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ANOTHER APPROACH TO THE FUNDAMENTAL THEOREM OF

RIEMANNIAN GEOMETRY IN R
3, BY WAY OF ROTATION FIELDS

P.G. CIARLET, L. GRATIE, O. IOSIFESCU, C. MARDARE, C. VALLÉE

Abstract. In 1992, C. Vallée showed that the metric tensor field C = ∇Θ
T
∇Θ associated with

a smooth enough immersion Θ : Ω → R
3 defined over an open set Ω ⊂ R

3 necessarily satisfies the
compatibility relation

CURL Λ + COF Λ = 0 in Ω,

where the matrix field Λ is defined in terms of the field U = C
1/2 by

Λ =
1

detU

{
U (CURL U)T

U −
1

2
(tr[U (CURL U)T ])U

}
.

The main objective of this paper is to establish the following converse: If a smooth enough
field C of symmetric and positive-definite matrices of order three satisfies the above compatibility
relation over a simply-connected open set Ω ⊂ R

3, then there exists, typically in spaces such as
W

2,∞
loc

(Ω; R3) or C
2(Ω; R3), an immersion Θ : Ω → R

3 such that C = ∇Θ
T
∇Θ in Ω.

This global existence theorem thus provides an alternative to the fundamental theorem of Rie-
mannian geometry for an open set in R

3, where the compatibility relation classically expresses that
the Riemann curvature tensor associated with the field C vanishes in Ω.

The proof consists in first determining an orthogonal matrix field R defined over Ω, then in de-
termining an immersion Θ such that ∇Θ = RC

1/2 in Ω, by successively solving two Pfaff systems.
In addition to its novelty, this approach thus also possesses a more “geometrical” flavor than the
classical one, as it directly seeks the polar factorization ∇Θ = RU of the immersion gradient in
terms of a rotation R and a pure stretch U = C

1/2. This approach also constitutes a first step
towards the analysis of models in nonlinear three-dimensional elasticity where the rotation field is
considered as one of the primary unknowns.

Résumé. En 1992, C. Vallée a montré que le champ C = ∇Θ
T
∇Θ de tenseurs métriques as-

socié à une immersion suffisamment régulière Θ : Ω → R
3 définie sur un ouvert Ω ⊂ R

3 vérifie
nécessairement la relation de compatibilité

CURL Λ + COF Λ = 0 in Ω,

où le champ Λ de matrices est défini en fonction du champ U = C
1/2 par

Λ =
1

detU

{
U (CURL U)T

U −
1

2
(tr[U (CURL U)T ])U

}
.

L’objet principal de cet article est d’établir la réciproque suivante: Si un champ suffisamment
régulier C de matrices symétriques définies positives d’ordre trois satisfait la relation de compati-
bilité ci-dessus dans un ouvert Ω ⊂ R

3 simplement connexe, alors il existe, typiquement dans des
espaces tels que W

2,∞
loc

(Ω; R3) ou C
2(Ω; R3), une immersion Θ : Ω → R

3 telle que C = ∇Θ
T
∇Θ in

Ω.
Ce théorème d’existence global fournit donc une alternative au théorème fondamental de la

géométrie riemannienne pour un ouvert Ω ⊂ R
3, dans lequel la relation de compatibilité exprime

classiquement que le tenseur de courbure de Riemann associé au champ C s’annule dans Ω.
La démonstration consiste d’abord à déterminer un champ R de matrices orthogonales dans Ω,

puis à déterminer une immersion Θ telle que ∇Θ = RC
1/2 dans Ω, en résolvant successivement deux

systèmes de Pfaff. En plus de sa nouveauté, cette approche est donc de nature plus “géométrique”
que l’approche classique, dans la mesure où elle cherche à identifier directement la factorisation
polaire ∇Θ = RU du gradient de l’immersion en une rotation R et une extension pure U = C

1/2.

Cette approche constitue également un premier pas vers l’analyse de modèles en élasticité tridi-

mensionnelle non linéaire où le champ des rotations est considéré comme une inconnue à part

entière.

Key words and phrases. Classical differential geometry, fundamental theorem of Riemannian geometry,

Pfaff systems, polar factorization, nonlinear three-dimensional elasticity.
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1. Introduction

All the notions and notations used, but not defined, in this introduction are defined in
the next section.

Latin indices range in the set {1, 2, 3}. Let S
3
> designate the set of all real symmetric and

positive-definite matrices of order three. Let Ω be an open subset of R
3 and let Θ ∈ C3(Ω; R3)

be an immersion. The metric tensor field C = (gij) ∈ C2(Ω; S3
>) of the manifold Θ(Ω),

considered as isometrically imbedded in R
3, is then defined by C := ∇ΘT

∇Θ.
It is well known that the matrix field C = (gij) defined in this fashion cannot be arbitrary.

More specifically, let

Γijq :=
1

2
(∂jgiq + ∂igjq − ∂qgij) and Γp

ij := gpqΓijq,

where (gpq) := (gij)
−1. Then the functions gij necessarily verify the compatibity relations

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in Ω,

which in effect simply constitute a re-writing of the relations ∂ikjΘ = ∂kijΘ. The functions
Γijq and Γp

ij are the Christoffel symbols of the first and second kinds, and the functions
Rqijk are the covariant components of the Riemann curvature tensor field, associated with
the immersion Θ.

It is also well known that, conversely, if a matrix field C = (gij) ∈ C2(Ω; S3
>) satisfies the

relations Rqijk = 0 in a simply-connected open subset Ω of R
3, the functions Γijq, Γp

ij , and
Rqijk being then defined as above from the functions gij , then there exists an immersion

Θ ∈ C3(Ω; R3) such that

C = ∇ΘT
∇Θ in Ω.

If the set Ω is in addition connected, such an immersion is uniquely defined up to isometries

of R
3. This means that any immersion Θ̃ ∈ C3(Ω; R3) satisfying C = ∇Θ̃

T
∇Θ̃ in Ω is

necessarily of the form Θ̃ = a + QΘ, with a a vector in R
3 and Q an orthogonal matrix of

order three. Among all such immersions Θ̃, some are therefore orientation-preserving, i.e.,

they satisfy det∇Θ̃ > 0 in Ω.
Otherwise, the immersion Θ becomes uniquely defined if the following additional “initial”

conditions:

Θ(x0) = a0 and ∇Θ(x0) = F0,

are imposed, where x0 is any point in Ω, a0 is any vector in R
3, and F0 is any matrix of

order three that satisfies FT
0 F0 = C(x0), for instance F0 = C(x0)

1/2 (for self-contained, and
essentially elementary, proofs of these classical existence and uniqueness results, see Ciarlet
& Larsonneur [5] or Ciarlet [3, Chapter 1]).

The above regularity assumption on the symmetric and positive-definite matrix field C can
be substantially weakened. In this direction, C. Mardare [13] has shown that the existence
theorem still holds if C ∈ C1(Ω; S3

>), with a resulting immersion Θ in the space C2(Ω, R3).
Then S. Mardare [15] further improved this result, by showing that the existence theorem

again still holds if C ∈ W 1,∞
loc (Ω; S3

>), with a resulting mapping Θ in the space W 2,∞
loc (Ω; R3).

Naturally, the sufficient (and clearly necessary) relations Rqijk = 0 are then assumed to hold
only in the sense of distributions, viz., as

∫

Ω

{−Γikq∂jϕ + Γijq∂kϕ + Γp
ijΓkqpϕ − Γp

ikΓjqpϕ}dx = 0
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for all ϕ ∈ D(Ω). If the simply-connected open set Ω is in addition connected, the mappings
Θ found in [13] and [15] are again uniquely defined up to isometries of R

3, or they again
become uniquely defined if the above initial conditions are imposed at some point x0 ∈ Ω.

Note that all the above existence and uniqueness theorems hold verbatim in R
d for any

dimension d ≥ 2.
Let M

3 and O
3 respectively designate the space of all real matrices of order three and the

set of all real orthogonal matrices of order three. Let again Θ ∈ C3(Ω; R3) be an immersion
defined on an open subset Ω of R

3. In 1992, Vallée [20] has shown that a different set of

necessary compatibility relations is also satisfied by the metric tensor field C = ∇ΘT
∇Θ

associated with the immersion Θ.
C. Vallée’s key idea was to make use of the polar factorization

∇Θ = RU

of the matrix field ∇Θ ∈ C2(Ω; M3); this means that R ∈ C2(Ω; O3) is the orthogonal
matrix field, and U ∈ C2(Ω; S3

>) is the symmetric and positive-definite symmetric matrix
field, respectively defined by

R := ∇ΘC−1/2 and U := C1/2.

Note that, if det∇Θ > 0 in Ω and the mapping Θ : Ω → R
3 is injective, in which case

Θ may be thought of as a deformation of a continuum, this polar factorization is nothing
but the classical decomposition at each point x ∈ Ω of the deformation gradient ∇Θ(x)
into a rotation represented by the proper orthogonal matrix R(x), and into a pure stretch

represented by the matrix U(x). In this sense, C. Vallée’s approach is more “geometrical”
than the classical one, as it makes an essential use of the “local geometry of a deformation”
by means of the fields R and U.

First, C. Vallée shows that the orthogonality of the matrix field R ∈ C2(Ω; O3) implies
that there exists a matrix field Λ ∈ C1(Ω; M3) such that, at each point x ∈ Ω,

(DR(x)a)b = R(x)(Λ(x)a ∧ b) for all a,b ∈ R
3,

where DR(x) ∈ L(R3; M3) denotes the Fréchet derivative at x ∈ Ω of the mapping R : Ω →
M

3. C. Vallée also shows that the relations ∂ijR = ∂jiR in Ω imply furthermore that the

matrix field Λ necessarily satisfies the compatibility relation

CURL Λ + COF Λ = 0 in Ω.

It is to be emphasized that the existence of such a matrix field Λ and the above com-
patibility relation satisfied by Λ both hold for any orthogonal field R ∈ C2(Ω; O3), i.e.,
regardless of the particular form, viz. R = ∇ΘC−1/2, that it assumes here.

Second, taking now into account that the field R is of the specific form R = ∇ΘU−1

with U = C1/2, and using the relations ∂klΘ = ∂lkΘ, C. Vallée shows that the matrix field

Λ is given by

Λ =
1

detU

{
U (CURL U)T U −

1

2
(tr[U (CURL U)T ])U

}
.

The relation CURL Λ + COF Λ = 0, with Λ replaced by this expression in terms of

U = C1/2, thus constitutes another compatibility relation that a matrix field C ∈ C2(Ω; S3
>)

necessarily satisfies if it is of the form C = ∇ΘT
∇Θ for some immersion Θ ∈ C3(Ω; R3).

Note that this compatibility relation is solely expressed in terms of the matrix field C,
by way of its square root U = C1/2, hence without any recourse to the Christoffel symbols

as in the classical relations Rqijk = 0. Note also that it is the same Schwarz lemma that
is the keystone for both kinds of compatibility relations, either in the form of the relations
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∂ijR = ∂jiR and ∂klΘ = ∂lkΘ as here, or in form of the relations ∂ikjΘ = ∂kijΘ used for
deriving the relations Rqijk = 0. In the same spirit, the cancellation of both the curvature
and the torsion, expressed in the classical approach by means of the relations Rqijk = 0 and
Γp

ij = Γp
ji in Ω, likewise manifest themselves in C. Vallée’s approach, albeit in a more subtle

way; in this respect, see Hamdouni [12].
The main objective of this paper is to show that, conversely, if a matrix field C ∈

C2(Ω; S3
>) satisfies

CURL Λ + COF Λ = 0

in a simply-connected open subset Ω of R
3, with Λ having the above expression in terms of

U = C1/2, then there exists an immersion Θ ∈ C3(Ω; R3) such that

C = ∇ΘT
∇Θ in Ω

(cf. Theorems 6.1 and 6.2).
This result is itself a consequence of the following general existence theorem (cf. Theorem

5.1; in fact this general result holds verbatim in R
d for an arbitrary dimension d ≥ 2 but,

for coherence, it is enunciated here only for d = 3): Let A
3 designate the space of all

real antisymmetric matrices of order three. Let Ω be a connected and simply-connected

open subset of R
3 and let there be given a symmetric and positive-definite matrix field U ∈

W 1,∞
loc (Ω; S3

>) that satisfies the relations

∂iAj − ∂jAi + AiAj − AjAi = 0 in D′(Ω; A3),

where the matrix fields Ai ∈ L∞
loc(Ω; A3) are defined in terms of U by

Aj :=
1

2
(U−1(∇cj − (∇cj)

T )U−1 + U−1∂jU − (∂jU)U−1,

the notation cj designating the j-th column vector field of the matrix field U2. Then there

exists an immersion Θ ∈ W 2,∞
loc (Ω; R3) such that

U2 = ∇ΘT
∇Θ in Ω,

and Θ is uniquely defined up to isometries of R
3 (the above relations are also necessarily

satisfied by any given immersion Θ ∈ W 2,∞
loc (Ω; R3), even if Ω is not simply-connected; cf.

Theorem 3.1).

The proof consists first in determining an orthogonal matrix field R ∈ W 1,∞
loc (Ω; O3)

by solving the Pfaff system ∂iR = RAi in Ω, then in determining the immersion Θ ∈
W 2,∞

loc (Ω; R3) by solving the equation ∇Θ = RU in Ω. By contrast, the proof in the

“classical” approach consists in first determining a matrix field F = (Fij) ∈ W 1,∞
loc (Ω; M3)

by solving the Pfaff system ∂iFlj = Γp
ijFlp in Ω, then in determining the immersion Θ ∈

W 2,∞
loc (Ω; R3) by solving the equation ∇Θ = F in Ω.
The above compatibility relations satisfied by the matrix fields Aj were first noticed

by Shield [17], who was also the first to recognize the importance of the polar factor-
ization ∇Θ = RU for deriving necessary compatibility relations that the matrix field
C = ∇ΘT

∇Θ satisfies. In this direction, see also Pietraszkiewicz & Badur [16], who
further elaborated on this idea in the context of continuum mechanics.

In addition, R. T. Shield pointed out that these relations are also sufficient for the exis-
tence of an immersion in spaces of continuously differentiable functions. Using the techniques
of exterior differential calculus, Edelen [8] likewise noticed that the recovery of the immersion
Θ could be also achieved through the recovery of an orthogonal matrix field.

The core of our argument consists in showing (see the proof of Theorem 6.1) that the

compatibility relations satisfied by the above matrix fields Ai are in fact equivalent to those
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proposed by C. Vallée (the key link consists in defining the matrix field Λ by letting its j-th
column vector field aj be such that Ajb = aj ∧ b for all v ∈ R

3), thus demonstrating the
sufficiency of C. Vallée’s compatibility relations.

We emphasize that our existence results (Theorems 5.1 and 6.1) are global and that they

hold in function spaces “with little regularity”, viz., W 2,∞
loc (Ω; R3), thanks essentially to a

deep global existence theorem for Pfaff systems (recalled in Theorem 4.1), also with little
regularity, recently established by S. Mardare [14]. Note that we also obtain global existence
theorems in the spaces C2(Ω; R3) and W 2,∞(Ω; R3) (Theorems 5.2 and 5.3 and Theorems
6.2 and 6.3).

As advocated notably by Fraeijs de Veubeke [9], Pietraszkiewicz & Badur [16], or Simo
& Marsden [18], rotation fields can be introduced as bona fide unknowns in nonlinear three-
dimensional elasticity. This introduction typically involves the replacement of the deforma-
tion gradient ∇Θ in the stored energy function by a rotation field and a pure stretch field U,
“the constraint” ∇Θ = RU being enforced by means of an appropriate Lagrange multiplier,
thus producing a multi-field variational principle.

The existence theory for models based on such principles appears to be an essentially
virgin territory (with the noticeable exception of Grandmont, Maday & Métier [10], who
considered a time-dependent elasticity problem in dimension two where a “global rotation”
is one of the unknowns). It is thus hoped that the present work constitutes a first, yet
admittedly small, step towards the mathematical analysis of such models.

The results of this paper have been announced in [4].

2. Notations and preliminaries

This section gathers various conventions, notations, and definitions, as well as some pre-
liminary results, that will be used in this article.

In Sections 2 to 5, the notation p designates any integer ≥ 2. It is then understood
that Latin indices and exponents range in the set {1, 2, · · · , p} and that the summation
convention with respect to repeated indices and exponents is used in conjunction with this
rule. In Section 6, the same rules apply with p = 3.

All matrices considered in this paper have real elements. The notations M
p, S

p, S
p
>, A

p,
and O

p respectively designate the sets of all square matrices, of all symmetric matrices, of
all symmetric and positive-definite symmetric matrices, of all antisymmetric matrices, and
of all orthogonal matrices, of order p. The notation M

p×q designates the set of all matrices
with p rows and q columns. The notation (aij) designates the matrix in M

p with aij as
its elements, the first index being the row index, and given a matrix A = (aij) ∈ M

p, the
notation (A)ij designates its element aij . When it is identified with a matrix, a vector in
R

p is always understood as a column vector, i.e., a matrix in M
p×1 .

The Euclidean norm of a ∈ R
p is denoted |a| and the Euclidean inner-product of a ∈ R

p

and b ∈ R
p is denoted a · b.

The vector product of a ∈ R
3 and b ∈ R

3 is denoted a ∧ b. The cofactor matrix COF

A associated with a matrix A = (aij) ∈ M
3 is defined by

COF A :=




a22a33 − a23a32 a23a31 − a21a33 a21a32 − a22a31

a32a13 − a33a12 a33a11 − a31a13 a31a12 − a32a11

a12a23 − a13a22 a13a21 − a11a23 a11a22 − a12a21


 .

Given any matrix C ∈ S
p
>, there exists a unique matrix U ∈ S

p
> such that U2 = C (for a

proof, see, e.g., Ciarlet [2, Theorem 3.2-1). The matrix U is denoted C1/2 and is called the
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square root of C. The mapping C ∈ S
p
> → C1/2 ∈ S

p
> defined in this fashion is of class C∞

(for a proof, see, e.g., Gurtin [11, Section 3]).
Any invertible matrix F ∈ M

p admits a unique polar factorization F = RU, as a product
of a matrix R ∈ O

p by a matrix U ∈ S
p
>, with U = (FT F)1/2 and R = FU−1 (the

uniqueness of such a factorization follows from the uniqueness of the square root of a matrix
C ∈ S

p
>).

The coordinates of a point x ∈ R
p are denoted xi. Partial derivative operators, in the

usual sense or in the sense of distributions, of the first, second, and third order are denoted
∂i := ∂/∂xi, ∂ij := ∂2/∂xi∂xj , and ∂ijk := ∂3/∂xi∂xj∂xk.

All the vector spaces considered in this paper are over R. Let Ω be an open subset of
R

p. The notation U ⋐ Ω means that U is a compact subset of Ω. The notations D(Ω) and
D′(Ω) respectively designate the space of all functions in C∞(Ω) whose support is compact
and contained in Ω, and the space of distributions over Ω. The notations Cl(Ω), l ≥ 0, and
Wm,∞(Ω),m ≥ 0, respectively designate the spaces of continuous functions over Ω for l = 0,
or l-times continuously differentiable functions over Ω for l ≥ 1, and the usual Sobolev
spaces, with W o,∞(Ω) = L∞(Ω). Finally, Wm,∞

loc (Ω) designates the space of equivalent
classes of measurable functions on Ω whose restriction to any open set U ⋐ Ω belongs to
the space Wm,∞(U).

Let X be any finite-dimensional space, such as R
p, Mp×q, Ap, etc., or a subset thereof,

such as S
p
>, Od, etc. Then notations such as D′(Ω; X), Cl(Ω; X), L∞

locΩ; X), etc., designate
spaces or sets of vector fields or matrix fields with values in X and whose components belong
to D′(Ω), Cl(Ω), L∞

loc(Ω), etc.
Given a mapping Θ = (Θi) ∈ D′(Ω; Rp), the matrix field ∇Θ ∈ D′(Ω; Mp) is defined

by (∇Θ)ij = ∂jΘi. Given a matrix field A = (aij) ∈ D′(Ω; M3), the notation CURL A

designate the matrix field

CURL A :=




∂2a13 − ∂3a12 ∂3a11 − ∂1a13 ∂1a12 − ∂2a11

∂2a23 − ∂3a22 ∂3a21 − ∂1a23 ∂1a22 − ∂2a21

∂2a33 − ∂3a32 ∂3a31 − ∂1a33 ∂1a32 − ∂2a31


 ∈ D′(Ω; M3).

Although the elements in the spaces L∞
loc(Ω) or Wm,∞

loc (Ω),m ≥ 1, are equivalence classes
of functions, they will be conveniently identified in this article with functions defined over
Ω, as follows.

Any equivalence class F ∈ L∞
loc(Ω) will be identified with the unique element in F that is

unambiguously defined at all x ∈ Ω by

f(x) := lim
ε→0

inf

{(∫

B(x;ε)

dy

)−1 ∫

B(x;ε)

g(y)dy

}
,

where B(x; ε) := {y ∈ Ω; |y − x| < ε} and g is any element in the equivalence class F . As a
result, the point values f(x) of any “function” f ∈ L∞

loc(Ω) become unambiguously defined
for all x ∈ Ω (the above inferior limit is always a well-defined real number).

Likewise, any equivalence class in the space W 1,∞
loc (Ω) will be indentified with a continuous

function over Ω, thanks this time to the imbedding W 1,∞(B) ⊂ C0(B), which holds for any

open ball B ⊂ Ω. The notation f ∈ W 1,∞
loc (Ω) thus means that f is the unique continuous

function in what is normally an equivalence class. As a result of this identification, the point
values f(x) of any “function” f ∈ W 1,∞

loc (Ω) likewise become unambiguously defined for all
x ∈ Ω.

Finally, we recall that a mapping Θ ∈ C1(Ω; Rp) is an immersion if the matrix ∇Θ(x) ∈
M

p is invertible at all points x ∈ Ω.
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3. Compatibility relations satisfied by the matrix field U = (∇ΘT
∇Θ)1/2

Let Ω be an arbitrary open subset of R
p. As recalled in Section 1, it is well known

that the metric tensor field C := ∇ΘT
∇Θ ∈ C2(Ω; Sp

>) associated with an immersion
Θ ∈ C3(Ω; Rp) necessarily satisfies compatibility relations that take the form Rqijk = 0 in Ω,
where the functions Rqijk ∈ C0(Ω) are the covariant components of the associated Riemann

curvature tensor.
The next theorem shows that, likewise, the matrix field U := C1/2 necessarily satisfies ad

hoc compatibility relations. These relations, which were first established in componentwise
form by Shield [17] for smooth immersions, are established here in more concise matrix form.
In addition, they are shown to hold in function spaces with little regularity.

Theorem 3.1. Let Ω be an open subset of R
p and let there be given an immersion Θ ∈

W 2,∞
loc (Ω; Rp). At each point x ∈ Ω , let ∇Θ(x) = R(x)U(x), with

U(x) := (∇ΘT (x)∇Θ(x))1/2 ∈ S
p
> and R(x) := ∇Θ(x)U(x)−1 ∈ O

p,

denote the unique polar factorization of the matrix ∇Θ(x). Then the fields U and R defined

in this fashion possess the following regularities:

U ∈ W 1,∞
loc (Ω; Sp

>) and R ∈ W 1,∞
loc (Ω; Op).

Let the matrix fields Aj ∈ L∞
loc(Ω; Ap) be defined in terms of the matrix field U by

Aj :=
1

2
{U−1(∇cj − (∇cj)

T )U−1 + U−1∂jU − (∂jU)U−1},

where cj ∈ W 1,∞
loc (Ω; Rp) denotes the j-th column vector field of the matrix field C :=

U2 ∈ W 1,∞
loc (Ω; Sp

>). Then the matrix field U necessarily satisfies the following compatibility

relations:

∂iAj − ∂jAi + AiAj − AjAi = 0 in D′(Ω; Ap).

Proof. Since both mappings C ∈ S
p
> → C1/2 ∈ S

p
> and U ∈ S

p
> → U−1 ∈ S

p
> are of class

C∞ and the immersion Θ belongs to the space W 2,∞
loc (Ω; Rp) by assumption, the fields U

and R clearly possess the announced regularities.
Given an immersion Θ ∈ W 2,∞

loc (Ω; Rp), define the matrix fields

F : = ∇Θ ∈ W 1,∞
loc (Ω; Mp),

C = U2 = (gij) : = ∇ΘT
∇Θ ∈ W 1,∞

loc (Ω; Sp
>),

(gkl) : = (gij)
−1 ∈ W 1,∞

loc (Ω; Sp
>);

define the vector fields

gl : = ∂lΘ ∈ W 1,∞
loc (Ω; Rp),

gk : = gklgl ∈ W 1,∞
loc (Ω; Rp);

and finally, define the matrix fields

Γj = (Γk
jl) ∈ L∞

loc(Ω; Mp),

where k and l respectively designate the row and column indices and

Γk
jl := ∂jgl · g

k

(the functions Γk
jl are the Christoffel symbols of the first kind).
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Then it is easily verified that

∂jF = FΓj in L∞
loc(Ω; Mp).

Since the polar factorization F = RU implies that ∂jF = RUΓj = (∂jR)U+R∂jU, and
since the matrices U(x) are invertible for all x ∈ Ω, we also have

∂jR = RAj in L∞
loc(Ω; Mp),

where

Aj := (UΓj − ∂jU)U−1 ∈ L∞
loc(Ω; Mp).

In what follows, X′ < ·, · >X designates the duality pairing between a topological space
X and its dual X ′. For notational conciseveness, spaces such as D(Ω; Mp),H1

0 (U, Mp), etc.,
will be abbreviated as D(Ω),H1

0 (U), etc., in the duality pairings.

Given a matrix field R ∈ W 1,∞
loc (Ω; Mp) and a matrix field A ∈ L∞

loc(Ω; Mp), the distri-
bution RA ∈ D′(Ω, Mp) is well defined since RA ∈ L∞

loc(Ω, Mp); likewise, each distribution
R∂jA ∈ D′(Ω, Mp) is well defined by the relations

D′(Ω)< R∂jA,ϕ >D(Ω):=H−1(U)< ∂jA,RT ϕ >H1

0
(U),

for all ϕ ∈ D(Ω; Mp), where U designates the interior of the support of ϕ. The relations

∂jR = RAj in L∞
loc(Ω; Mp) satisfied by the matrix fields R ∈ W 1,∞

loc (Ω, Op) and Aj ∈
L∞

loc(Ω, Ap) determined above therefore imply that

∂jiR = (∂iR)Aj + R∂iAj = RAiAj + R∂iAj in D′(Ω; Mp),

∂ijR = (∂jR)Ai + R∂jAi = RAjAi + R∂jAi in D′(Ω; Mp).

Hence the relations ∂jiR = ∂ijR imply that

R∂iAj − R∂jAi + RAiAj − RAjAi = 0 in D′(Ω; Mp).

Consequently, for any matrix field ϕ ∈ D(Ω; Mp) with U as the interior of its support,

H−1(U)< ∂iAj − ∂jAi + AiAj − AjAi,R
T ϕ >H1

0
(U)= 0.

The matrices RT (x) being invertible at each x ∈ Ω (since they are orthogonal), any
matrix field ψ ∈ D(Ω; Mp) with U as the interior of its support can be written as ψ = RT ϕ

with ϕ ∈ D(Ω; Mp), and ϕ and ψ have the same support. Consequently,

H−1(U) <∂iAj − ∂jAi + AiAj − AjAi,ψ >H1

0
(U)

=D′(Ω)< ∂iAj − ∂jAi + AiAj + AjAi,ψ >D(Ω)= 0.

Since this relation thus holds for any matrix field ψ ∈ D(Ω; Mp), the field Aj satisfy

∂iAj − ∂jAi + AiAj − AjAi = 0 in D′(Ω; Mp).

Because the components Γk
jl = ∂jgl · g

k of the matrix fields Γj may be also written as

Γk
jl =

1

2
gkr(∂jglr + ∂lgjr − ∂rgjl),

the matrix fields Γj are also given in matrix form as

Γj =
1

2
C−1(∂jC + ∇cj − (∇cj)

T ),
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where cj denotes the j-th column vector field of the field C. Using this expression of the
fields Γj in the expression of the fields Aj and noting that UC−1 = U−1 and ∂jC =
(∂jU)U + U∂jU, we finally obtain

Aj =
1

2
{U−1(∇cj − (∇cj)

T )U−1 + U−1∂jU − (∂jU)U−1}.

This expression shows that Aj(x) is an antisymmetric matrix at each x ∈ Ω and conse-
quently, that Aj ∈ L∞

loc(Ω; Ap). ¤

4. A fundamental existence theorem for linear differential systems

Our proof in the next section that the compatibility relations shown in Section 3 to
be necessarily satisfied by the matrix field U = (∇ΘT

∇Θ)1/2 associated with a given
immersion Θ are also sufficient for the existence of the immersion Θ, relies in an essential
way on the following fundamental existence theorem for linear differential systems with little

regularity, which is due to S. Mardare [14, Theorem 3.6] (for smooth data, this theorem is
a special case of earlier existence results of Cartan [1] and Thomas [19]). Recall that p ≥ 2
is a given integer and that Latin indices range in {1, 2, · · · , p}.

Theorem 4.1. Let Ω be a connected and simply-connected subset of R
p and let q ≥ 1

be an integer. Let there be given matrix fields Aj ∈ L∞
loc(Ω; Mq), Bj ∈ L∞

loc(Ω; Mp), and

Cj ∈ L∞
loc(Ω; Mp×q) that satisfy:

∂iAj + AiAj = ∂jAi + AjAi in D′(Ω; Mq),

∂iBj + BjBi = ∂jBi + BiBj in D′(Ω; Mp),

∂iCj + CiAj + BjCi = ∂jCi + CjAi + BiCj in D′(Ω; Mp×q),

and let a point x0 ∈ Ω and a matrix F0 ∈ M
p×q be given. Then there exists one and only

matrix field Y ∈ W 1,∞
loc (Ω; Mp×q) that satisfies:

∂jY = YAj + BjY + Cj in D′(Ω; Mp×q),

Y(x0) = F0.

As shown by S. Mardare, this existence result can be extended to the space W 1,∞(Ω; Mp×q)
(cf. Theorem 4.2), but in order to state this extension, we first need some definitions.

In what follows, Ω designates any connected subset of R
p. Given two points x, y ∈ Ω,

a path joining x to y in Ω is any mapping γ ∈ C1([0, 1]; Rp) that satisfies γ(t) ∈ Ω for all
t ∈ [0, 1] and γ(0) = x and γ(1) = y (there always exist such paths), and the length of such
a path is defined by

L(γ) :=

∫ 1

0

∣∣∣∣
dγ

dt
(t)

∣∣∣∣dt.

The geodesic distance between two points x, y ∈ Ω is then defined by

dΩ(x, y) = inf{L(γ);γ is a path joining x to y in Ω},

and finally, the geodesic diameter of Ω is defined by

DΩ = sup
x,y∈Ω

dΩ(x, y).
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Note that DΩ = +∞ is not excluded and that Ω is bounded if DΩ < +∞. Otherwise
it is easily seen (cf., e.g., [6, Lemma 2.3]) that any bounded connected subset of R

p with a
Lipschitz-continuous boundary has a finite geodesic diameter.

As a complement to Theorem 4.1, we then have (the proof of this extension is analogous
to that of [14, Corollary 3.4]):

Theorem 4.2. Let Ω be a connected and simply-connected open subset of R
p whose geodesic

diameter is finite, and let q ≥ 1 be an integer. Let there be given matrix fields Ai ∈
L∞(Ω; Mq),Bi ∈ L∞(Ω; Mp), and Ci ∈ L∞(Ω; Mp×q) that satisfy

∂iAj + AiAj = ∂jAi + AjAi in D′(Ω; Mq),

∂iBj + BjBi = ∂jBi + BiBj in D′(Ω; Mp),

∂iCj + CiAj + BjCi = ∂jCi + CjAi + BiCj in D′(Ω; Mp×q),

and let a point x0 ∈ Ω and a matrix F0 ∈ M
p×q be given. Then there exists one and only

matrix field Y ∈ W 1,∞(Ω; Mp×q) that satisfies:

∂jY = YAj + BjY + Cj in D′(Ω; Mp×q),

Y(x0) = F0.

It is worth noticing that both Theorems 4.1 and 4.2 contain two important special cases,
viz., a generalized Poincaré lemma, corresponding to Ai = 0 and Bi = 0, and a general

existence theorem for Pfaff systems, corresponding to Bi = 0 and Ci = 0.

5. Sufficiency of the compatibility relations

Under the assumption that the open set Ω is simply-connected, we now show that, if
a symmetric and positive-definite matrix field U defined on Ω satisfies the compatibility
relations that were found to be necessary in Theorem 3.1, then conversely there exists an
immersion Θ : Ω → R

p such that U = (∇ΘT
∇Θ)1/2. Note that this existence result holds

for fields U with little regularity.

Theorem 5.1. Let Ω be a connected and simply-connected subset of R
p and let there be

given a matrix field U ∈ W 1,∞
loc (Ω; Sp

>) that satisfies

∂iAj − ∂jAi + AiAj − AjAi = 0 in D′(Ω; Ap),

where the matrix fields Aj ∈ L∞
loc(Ω; Ap) are defined in terms of the matrix field U by

Aj :=
1

2
{U−1(∇cj − (∇cj)

T )U−1 + U−1∂jU − (∂jU)U−1},

the field cj ∈ W 1,∞
loc (Ω, Rp) denoting the j-th column vector field of the matrix field U2 ∈

W 1,∞
loc (Ω; Sp

>).
Let there be given a point x0 ∈ Ω, a vector a0 ∈ R

p, and a matrix F0 ∈ M
p that satisfies

(FT
0 F0)

1/2 = U(x0).

Then there exists one and only one immersion Θ ∈ W 2,∞
loc (Ω; Rp) that satisfies

U = (∇ΘT
∇Θ)1/2 in W 1,∞

loc (Ω; Sp
>),

Θ(x0) = a0 and ∇Θ(x0) = F0.
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Proof. We proceed in three stages. Note that the existence result of part (i) below uses only
the compatibility relations satisfied by the matrix fields Aj , i.e., it holds irrespective of the
specific expression of the matrix fields Aj in terms of the matrix field U.

(i) Let there be given a point x0 ∈ Ω and a matrix R0 ∈ O
p. Then there exists one and

only one matrix field R ∈ W 1,∞
loc (Ω; Op) that satisfies

∂jR = RAj in L∞
loc(Ω; Mp),

R(x0) = R0.

Since the matrix fields Aj ∈ L∞
loc(Ω; Ap) satisfy

∂iAj − ∂jAi + AiAj − AjAi = 0 in D′(Ω; Ap),

the above Pfaff system has one and only one solution R ∈ W 1,∞
loc (Ω; Mp) by Theorem 4.1.

The matrix field RT R ∈ W 1,∞
loc (Ω, Mp) satisfies the differential system

∂j(R
T R) = (∂jR)T R + RT ∂jR = AT

j (RT R) + (RT R)Aj in L∞
loc(Ω; Mp),

(RT R)(x0) = I,

which has one and only one solution, again by Theorem 4.1. Observing that RT R = I is a
solution of this system, we conclude that R ∈ W 1,∞

loc (Ω; Op).
(ii) As a preparation to part (iii), we note that the matrix fields

Aj :=
1

2
{U−1(∇cj − (∇cj)

T )U−1 + U−1∂jU − (∂jU)U−1}

may be also written as

Aj = UΓjU
−1 − (∂jU)U−1,

where the matrix fields Γj ∈ L∞
loc(Ω, Mp) are defined by

Γj :=
1

2
U−2(∂j(U

2) + ∇cj − (∇cj)
T ).

This re-rewriting relies on a direct computation, which is omitted as it is straightforward.
(iii) The matrix field R ∈ W 1,∞

loc (Ω; Op) being that determined in (i), there exists one and

only one vector field Θ ∈ W 2,∞
loc (Ω, Rp) that satisfies

∇Θ = RU in W 1,∞
loc (Ω; Mp),

Θ(x0) = a0.

To begin with, we note that solving ∇Θ = RU is the same as solving

∂jΘ = Ruj in W 1,∞
loc (Ω; Rp),

Θ(x0) = Θ0,

where uj ∈ W 1,∞
loc (Ω; Rp) denotes the j-th column vector field of the matrix field U. Re-

sorting again to Theorem 4.1, we conclude that this system has one and only one solution
Θ ∈ W 1,∞

loc (Ω; Rp) if the compatiblity relations

∂i(Ruj) = ∂j(Rui)

are satisfied (that Θ ∈ W 2,∞
loc (Ω; Rp) in turn clearly follows, since both fields R and U

are in the space W 1,∞
loc (Ω, Mp)). Since ∂iR = RAi (cf. part (i)), these conditons take the

equivalent form
Aiuj + ∂iuj = Ajui + ∂jui,

which, thanks to the specific expression of the matrix fields Aj in terms of the matrix fields
Γj (see part (ii)), are seen after some straightforward computations to hold if, for all (i, j),
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the j-th column vector field of the matrix field Γi coincides with the i-th column vector
field of the matrix field Γj . This equality of vector fields itself immediately follows from the
(already noted) observation that the elements Γk

jl (recall that k and l are respectively the

row and column indices) of the matrix fields Γj can be also written as

Γk
jl =

1

2
gkr(∂jglr + ∂lgjr − ∂rgjl),

where (gkl) := U−2 and (gij) := U2.
It remains to satisfy the “initial” condition ∇Θ(x0) = F0. This is achieved by letting

R0 := F0(F
T
0 F0)

−1/2 in part (i). ¤

Naturally, if no “initial” conditions such as Θ(x0) = a0 and ∇Θ(x0) = F0 are imposed,

the immersions Θ ∈ W 2,∞
loc (Ω; Rp) are then uniquely defined up to isometries of R

p only,
according to the familiar rigidity theorem (which holds for immersions in the space C1(Ω; Rp);
cf., e.g., [3, Theorem 1.7-1]).

An inspection of the above proof immediately leads to the following existence result in
the spaces Cm+1(Ω; Rp),m ≥ 1.

Theorem 5.2. Assume in Theorem 5.1 that the matrix field U belongs to the set Cm(Ω; Sp
>)

for some integer m ≥ 1, all the other assumptions and definitions of Theorem 5.1 holding

verbatim. Then the immersion Θ found in Theorem 5.1 belongs to the space Cm+1(Ω; Rp).

Under an additional assumption on the set Ω, a similar existence result holds in the space
W 2,∞(Ω, Rp). We recall that the geodesic diameter of an open subset of R

p is defined in
Section 4.

Theorem 5.3. Assume in Theorem 5.1 that the geodesic diameter of Ω is finite and that

the matrix field U belongs to the set W 1,∞(Ω; Sp
>), all the other assumptions and definitions

of Theorem 5.1 holding verbatim. Then the immersion Θ found in Theorem 5.1 belongs to

the space W 2,∞(Ω, Rp).

Proof. The proof is analogous to that of Theorem 5.1, save that the existence result of
Theorem 4.1 is now replaced by that of Theorem 4.2. ¤

6. Special case of an open subset of R
3

In this section, the dimension p of the underlying space is equal to three, which means
that Latin indices range in {1, 2, 3}. In this case, the sufficient compatibility relations of
Theorem 5.1 can be re-written in a remarkably simple and concise form, in terms of the
matrix operators CURL and COF (whose definitions are recalled in Section 2) applied to
an ad hoc matrix field Λ, itself a function of the given matrix field U. These relations are
due to C. Vallée [20], who showed that they are necessarily satisfied by the matrix field

U = (∇ΘT
∇Θ)1/2 associated with a given immersion Θ. We now show that they are

also sufficient, according to the following global existence result in the space W 2,∞
loc (Ω, R3)

(similar existence results hold in the spaces Cm+1(Ω; R3),m ≥ 1, and W 2,∞(Ω, R3); cf.
Theorems 6.2 and 6.3).
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Theorem 6.1. Let Ω be a connected and simply-connected subset of R
3 and let there be

given a matrix field U ∈ W 1,∞
loc (Ω, S3

>) that satisfies

CURL Λ + COF Λ = 0 in D′(Ω; M3),

where the matrix field Λ ∈ L∞
loc(Ω; M3) is defined in terms of the field U by

Λ =
1

detU

{
U (CURL U)T U −

1

2
(tr[U (CURL U)T ])U

}
.

Let there be given a point x0 ∈ Ω, a vector a0 ∈ R
3, and a matrix F0 ∈ M

3 that satisfies

(FT
0 F0)

1/2 = U(x0).

Then there exists one and only one immersion Θ ∈ W 2,∞
loc (Ω; R3) that satisfies

U = (∇ΘT
∇Θ)1/2 in W 1,∞

loc (Ω; S3
>),

Θ(x0) = a0 and ∇Θ(x0) = F0.

Proof. For the sake of clarity, this proof is broken into five parts, numbered (i) to (v). In
what follows, the notation [A]j : Ω → R

3 designates the j-th column vector field of a given
matrix field A.

(i) Given matrix fields Aj ∈ L∞
loc(Ω; A3), thus of the form

Aj =




0 −a3j a2j

a3j 0 −a1j

−a2j a1j 0


 ,

define the matrix field Λ ∈ L∞
loc(Ω; M3) by

Λ := (aij).

Equivalently,

[Λ]j ∧ v = Ajv for all v ∈ R
3.

Our first objective consists in showing that the relations assumed in Theorem 5.1 on the

matrix fields Aj are equivalent to the relation assumed in Theorem 6.1 on the matrix field

Λ. To this end, a direct computation shows that, given any pair (i, j) = (k, k + 1) where
k ∈ {1, 2, 3} and (k + 1) is counted modulo 3, the relation

∂iAj − ∂jAi + AiAj − AjAi = 0

found in Theorem 5.1 is satisfied if and only if

(CURL Λ)l,k+2 + (COF Λ)l,k+2 = 0 for all l ∈ {1, 2, 3},

where (k + 2) is counted modulo 3. Hence the relations

∂iAj − ∂jAi + AiAj − AjAi = 0 in D′(Ω; M3),

which hold for all i, j ∈ {1, 2, 3} if and only if they hold for (i, j) = (k, k + 1), k ∈ {1, 2, 3},
are satisfied if and only if

CURL Λ + COF Λ = 0 in D′(Ω; M3).

(ii) Given a matrix field C ∈ W 1,∞
loc (Ω; S3

>), define the matrix fields Aj as in Theorem
5.1, i.e., by

Aj := (UΓj − ∂jU)U−1 ∈ L∞
loc(Ω; A3),
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where

U := C1/2 and Γj :=
1

2
C−1(∂jC + ∇cj − (∇cj)

T ) ∈ L∞
loc(Ω; M3) and cj := [C]j ,

and let Λ ∈ L∞
loc(Ω; M3) denote the matrix field defined by the relations

aj ∧ v = Ajv for all v ∈ R
3 where aj := [Λ]j

(this definition makes sense since the matrix fields Aj are antisymmetric).
Our second objective consists in showing that the matrix field Λ is then given in terms

of the matrix field U by the expression announced in the statement of Theorem 6.1.
Before doing so (in part (iii)), we begin by listing a series of formulas that will be needed

for this purpose (these formulas are of course only valid for vector and matrix fields with
sufficient smoothness, not specified here for conciseness, but which should otherwise be clear
in each instance): Given a matrix field A,

detA = (a1 ∧ a2) · a3 = a1 · (a2 ∧ a3) where ai := [A]i.

Given vector fields bi,

(b1 ∧ b2) ∧ b3 = (b1 · b3)b2 − (b3 · b2)b1.

Given an invertible matrix field U, let uj := [U]j and vj := [U−1]j; then

u1 = (detU)v2 ∧ v3, u2 = (detU)v3 ∧ v1, u3 = (detU)v1 ∧ v2,

v1 =
1

detU
u2 ∧ u3, v2 =

1

detU
u3 ∧ u1, v3 =

1

detU
u1 ∧ u2

(the first formula above is well known; the others are immediately verified)
Next, given a matrix field U, let uj := [U]j; then

tr[U(CURL U)T ] = (∂2u3 − ∂3u2) · u1 + (∂3u1 − ∂1u3) · u2 + (∂1u2 − ∂2u1) · u3,

U(CURL U)T uj = [(∂2u3 − ∂3u2) · uj ]u1 + [(∂3u1 − ∂1u3) · uj ]u2 + [(∂1u2 − ∂2u1) · uj ]u3

(these two formulas are straightforward consequences of the relations [CURL U]1 = ∂2u3−
∂3u2, [CURL U]2 = ∂3u1 − ∂1u3, and [CURL U]3 = ∂1u2 − ∂2u1).

Finally, given an invertible matrix field U, let again uj := [U]j and vj := [U−1]j; then,

for all i ∈ {1, 2, 3},

(∂iuj − ∂jui) ∧ vj =
1

detU

{
U(CURL U)T ui − (tr[U(CURL U)T ])ui

}
.

To prove this last relation, we note that, thanks to the previous formulas,

(detU)(∂iuj − ∂jui) ∧ vj = (∂iu1 − ∂1ui) ∧ (u2 ∧ u3)

+ (∂iu2 − ∂2ui) ∧ (u3 ∧ u1) + (∂iu3 − ∂3ui) ∧ (u1 ∧ u2)

= (u3 ∧ u2) ∧ (∂iu1 − ∂1ui)

+ (u1 ∧ u3) ∧ (∂iu2 − ∂2ui) + (u2 ∧ u1) ∧ (∂iu3 − ∂3ui)

= ([∂iu1 − ∂1ui] · u3)u2 − ([∂iu1 − ∂1ui] · u2)u3

+ ([∂iu2 − ∂2ui] · u1)u3 − ([∂iu2 − ∂2ui] · u3)u1

+ ([∂iu3 − ∂3ui] · u2)u1 − ([∂iu3 − ∂3ui] · u1)u2

= U(CURL U)T ui − (tr[U(CURL U)T ])ui.
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(iii) Let each matrix field Ai be defined as in (ii) in terms of the matrix field U, so that
AiU = UΓi − ∂iU, or equivalently, Aiuj = U[Γi]j − ∂iuj for all j, where uj := [U]j .
Consequently, for all j,

Aiuj − Ajui = ∂jui − ∂iuj ,

since [Γi]j = [Γj ]i. Hence, again for all j,

ai ∧ uj − aj ∧ ui = ∂jui − ∂iuj ,

by definition of the vector fields ai. We thus have, by part (ii),

(ai ∧ uj) ∧ vj − (aj ∧ ui) ∧ vj

= (ai · vj)uj − (uj · vj)ai − (aj · vj)ui + (ui · vj)aj

= (ai · vj)uj − ai − (aj · vj)ui

= (∂jui − ∂iuj) ∧ vj (no summation on j),

which in turn implies that, for all j 6= i,

ai = (ai · vj)uj − (aj · vj)ui + (∂iuj − ∂jui) ∧ vj (no summation on j).

This gives

2ai =
∑

j 6=i

(ai · vj)uj −
∑

j 6=i

(aj · vj)ui +
∑

j 6=i

(∂iuj − ∂jui) ∧ vj ,

or equivalently (since ai = (ai · vj)uj),

ai = −(aj · vj)ui + (∂iuj − ∂jui) ∧ vj .

Therefore,
(ai · vi) = −3(aj · vj) + (∂jui − ∂iuj) · (vi ∧ vj).

Using again part (ii), we thus obtain

2(ai · vi) = (∂1u2 − ∂2u1) · (v2 ∧ v1) + (∂2u3 − ∂3u2) · (v3 ∧ v2)

+ (∂3u1 − ∂1u3) · (v1 ∧ v3)

= −
1

detU
[(∂1u2 − ∂2u1) · u3 + (∂2u3 − ∂3u2) · u1 + (∂3u1 − ∂1u3) · u2]

= −
1

detU
tr[U(CURL U)T ].

To sum up, we have shown that

ai = (∂iuj − ∂jui) ∧ vj +
1

2detU
(tr[U(CURL U)T ])ui.

This relation, combined with the last formula from part (ii), in turn implies that

ai =
1

detU

{
U(CURL U)T ui −

1

2
(tr[U(CURL U)T ])ui

}
,

or equivalently, in matrix form,

Λ =
1

detU

{
U(CURL U)T U −

1

2
(tr[U(CURL U)T ])U

}
.

We have thus found an explicit expression of the matrix field Λ in terms of the matrix
field U, as desired.

(iv) Conversely, given a matrix field U ∈ W 1,∞
loc (Ω, S3

>), define the matrix field Λ ∈
L∞

loc(Ω; M3) by the last formula above, and let the matrix fields Aj ∈ L∞
loc(Ω; A3) be defined

by the relations
Ajv = aj ∧ v for all v ∈ R

3 where aj := [Λ]j .
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Our third objective consists in showing that the matrix fields Aj are given by

Aj = (UΓj − ∂jU)U−1,

where

Γj =
1

2
U−2(∂j(U

2) + ∇cj − (∇cj)
T ) and cj := [U2]j .

We claim that this conclusion can be reached without any further computation, by means
of the following simple argument. Recall that, from our convention set up in Section 2, the
point values of a function in L∞

loc(Ω) are well-defined real numbers. So, given a matrix field
Λ ∈ L∞

loc(Ω; M3), let the matrix fields Aj ∈ L∞
loc(Ω; A3) be defined as above. Now, at each

point x ∈ Ω, the linear mapping

(A1(x),A2(x),A3(x)) ∈ (A3)3 → Λ(x) ∈ M
3

defined by the relations [Λ(x)]j ∧ v = Aj(x)v for all v ∈ R
3 is clearly one-to-one and onto

between two finite-dimensional linear spaces of dimension nine. This observation shows that,
given any field Λ ∈ L∞

loc(Ω; M3), there is one and only one field (A1,A2,A3) ∈ (L∞
loc(Ω; A3))3

that satisfies Ajv = aj ∧v for all v ∈ R
3. The assertion thus follows from the computations

made in part (iii).

(v) The existence and uniqueness of the immersion Θ ∈ W 2,∞
loc (Ω; R3) follow by combining

the equivalences established in part (i) and in parts (iii)-(iv) with Theorem 5.1. ¤

As expected, part (iv) of the above proof can be also established by means of a direct
(although somewhat delicate) computation, which incidentally produces the following, in-

teresting per se, identity, valid for any matrix field U ∈ W 1,∞
loc (Ω; S3

>) and all i ∈ {1, 2, 3}:

1

2
U−2(∂i(U

2) + ∇ci − (∇ci)
T )

= U−1

(
∂iU +

1

detU

{
U(CURL U)T −

1

2
tr[U(CURL U)T ]I

}
U

#
i

)
,

where each matrix field U
#
i ∈ W 1,∞

loc (Ω; S3
>) is defined by [U#

i ]j := ui ∧ uj .
In the same manner that the existence result of Theorem 5.1 was extended in Theorems

5.2 and 5.3, that of Theorem 6.1 can be extended to the spaces Cm+1(Ω; R3), m ≥ 1, and
W 2,∞(Ω; R3), as follows.

Theorem 6.2. Assume in Theorem 6.1 that the matrix field U belongs to the set Cm(Ω; S3
>)

for some integer m ≥ 1, all the other assumptions and definitions of Theorem 6.1 holding

verbatim. Then the immersion Θ found in Theorem 6.1 belongs to the space Cm+1(Ω; R3).

Theorem 6.3. Assume in Theorem 6.1 that the geodesic diameter of Ω is finite and that

the matrix field U belongs to the set W 1,∞(Ω; S3
>), all the other assumptions and definitions

of Theorem 6.1 holding verbatim. Then the immersion Θ found in Theorem 6.1 belongs to

the space W 2,∞(Ω; R3).

To conclude our analysis, we show that, as expected, the compatibility relations found in
Theorem 6.1 are equivalent to the vanishing of the Riemann curvature tensor.
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Theorem 6.4. Let Ω be an open subset of R
3. Then a matrix field U ∈ W 1,∞

loc (Ω; S3
>)

satisfies

CURL Λ + COF Λ = 0 in D′(Ω; M3),

where the matrix field Λ ∈ L∞
loc(Ω, M3) is defined in terms of the field U by

Λ =
1

detU

{
U (CURL U)T U −

1

2
(tr[U (CURL U)T ])U

}
.

if and only if the matrix field C = (gij) := U2 ∈ W 1,∞
loc (Ω; S3

>) satisfies

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in D′(Ω),

where

Γijq :=
1

2
(∂jgiq + ∂igjq − ∂qgij) ∈ L∞

loc(Ω) and Γp
ij := gpqΓijq ∈ L∞

loc(Ω),

where (gpq) := (gij)
−1 ∈ W 1,∞

loc (Ω; S3
>).

Proof. Since the equivalence between the two sets of compatibility relations is a “local”
property, we assume without loss of generality that Ω is simply-connected. This being
the case, assume that a matrix field U ∈ W 1,∞

loc (Ω, S3
>) satisfies CURL Λ + COFΛ =

0 in D′(Ω; M3), with the matrix field Λ defined as above in terms of U. Then, by Theorem

6.1, there exists an immersion Θ ∈ W 2,∞
loc (Ω; R3) that satisfies (∇ΘT

∇Θ)1/2 = U in

W 1,∞
loc (Ω, S3

>). That the distributions Rqijk ∈ D′(Ω) associated with the matrix field (gij) :=

U2 = ∇ΘT
∇Θ vanish is the well-known necessary condition recalled in Section 1.

Assume conversely that a matrix field C = (gij) ∈ W 1,∞
loc (Ω; S3

>) is such that the associ-
ated distributions Rqijk ∈ D′(Ω) vanish. By the existence theorem with little regularity of

S. Mardare [14], there exists an immersion Θ ∈ W 2,∞
loc (Ω; R3) that satisfies ∇ΘT

∇Θ = C

in W 1,∞
loc (Ω; S3

>). By Theorem 3.1, the matrix fields Aj ∈ L∞
loc(Ω; A3) defined by

Aj :=
1

2
{U−1(∇cj − (∇cj)

T )U−1 + U−1∂jU − (∂jU)U−1}

in terms of the matrix field U := C1/2 ∈ W 1,∞
loc (Ω; S3

>), therefore satisfy

∂iAj − ∂jAi + AiAj − AjAi = 0 in D′(Ω; A3).

But, as shown in the proof of Theorem 6.1, these relations are respectively equivalent to

Λ =
1

detU

{
U (CURL U)T U −

1

2
(tr[U (CURL U)T ])U

}

and to

CURL Λ + COF Λ = 0 in D′(Ω; M3).

Hence the two sets of compatibility relations are equivalent. ¤

Note that, by contrast with the proof given above, a proof by direct computation (i.e.,
without resorting to existence theorems) otherwise turns out to be surprisingly lengthy and
delicate (see [21]).
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[1] E. Cartan, La Géométrie des Espaces de Riemann, Mémorial des Sciences Mathématiques, Fasc. 9,
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Bataillon, 34095 Montpellier cedex 5, France

Cristinel Mardare, Laboratoire Jacques - Louis Lions, Université Pierre et Marie Curie, 4
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scope - Chasseneuil cedex, France


