈ {1, . . . ,m},
m

∑

k=1

ck(t, x) = 1 ∀(t, x) ∈ R
+ × R

d.
(3)
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The subject of the present paper is to derive an accurate computational method which enforces
these relations for the numerical solutions. The general framework of numerical schemes involved
here is that of finite volume on structured grids. The main difficulty, when the number of
components is (strictly) greater than 2, is that usual non-linear schemes do not satisfy all
requirements in (3): see section 1 for explanations and examples.

From this point of view, the central result of this paper relies on theorem 1 below (section 2)
which provides an explicit and non-empty stability interval for the numerical fluxes.

For the simplicity of notations, the discussion is restricted to the case d = 1 and the scalar
velocity u ∈ R is assumed to be positive (without loss of generality). The extension of the
proposed algorithms to the multi-dimensional case d > 1 is treated using an alternate direction
splitting. We begin in section 1 with an academic numerical example which shows that most
of non linear common schemes do not preserve the discrete constraints equivalent to (3) when
m > 2. In section 2 we derive explicit L∞-stability conditions for the fluxes to fulfill these
constraints. These conditions can be used to derive a second order stable scheme which give
satisfying results on smooth initial profiles. Nevertheless it is not sufficient to correctly treat
discontinuities. Following ideas developed in [2], we also propose a non-dissipative scheme by
looking for the downwind flux under the stability constraints. Numerical results in 1D and
2D are presented in section 3. For the 2D test-case, these are compared to those obtained
with the Youngs’ interface tracking algorithm [15]. Results obtained with both methods are
qualitatively comparable. Thus the present paper brings a way to compute sharp interfaces in
fluids with several components in a very simple finite volume frame. Moreover this scheme is
less expensive than interface reconstruction methods, especially in 3D, since there is no need to
compute normals to interfaces.

1 Generalities

Let ∆x ∈ R
+∗ and ∆t ∈ R

+∗ be respectively a space and a time steps. The numerical initial
condition is, as usual, defined as

ck
0
j =

1

∆x

∫ (j+1/2)∆x

(j−1/2)∆x
c0
k (x) dx ∀j ∈ Z, k ∈ {1, . . . ,m}.

Thus (2) implies that










ck
0
j ∈ [0, 1] ∀j ∈ Z, k ∈ {1, . . . ,m},

m
∑

k=1

ck
0
j = 1 ∀j ∈ Z.

Let us consider a general finite volume scheme

ck
n+1
j = ck

n
j + uν

(

ck
n
j+1/2 − ck

n
j−1/2

)

∀j ∈ Z, n ∈ N, k ∈ {1, . . . ,m} (4)

with ν = ∆t/∆x, where the numerical fluxes ck
n
j+1/2 are to be specified.

The aim of this work is to provide conditions on the fluxes so that the solution satisfies a
discrete version of (3), namely











ck
n
j ∈ [0, 1] ∀j ∈ Z, n ∈ N, k ∈ {1, . . . ,m},

m
∑

k=1

ck
n
j = 1 ∀j ∈ Z, n ∈ N.

(5)
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Remark first that a sufficient condition to satisfy (5) is that the scheme (4) is L∞-decreasing
for each ck and that

∑m
k=1 ck

n
j+1/2 = 1 ∀n ∈ N, ∀j ∈ Z. Thus we notice that every linear

L∞-decreasing scheme, such as the usual upwind scheme with ck
n
j+1/2 = ck

n
j (recall that u > 0),

obviously satisfies (5). But for precision reasons one could need a nonlinear scheme (it is
known that the upwind scheme is too much dissipative). Unfortunately, most of more precise
nonlinear schemes do not satisfy these inequalities, even if they are stable for each ck. Typically,
whether one computes each flux with a given algorithm and this does not necessarily lead
to

∑m
k=1 ck

n
j+1/2 = 1 or one computes m − 1 fluxes, say ck

n
j+1/2 for k = 2, . . . ,m, and puts

c1j+1/2 = 1 −
∑m

k=2 ck
n
j+1/2 so that ck

n
j ∈ [0, 1] for k = 2, . . . ,m and

∑m
k=1 ck

n
j+1/2 = 1 but

c1
n
j ∈ [0, 1] is not ensured. Here we give some examples obtained with various stable schemes:

the upwind scheme, the minmod limiter, the superbee limiter, the ultrabee limiter (see [13],
[4]). The initial condition on [0, 1] is defined by























c1(x) =
χ[0.4,0.6](x)

2
,

c2(x) =

∣

∣

∣

∣

x −
1

2

∣

∣

∣

∣

,

c3(x) = 1 − c1(x) − c2(x),

(6)

where χI(x) = 1 if x ∈ I and 0 otherwise, and is represented on figure below. The boundary
conditions are periodic. The results at time t = 1 with velocity u = 1 (thus after one revolution)
follow. The Courant number uν is here 0.123. The two strategies are used. On left figures,
each flux has been computed with the algorithm. Although constraints ck

n
j ∈ [0, 1] are satisfied

(because of the stability of the schemes), constraint
∑3

k=1 ck
n
j = 1 is not at all. On right figures,

the m − 1 last fluxes (i. e. ck
n
j+1/2 for k = 2, ...,m) are computed and c1j+1/2 is defined by

c1j+1/2 = 1−
∑m

k=2 ck
n
j+1/2. One sees that

∑3
k=1 ck

n
j = 1 and that c2 and c3 are stable, but this

is not the case for c1: negative values have appeared, and the total variation of c1 has clearly
increased.
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2 Explicit L
∞-stability conditions

2.1 Simple advection

We briefly recall here the analysis done in [2]. It provides conditions on the fluxes for the scheme
to be L∞-decreasing. Thus we do not intend here to ensure

∑m
k=1 ck

n
j = 1 and delay it to the
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next subsection. We consider the advection equation

{

∂tc + u∂xc = 0 ∀(t, x) ∈ R
+∗ × R,

c(0, ·) = c0(·) ∈ L∞(R).

In the sequel, u is assumed to be positive.
The discrete form of this PDE is















cn+1
j = cn

j + uν
(

cn
j+1/2 − cn

j−1/2

)

,

c0
j =

1

∆x

∫ (j+1/2)∆x

(j−1/2)∆x
c0 (x) dx ∀j ∈ Z, k ∈ {1, . . . ,m}.

Let us now define


































































mn
j+1/2 = min(cn

j , cn
j+1),

Mn
j+1/2 = max(cn

j , cn
j+1),

bn
j+1/2 =

cn
j − Mn

j−1/2

uν
+ Mn

j−1/2,

Bn
j+1/2 =

cn
j − mn

j−1/2

uν
+ mn

j−1/2,

an
j+1/2 = max(bn

j+1/2,m
n
j+1/2),

An
j+1/2 = min(Bn

j+1/2,M
n
j+1/2).

It is proved in the above reference that

Lemma 1 Assume that 0 ≤ uν ≤ 1. Then, an
j+1/2 ≤ cn

j ≤ An
j+1/2 and for any flux cn

j+1/2

such that cn
j+1/2 ∈ [an

j+1/2, A
n
j+1/2] ∀j ∈ Z the scheme is L∞-decreasing and Total Variation

Diminishing (TVD):
max(cn

j−1, c
n
j ) ≤ cn+1

j ≤ max(cn
j−1, c

n
j ),

∑

j∈Z

∣

∣

∣
cn+1
j+1 − cn+1

j

∣

∣

∣
≤

∑

j∈Z

∣

∣

∣
cn+1
j+1 − cn+1

j

∣

∣

∣
.

This result was extended to the case of nonlinear conservation laws in [1].

Remark 1 Actually the bad behavior described above and shown on the previous figures is
usually not observed when working with only two components. This relies on the fact that if
c1

n
j + c2

n
j = 1 ∀j ∈ Z, one has

{

a2
n
j+1/2 = 1 − A1

n
j+1/2,

A2
n
j+1/2 = 1 − a1

n
j+1/2.

Thus if c1
n
j+1/2 ∈ [a1

n
j+1/2, A1

n
j+1/2], one automatically has 1 − c1

n
j+1/2 ∈ [a2

n
j+1/2, A2

n
j+1/2].

Consequently, taking c2
n
j+1/2 = 1− c1

n
j+1/2 leads to an algorithm which is stable for both c1 and

c2 and such that c1
n+1
j + c2

n+1
j = 1 ∀j ∈ Z. This would effectively be the case with the schemes

used above (upwind, minmod, superbee and ultrabee). Nevertheless, this is a priori not true
anymore with more than 2 components.

The following section is devoted to the general case with an arbitrary number of components.
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2.2 Several components

Now we turn to the discretization of (1-2) with the scheme (4) for m > 2 and will propose a
criterion to ensure (5). The analysis is done in the way of [2]: as in lemma 1, we exhibit an
interval for the ck

n
j+1/2 that guaranties L∞-decrease and the TVD property for each component

and the constraint (5). We introduce the following coefficients.



































































mk
n
j+1/2 = min(ck

n
j , ck

n
j+1),

Mk
n
j+1/2 = max(ck

n
j , ck

n
j+1),

bk
n
j+1/2 =

ck
n
j − Mk

n
j−1/2

uν
+ Mk

n
j−1/2,

Bk
n
j+1/2 =

ck
n
j − mk

n
j−1/2

uν
+ mk

n
j−1/2,

ak
n
j+1/2 = max(bk

n
j+1/2,mk

n
j+1/2),

Ak
n
j+1/2 = min(Bk

n
j+1/2,Mk

n
j+1/2).

From lemma 1 one has the stability of the scheme for each component if cn
k,j+1/2 ∈ [an

k,j+1/2, A
n
k,j+1/2].

But this does not guaranty (5). The construction of stability intervals that we propose is re-
cursive and allows to compute the fluxes one after the other. To our mind, this is unavoidable.
Indeed, the last computed flux, let us say cm

n
j+1/2, is necessarily equal to 1 −

∑m−1
k=1 ck

n
j+1/2,

which shows that its admissible interval is a singleton. Of course one can compute the fluxes
in any order. In the following we do this by increasing index k. This is not restrictive and we
will show below on a numerical result that the chosen order does not affect qualitatively the
solution. Let us define























d1
n
j+1/2 = max(a1

n
j+1/2, 1 −

m
∑

l=2

Al
n
j+1/2),

D1
n
j+1/2 = min(A1

n
j+1/2, 1 −

m
∑

l=2

al
n
j+1/2),

and



























dk
n
j+1/2 = max(ak

n
j+1/2, 1 −

k−1
∑

l=1

cl
n
j+1/2 −

m
∑

l=k+1

Al
n
j+1/2), k = 2, . . . ,m − 1,

Dk
n
j+1/2 = min(Ak

n
j+1/2, 1 −

k−1
∑

l=1

cl
n
j+1/2 −

m
∑

l=k+1

al
n
j+1/2), k = 2, . . . ,m − 1.

Lemma 2 Assume that 0 ≤ uν ≤ 1. Assume that
∑m

k=1 ck
n
j = 1. Then, d1

n
j+1/2 ≤ c1

n
j ≤

D1
n
j+1/2. Let k ∈ {2, . . . ,m−1} and assume that cl

n
j+1/2 ∈ [dl

n
j+1/2,Dl

n
j+1/2] for l = 1, . . . , k−1.

Then, dk
n
j+1/2 ≤ Dk

n
j+1/2.

Thus the interval [dk
n
j+1/2,Dk

n
j+1/2] is not empty as soon as the above fluxes have been taken

in their admissibility interval.
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Proof From lemma 1 it is known that a1
n
j+1/2 ≤ c1

n
j ≤ A1

n
j+1/2 because of the Courant-

Friedrichs-Lewy (CFL) condition 0 ≤ uν ≤ 1. Thus it remains to prove that

1 −

m
∑

l=2

Al
n
j+1/2 ≤ c1

n
j ≤ 1 −

m
∑

l=2

al
n
j+1/2.

Under the CFL condition, it is also known that al
n
j+1/2 ≤ cl

n
j ≤ Al

n
j+1/2 ∀l ∈ {2, . . . ,m}. Thus

1 −

m
∑

l=2

al
n
j+1/2 ≥ 1 −

m
∑

l=2

cl
n
j ≥ 1 −

m
∑

l=2

Al
n
j+1/2

and as c1
n
j = 1−

∑m
l=2 cl

n
j , the first result is proved. Now assume that dl

n
j+1/2 ≤ cl

n
j+1/2 ≤ Dl

n
j+1/2

∀l ∈ {1, . . . , k − 1}, for a given k ∈ {2, . . . ,m}. Under the CFL condition, ak
n
j+1/2 ≤ ck

n
j ≤

Ak
n
j+1/2, thus it remains to prove that



















1 −
∑k−1

l=1 cl
n
j+1/2 −

∑m
l=k+1 Al

n
j+1/2 ≤ 1 −

∑k−1
l=1 cl

n
j+1/2 −

∑m
l=k+1 al

n
j+1/2,

ak
n
j+1/2 ≤ 1 −

∑k−1
l=1 cl

n
j+1/2 −

∑m
l=k+1 al

n
j+1/2,

Ak
n
j+1/2 ≥ 1 −

∑k−1
l=1 cl

n
j+1/2 −

∑m
l=k+1 Al

n
j+1/2.

It is a simple matter to check that for each k, ak
n
j+1/2 ≤ Ak

n
j+1/2 under the CFL condition.

Therefore
m

∑

l=k+1

Al
n
j+1/2 ≥

m
∑

l=k+1

al
n
j+1/2,

so that the first inequality yields. By hypothesis, ck−1
n
j+1/2 ≤ Dk−1

n
j+1/2. Therefore

ck−1
n
j+1/2 ≤ 1 −

k−2
∑

l=1

cl
n
j+1/2 −

m
∑

l=k

al
n
j+1/2,

or, equivalently,

0 ≤ 1 −
k−1
∑

l=1

cl
n
j+1/2 −

m
∑

l=k

al
n
j+1/2,

which is exactly the second inequality. The third one can be proved with the same arguments.

Remark 2 If ck
n
j+1/2 = ck

n
j ∀k = 1, . . . ,m − 1 then dm

n
j+1/2 = Dm

n
j+1/2 = cm

n
j = cm

n
j+1/2.

Collecting these lemmas, one has the main result of this paper:

Theorem 1 Assume that 0 ≤ uν ≤ 1. Assume that
∑m

k=1 ck
n
j = 1 and that ck

n
j ∈ [0, 1]

∀k ∈ {1, . . . ,m}. Assume that the fluxes are chosen such that ck
n
j+1/2 ∈ [dk

n
j+1/2,Dk

n
j+1/2]

∀k ∈ {1, . . . ,m}. Then,

• ck
n+1
j ∈ [min(ck

n
j−1, ck

n
j ),max(ck

n
j−1, ck

n
j )] ⊂ [0, 1] ∀k ∈ {1, . . . ,m}, ∀j ∈ Z;

•
∑m

k=1 ck
n+1
j = 1.

This is a general result on the stability of a scheme in form (4) satisfying (5).
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Proof The first point is a direct consequence of the definitions of dk
n
j+1/2 and Dk

n
j+1/2 which

lead to [dk
n
j+1/2,Dk

n
j+1/2] ⊂ [ak

n
j+1/2, Ak

n
j+1/2], so that the stability conditions of lemma 1 are

satisfied. To prove the second point, notice that from the definitions, dm
n
j+1/2 = Dm

n
j+1/2 = 1−

∑m−1
k=1 ck

n
j+1/2. Thus cm

n
j+1/2 = 1−

∑m−1
k=1 ck

n
j+1/2 and at last

∑m
k=1 ck

n
j+1/2 = 1 ∀k ∈ {1, . . . ,m},

which ensures that
∑m

k=1 ck
n+1
j = 1.

Remark 3 The case where u > 0 depends on (t, x): ∂tck + u(t, x)∂xck = 0, discretized with

ck
n+1
j = ck

n
j − un

j ν
(

ck
n
j+1/2 − ck

n
j−1/2

)

, can be achieved in the same manner, only replacing uν

with un
j ν in every formula.

The case u < 0 is treated in an equivalent way. This is left to the reader.

3 Choice for the fluxes and numerical results

Here are proposed some numerical results, in one and two dimensions. We have defined in the
preceding section the stability bounds for the fluxes in order to fulfill (5) but the latter have not
been precisely defined. For example one can compute second order stable fluxes by choosing
the Lax-Wendroff flux (cf. [6]) when it leads to a stable behavior and take a stability bound in
the other case. Namely,

ck
n
j+1/2 =











dk
n
j+1/2 if ck

n
j+1/2,LW < dk

n
j+1/2,

ck
n
j+1/2,LW if dk

n
j+1/2 ≤ ck

n
j+1/2,LW ≤ Dk

n
j+1/2,

Dk
n
j+1/2 if Dk

n
j+1/2 < ck

n
j+1/2,LW

(7)

where ck
n
j+1/2,LW is the Lax-Wendroff flux:

ck
n
j+1/2,LW = ck

n
j +

1 − un
j ν

2

(

ck
n
j+1 − ck

n
j

)

. (8)

This leads to a stable scheme with good accuracy in smooth regions, as shown on figures 2 and
4 for the second test-case above (this test-case presenting initial conditions that are smooth
enough), but this is not the purpose here. The purpose is to derive an antidissipative scheme
with the ability of transporting interfaces. The idea here, which comes from the limited down-
wind scheme presented in [2]1, is to take for ck

n
j+1/2 the most downwinded possible value, namely

to take (for u > 0)

ck
n
j+1/2 =



















dk
n
j+1/2 if ck

n
j+1 < dk

n
j+1/2,

ck
n
j+1 if dk

n
j+1/2 ≤ ck

n
j+1 ≤ Dk

n
j+1/2,

Dk
n
j+1/2 if Dk

n
j+1/2 < ck

n
j+1.

One naturally checks that hypothesis of theorem 1 are satisfied.

3.1 Dimension 1

First test case. Going back to the test case proposed in section 1, with initial conditions (6),
we observe the improvements of the new method (the Courant number is 0.123).

1As well as in a generalization of the Ultrabee scheme, these two schemes being equivalent in the linear case.
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Modified limited downwind scheme. Idem after 5000 periods (t=5000).

Notice that the smooth initial profiles of c2 and c3 have been replaced by staircases, a
common feature of this class of numerical schemes. Indeed, in [2] exact advection has been
proved for piecewise constant functions and it has also been observed that after few time steps
this scheme projects smooth initial data on this class of exact advected functions. The non-
diffusive properties of the scheme are clearly seen on Fig 3.1 (right) where the solution is plotted
after 5000 periods.

Second test case. Now, let us check that the proposed algorithm behaves well for a larger
number of components. Here the case m = 7 is considered and the initial condition is







































































































c1(x) = χ[0,1/2](x)
1 + sin(2πx)

10
,

c2(x) =

∣

∣

∣

∣

x −
1

2

∣

∣

∣

∣

,

c3(x) =
1.5 + sin(0.7 + 2πx)

14
,

c4(x) =
1

2
e−100(x−1/2)2 ,

c5 =
1 + cos(10πx)

14
,

c6(x) =
1

7
χ[0.7,1](x),

c7(x) = 1 −
6

∑

k=1

ck(x).

The velocity is still u = 1 and the computed solution is plotted at time t = 1 (thus after one
revolution). The Courant number uν is 0.123 again.
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Fig 1: Initial condition.
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Fig 2: Numerical solution with the second order scheme with 100 cells.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c1
c2
c3
c4

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c5
c6
c7P

7

k=1
ck

Fig 3: Numerical solution with the antidissipative scheme with 100 cells.
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Fig 4: Numerical solution with the second order scheme with 1000 cells.
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Fig 5: Numerical solution with the antidissipative scheme with 1000 cells.

Here again this shows the good antidissipative behavior of the scheme, as well as the conver-
gence. The modification introduced to treat the multi-component case does not seem to spoil
the properties of the limited downwind scheme and its ability of propagating sharp interfaces.

Let us at last compare c1 and c7 (a smooth and a discontinuous profile) when the fluxes
are computed in the reverse order. We see on figure 6 that the order does not influence the
qualitative results.

11



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c1
c̃1
c7
c̃7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c1
c̃1
c7
c̃7

Fig 6: Comparison of c1 and c7 with c̃1 and c̃7 computed in the reverse order (100 cells on the
left, 1000 cells on the right).

3.2 Dimension 2

In this section, we do not consider the second order scheme anymore, focusing on the antidissi-
pative one.

The two-dimensional extension of the proposed algorithm is achieved by an alternate di-
rection splitting, consisting in solving ∂tck + ux∂xck + uy∂yck = 0 by alternatively solving
∂tck + ux∂xck = 0 and ∂tck + uy∂yck = 0 and a Strang strategy (see [11]). Here we propose to
compare the present scheme to the well known Youngs’ interface tracking (YIT) algorithm [15].

As a test-case we propose to transport on the (x, y) plane a four materials pattern composed
of two concentric discs, overlaid by a cross. To precisely define the initial condition, we introduce
the following sets :

C = [0.8, 1.2] × [0.4, 1.6] ∪ [0.4, 1.6] × [0.8, 1.2],
B1 = B

(

(1, 1), 0.5
)

,
B2 = B

(

(1, 1), 0.7
)

.

Fig 7: Exact initial condition (left) and projected initial condition on the considered mesh
(right).
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The initial condition is defined by (9) on the domain [0, 12]× [0, 12] and is plotted on Fig 7.















c1(x, y) = χC(x, y),
c2(x, y) = χB1\C(x, y),

c3(x, y) = χB2\(C∪B1)(x, y),

c4(x, y) = 1 − c1(x, y) − c2(x, y) − c3(x, y).

(9)

3.2.1 Translation

Here the pattern is diagonally translated: the velocity vector is u = (1, 1)t.

Initial condition

Solution at time t = 10

u =

„

1

1

«

x

y

0 12

12

0

Fig 8: Advection in dimension 2. Presentation of the test case

The Courant number is 0.1 (we mention that the sensibility of the method with respect to
the Courant number is very small). For the simulation, we use a coarse regular mesh with 480
cells in each direction, so that the domain [0, 2] × [0, 2] around the pattern is discretized on
80 × 80 cells.
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New scheme Youngs’ interface tracking

Fig 9: Diagonal advection in dimension 2. Comparison of the solutions obtained with the new
scheme and with a Youngs’ interface tracking algorithm at t = 10.

The computed solutions at t = 10 are given on Fig 9. Here again, the good antidissipative
behavior of the present scheme (left) is clearly seen. The initial pattern is almost preserved
(especially the cross profile), even if a small 45 degrees effect (the transport direction) is present:
circles are more or less transformed into lines. The result obtained with the YIT algorithm
(right) is less regular. Moreover the topology of the initial pattern is not so well preserved,
especially near triple points (cells containing three components). This can also be seen on
Fig 10, where we have plotted separately each components: the second one has diffused all
around the third one, which is not the case with the antidissipative method. This defect can
be overcome by improving the YIT algorithm (see [9, 12] for recent work on volume tracking
algorithms and [7] for the particular case of an arbitrary number of components). We also see
on these figures that the new scheme is able to preserve sharp interfaces. Nevertheless with
the antidissipative scheme we can see on this figure that small traces (with ci < 10−5) are
present near interfaces. This is probably due to the alternate direction splitting strategy we
have adopted, since these traces are not present when the pattern is longitudinally translated:
for the sake of completeness we give on Fig 13 results obtained with the present scheme on the
similar test case with u = (1, 0)t. In all the cases we have tested, these residual mass fractions
do not exceed 10−5.

Fig 11 and 12 show the results obtained with both methods on a refined mesh. Here the
domain [0, 2] × [0, 2] around the pattern is discretized on 160 × 160 cells. We observe the very
good behavior of the present scheme and its convergence.
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New scheme Youngs’ interface tracking

Fig 10: Diagonal advection in dimension 2. Top c1, middle c2 and bottom c3. Each cell which
contains a non zero fraction of the considered component is plotted.
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New scheme Youngs’ interface tracking

Fig 11: Diagonal advection in dimension 2. Same as Fig 9 on a mesh refined by a factor 2 in
each direction.
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New scheme Youngs’ interface tracking

Fig 12: Diagonal advection in dimension 2. Same as Fig 10 on a mesh refined by a factor 2 in
each direction.
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Fig 13: Longitudinal advection in dimension 2. New scheme. Each component is represented
separately and each cell which contains a non zero fraction of the considered component is
plotted.

3.2.2 Rotation

Here the velocity vector corresponds to a rotation:

u =

(

ux

uy

)

=

(

2π(y − 1)
−2π(x − 1)

)

.

Thus the velocity depends on the coordinates. Nevertheless, the extension is even simpler than
mentioned in remark 3 since ux depends only on y and uy on x. Thanks to the splitting strategy,
we are led to solve constant velocity transport on each grid line. The mesh and the Courant
number are the same as above. The final time is t = 1 (time for one complete revolution). The
results are almost the same as in the translation case. The only noticeable difference concerns
the borders of the cross, which are here less precise. The rotation case is not so favorable
as the translation case, where these edges were parallel to the mesh lines during the whole
computation.
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Fig 14: Rotation in dimension 2. Coarse grid (80 × 80).
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New scheme Youngs’ interface tracking

Fig 15: Rotation in dimension 2. Fine grid (160 × 160).
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New scheme Youngs’ interface tracking

Fig 16: Rotation in dimension 2. Top: coarse grid (80 × 80), bottom: fine grid (160 × 160).

4 Conclusion

We have proposed an extension of the antidissipative schemes [2, 3] for the advection of an
arbitrary number of components in one and two dimensions. Compared to classical schemes or
to basic interface tracking methods, results are more than satisfying. Among its properties, its
main advantages against the latter is its simplicity and its low computational cost. Indeed it is
an easy task to extend the proposed algorithm in three dimensions which is far from obvious
for interface tracking methods. Another feature of this scheme is that it can naturally deal
with mixing zones. A point that is to be studied into details is the presence of small traces
near interfaces in two dimensions simulations. We infer that it is due to the alternate direction
splitting method. A multidimensional scheme could correct this defect. Following [3], this
method can be used to solve the multimaterial Euler equations, using a Lagrange + remap
scheme. Such a scheme will provide a good treatment of interfaces and will be able to handle
mixing zones without any particular recipe.
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