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Abstract

Let (X,Y ) be a random vector whose conditional excess probability θ(x, y) :=
P (Y ≤ y | X > x) is of interest. Estimating this kind of probability is a delicate
problem as soon as x tends to be large, since the conditioning event becomes an
extreme set. Assume that (X,Y ) is elliptically distributed, with a rapidly vary-
ing radial component. In this paper, three statistical procedures are proposed to
estimate θ(x, y), for fixed x, y, with x large. They respectively make use of an ap-
proximation result of Abdous et al. (cf. Abdous et al. (2005, Theorem 1)), a new
second-order refinement of Abdous et al.’s Theorem 1, and a non-approximating
method. The estimation of the conditional quantile function θ(x, ·)← for large fixed
x is also addressed, and these methods are compared via simulations.

Key words: Asymptotic independence; Conditional excess probability; Elliptic
law; Rapidly varying tails.

1 Introduction

Let (X, Y ) be a random pair whose conditional excess probability θ(x, y) :=
P (Y ≤ y | X > x) is of interest. Estimating this kind of probability is a
delicate problem as soon as x tends to be large, since the conditioning event
becomes an extreme set. The conditional empirical distribution function then
fails to be of any use, even if the probability θ(x, y) in itself is not a small
probability, nor close to 1. Alternative methods have to be considered.



A classical approach is to call upon multivariate extreme value theory. Many
refined inference procedures have been developed, making use of the structure
of multivariate max-stable distributions introduced by de Haan and Resnick
(1977), Pickands (1981), de Haan (1985). These procedures are successful in
the rather general situation where (X, Y ) are asymptotically dependent (for
the maxima), which means heuristically that X and Y can be simultaneously
large (see e.g. Resnick (1987) or Beirlant et al. (2004) for more details).

Efforts have recently been made to the problem in the opposite case of asymp-
totic independence. In some papers, attempts are made to provide models for
joint tails, see e.g. Ledford and Tawn (1996, 1997, 1998), Draisma et al. (2004),
Resnick (2002), Maulik and Resnick (2004). In a parallel way, Heffernan and
Tawn (2004) explored modeling for multivariate tail regions which are not
necessarily joint tails, and Heffernan and Resnick (2007) provided a comple-
mentary mathematical framework in the bivariate case.

In these papers, the key assumption is that there exists a limit for the con-
ditional distribution of Y suitably centered and renormalized, given that X
tends to infinity. This assumption was first checked for bivariate spherical dis-
tributions by Berman (1992, Theorem 12.4.1). Abdous et al. (2005) obtained it
for bivariate elliptical distributions; Hashorva (2006) for multivariate elliptical
distributions and Balkema and Embrechts (2007) for generalized multivariate
elliptical distributions.

Elliptical distributions form a large family of multivariate laws, which have
received considerable attention, especially in the financial risk context. See
Artzner et al. (1999), Embrechts et al. (2003), Hult and Lindskog (2002),
Demarta and McNeil (2005), among others. Assume from now on that (X, Y )
is elliptically distributed; Theorem 1 of Abdous et al. (2005) exhibits the
asymptotic behavior of θ(x, y) when x → ∞ for such an elliptical pair. The
appropriate rate y = y(x) is explicited to get a non degenerate behavior of
limx→∞ θ(x, y). This rate depends on the tail behavior of the radial random
variable R defined by the relation R2 = (X2 − 2ρXY + Y 2)/(1− ρ2), where ρ
is the Pearson correlation coefficient between X and Y . The only parameters
involved in y(x) and in the limiting distribution are: the Pearson correlation
coefficient ρ, and the index of regular variation of R (say α) or an auxiliary
function ofR (say ψ), depending on wether R has a regularly or rapidly varying
upper tail. Abdous et al. (2005) provided a simulation study in the specific
case where R has a regularly varying tail. Existing estimators of ρ and α were
used therein to obtain a practical way to estimate excess probabilities.

The aim of this paper is to focus on the case where the radial component
R associated with the elliptical pair (X, Y ) has a rapidly varying upper tail.
A second-order approximation result is obtained, which refines Theorem 1 of
Abdous et al. in the case of rapid variation of R. In the situation mentioned
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above, the associated auxiliary function ψ has to be estimated. To the best
of our knowledge, estimating the auxiliary function has never been considered
in the literature. We propose three statistical procedures for the estimation
of θ(x, y), for fixed x, y, with x large. They respectively make use of Abdous
et al.’s approximation result, its second-order refinement, or an alternative
method which does not rely on an analytic approximation result.

A related problem encountered in practice is to estimate the conditional quan-
tile function θ(x, ·)← when x is fixed and large. This problem is also addressed
in detail in the present paper, and the simulation study performed is presented
in both terms of estimation of θ and θ(x, ·)←.

The paper is organized as follows: The second-order approximation result is
presented in Section 2, as well as some remarks and examples illustrating
the theorem. The statistical procedures are described in Section 3, where a
semi-parametric estimator of ψ is proposed. Section 4 deals with a comparative
simulation study. Some concluding comments are provided in Section 5. Proofs
are relegated to the Appendix.

2 Asymptotic approximation

Consider a bivariate elliptical random vector (X, Y ). General background on
elliptical distributions can be found e.g. in Fang et al. (1990). One can fo-
cus without loss of theoretical generality on the standard case where EX =
EY = 0 and VarX = VarY = 1. A convenient representation is then the
following (see for example Hult and Lindskog (2002)): (X, Y ) has a standard
elliptical distribution with radial positive distribution function H and Pearson
correlation coefficient ρ if it can be expressed as

(X, Y ) = R
(

cosU, ρ cosU +
√

1 − ρ2 sinU
)

,

where R and U are independent, R has distribution function H with ER2 = 2
and U is uniformly distributed on [−π/2, 3π/2]. Hereafter, to avoid trivialities
we assume |ρ| < 1.

Let Φ denote the normal distribution function and ϕ its density, i.e.

ϕ(t) =
e−t

2/2

√
2π

, Φ(x) =
∫ x

−∞
ϕ(t) dt .

This paper deals with elliptical distributions with rapidly varying marginal
upper tails, or equivalently with a rapidly varying radial component. More
precisely, the radial component R associated with (X, Y ) is assumed to be
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such that there exists an auxiliary function ψ for which one gets, for any
positive t

lim
x→∞

P{R > x+ tψ(x)}
P (R > x)

= e−t. (1)

Such a condition implies that R belongs to the max-domain of attraction of the
Gumbel distribution, see Resnick (1987, p.26) for more details. de Haan (1970)
introduced this class of distributions as the Γ−varying class. The function ψ is
positive, absolutely continuous and satisfies limt→∞ ψ

′(t) = 0, limt→∞ ψ(t)/t =
0 and limt→∞ ψ{t+ xψ(t)}/ψ(t) = 1 for each positive x. It is only unique up
to asymptotic equivalence.

Let us recall Abdous et al. (2005)’s result in this rapidly varying context (see
Theorem 1, (ii)):

Theorem 1 Let (X, Y ) be a bivariate standardized elliptical random variable
with Pearson correlation coefficient ρ and radial component satisfying (1).
Then for each z ∈ R one has

lim
x→∞

P (Y ≤ ρx+ z
√

1 − ρ2
√

xψ(x) | X > x) = Φ(z).

In the following subsection, a rate of convergence is provided for the approxi-
mation result stated in Theorem 1, as well as a second order correction. Note
that if (X, Y ) has an elliptic distribution with correlation coefficient ρ, then
the couple (X,−Y ) has an elliptic distribution with correlation coefficient −ρ.
Therefore, one can focus on non-negative ρ. From now on, assume that ρ ≥ 0.
As a consequence, one can assume that both x > 0 and y > 0.

2.1 Main result

For each distribution functionH , denote by H̄ the survival function H̄ = 1−H .
The following assumption will be sufficient to obtain the main result. It is a
strengthening of (1).

Hypothesis 2 Let H be a rapidly varying distribution function such that

∣

∣

∣

∣

∣

H̄{x+ tψ(x)}
H̄(x)

− e−t
∣

∣

∣

∣

∣

≤ χ(x)Θ(t) , (2)

for all t ≥ 0 and x large enough, where limx→∞ χ(x) = 0, ψ satisfies

lim
x→∞

ψ(x)

x
= 0 ; (3)
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and Θ is locally bounded and integrable over [0,∞).

The following result is a second-order approximation for conditional excess
probabilities in the elliptical case with rapidly varying radial component.

Theorem 3 Let (X, Y ) be a bivariate elliptical vector with Pearson correla-
tion coefficient ρ ∈ [0, 1) and radial distribution H that satisfies Hypothesis 2.
Then for all x > 0 and z ∈ R,

P(Y ≤ ρx+ z
√

1 − ρ2
√

xψ(x) | X > x)

= Φ(z) −
√

ψ(x)

x

ρϕ(z)√
1 − ρ2

+O

(

χ(x) +
ψ(x)

x

)

, (4)

P(Y ≤ ρx+ z
√

1 − ρ2
√

xψ(x) + ρψ(x) | X > x) (5)

= Φ(z) +O

(

χ(x) +
ψ(x)

x

)

. (6)

All the terms O( ) are locally uniform with respect to z.

Remark 4 This result provides a rate of convergence in the approximation
result of Abdous et al. (2005, Theorem 1) and a second-order correction. This

correction is useful only if χ(x) = o(
√

ψ(x)/x).

Remark 5 Theorem 3 and the formula

P(X ≤ x′ ; Y ≤ y | X > x)

= P(Y ≤ y | X > x) − P(X > x′ | X > x)P( Y ≤ y | X > x′)

yield (with some extra calculations) the asymptotic joint distribution (and the
rate of convergence) of (X, Y ) given that X > x when x is large: for all x > 0
and z ∈ R,

P(X ≤ x+ tψ(x) ; Y ≤ ρx+ z
√

1 − ρ2
√

xψ(x) | X > x)

= (1 − e−t)Φ(z) +O



χ(x) +

√

ψ(x)

x



 , (7)

where all the terms O( ) are locally uniform with respect to z.

Remark 6 Hashorva (2006) obtained that the conditional limit distribution
of Y given that X = x for multivariate elliptical vectors with rapidly varying
radial component is also the Gaussian distribution. The equality of these two
asymptotic distributions is not true in general. In the elliptical context, this is
only true if the radial variable is rapidly varying. The conditional distribution
of Y given that X = x is of course related to the joint distribution of (X, Y )
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given that X > x via the formula

P(X ≤ x′ ; Y ≤ y | X > x) =
∫ x′

x
P(Y ≤ y | X = u)PX(du),

where PX is the distribution of X. However, the limiting behavior of the inte-
grand is not sufficient to obtain the limit of the integral, so that (7) is not a
straightforward consequence of Hashorva’s result.

2.2 Remarks and examples

Hypothesis 2 gives a rate of convergence in the conditional excess probability
approximation. To the best of our knowledge, the literature deals more classi-
cally with second order conditions providing limits (see for instance Beirlant
et al. (2004, Section 3.3)) or with pointwise or uniform rates of convergence
(cf. e.g. de Haan and Stadtmüller (1996); Raoult and Worms (2003); Beirlant
et al. (2003)). The need here is to have a non uniform bound that can be
used for dominated convergence arguments. However, in the examples given
below, the non uniform rates χ(x) that we exhibit are the same as the optimal
uniform rates provided by de Haan and Stadtmüller (1996).

One can however check that Hypothesis 2 holds for usual rapidly varying func-
tions, in particular for most of the so-called Von Mises distribution functions,
which satisfy (see e.g. Resnick (1987, p.40))

H̄(x) = d exp

{

−
∫ x

x0

ds

ψH(s)

}

, (8)

for x greater than some x0 ≥ 0, where d > 0 and ψH is positive, absolutely con-
tinuous and limx→∞ ψ

′
H(x) = 0. Note that under this assumption, ψH = H̄/H ′,

and ψH is an auxiliary function in the sense of (1). In the sequel, auxiliary
functions ψH satisfying (8) will be called Von Mises auxiliary functions.

The following lemma provides sufficient conditions for Hypothesis 2, which
could be weakened at the price of additional technicalities.

Lemma 7 Let H be a Von Mises distribution function, and assume that,

(i) ψH is ultimately monotone, differentiable and |ψ′H | is ultimately decreas-
ing;

(ii) if ψH is decreasing, then either limx→∞ ψH(x) > 0 or there exist positive
constants c1 and c2 such that for all x ≥ 0 and u ≥ 0,

ψH(x)

ψH(x+ u)
≤ c1e

c2u . (9)
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Then Hypothesis 2 holds for ψH :

∣

∣

∣

∣

∣

H̄{x+ tψH(x)}
H̄(x)

− e−t
∣

∣

∣

∣

∣

≤ χ(x)Θ(t) ,

with χ(x) = O(|ψ′H(x)|) and Θ(t) = O((1 + t)−κ) for an arbitrary κ > 0.

Remark 8 Assumption (9) holds if ψH is regularly varying with index γ < 0.
It also holds if ψH(x) = e−cx for some c > 0.

Remark 9 If ψH is regularly varying with index γ < 1, and ψ′H ultimately

decreasing, then ψ′H(x) = o
(√

ψH(x)/x
)

and hence the second-order correction
is useful.

Remark 10 This bound corresponds to a worst case scenario. In many par-
ticular cases, a much faster rate of convergence can be obtained. For instance,
if H̄(x) = e−t, then (2) holds with ψH ≡ 1, whence χ(x) = 1/x, but for
any positive x and t, H̄{x+ tψH(x)}/H̄(x) = e−t. The rate of convergence is
infinite here. If H̄ is the Gumbel distribution, then ψH ≡ 1 and the rate of
convergence in (2) is exponential: |H̄(x+ t)/H̄(x) − e−t| ≤ 2e−xe−t.

In the following, some examples of distributions satisfying Hypothesis 2 are
given for illustration.

Example 11 (Standard normal distribution). For the standard normal dis-
tribution, ψH = Φ̄/ϕ satisfies the previous assumptions. More precisely, it is
well known that ψH(x) ≡ x−1 +O(x−3). Thus χ(x) = O(x−2).

Example 12 (Lognormal distribution). Consider the lognormal distribution
H(x) = Φ(log(x)) and density function h(x) = x−1ϕ(log(x)). The auxiliary
function that satisfies (8) is ψH(x) = xΦ̄(log(x))/ϕ(log(x)) = x/ log(x) +
O(x/ log3(x)). Thus (2) holds with χ(x) = O(1/ log(x)).

Example 13 Consider the survival function H̄(x) = 2e−x
2

/(1 + e−x
2

). For
this distribution, ψH(x) = (1 + e−x

2

)/(2x) (see Table 1). Thus (2) holds with
χ(x) = O(x−2).

Example 14 (Weibull-type distributions). If H satifies (8) with ψH(x) =
cxγ + O(xδ) with δ < γ, then the rate of convergence is χ(x) = O(xγ−1).
Note that for the elliptical Kotz distribution with parameter β used in the sim-
ulations (see Table 1), the radial component has a strict Weibull distribution
with ψH(x) = x1−β/β.

Example 15 (Discrete distribution in the domain of attraction of the Gumbel
law). Let ψ be a concave increasing function such that limx→∞ ψ(x) = +∞ and
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limx→∞ ψ
′(x) = 0 and define

H̄#(x) = exp

{

−
∫ x

x0

ds

ψ(s)

}

, H̄(x) = H̄#([x]) ,

where [x] is the integer part of x. Then H is a discrete distribution function,
H̄ belongs to the domain of attraction of the Gumbel distribution, but does not
satisfy Condition (8). Nevertheless, Condition (2) holds with

χ(x) = O(ψ′([x]) + 1/ψ(x)) , Θ(t) = O((1 + t)−κ) , (10)

for any arbitrary κ > 0.

One can deduce from Lemma 7 that Theorem 3 holds for ψ = ψH . The fol-
lowing lemma says what happens if one uses an asymptotically equivalent
auxiliary function ψ instead of ψH in Theorem 3.

Lemma 16 Under the assumption of Lemma 7, let ψ be equivalent to ψH at
infinity and define ξ(x) = |ψ(x) − ψH(x)|/ψH(x). Then

∣

∣

∣

∣

∣

H̄(x+ tψ(x))

H̄(x)
− e−t

∣

∣

∣

∣

∣

≤ O {|ψ′H(x)| + ξ(x)} Θ(t) . (11)

Remark 17 A consequence of Lemma 16 is that if an auxiliary function ψ is
used instead of ψH in Theorem 3, then the second-order correction is relevant

provided that ξ(x) = o
(√

ψH(x)/x
)

. This is the case in Examples 11 and 13 if

one takes ψ(x) = 1/x or ψ(x) = 1/(2x) respectively; in Example 12 when
using ψ(x) = x/ log(x). As for Example 14, one can take ψ(x) = cxγ if
δ < (3γ − 1)/2.

3 Statistical procedure

For given large positive x and y, consider the problems of estimating θ(x, y) =
P(Y ≤ y | X > x) and the conditional quantile function θ(x, ·)←. The em-
pirical distribution function is useless, since there might be no observations
in the considered range. We suggest to estimate these quantities by means of
Theorem 3.

Assume that a sample (X1, Y1), . . . , (Xn, Yn) is available, drawn from an ellip-
tical distribution with radial component satisfying Hypothesis 2. Note that in
this section we do not assume that the distribution is standardized, so that a
preliminary standardization is required.
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3.1 Definition of the estimators

The estimation of θ(x, y) and the conditional quantile function requires esti-
mates of µX , µY , σX , σY , ρ and ψ. Let µ̂X , µ̂Y , σ̂X , σ̂Y , ρ̂n and ψ̂n denote such
estimates. For fixed x, y > 0, define

θ̂n,1(x, y) = Φ







ŷ − ρ̂nx̂
√

1 − ρ̂2
n

√

x̂ψ̂n(x̂)





 , (12)

θ̂n,2(x, y) = Φ







ŷ − ρ̂nx̂− ρ̂nψ̂n(x̂)
√

1 − ρ̂2
n

√

x̂ψ̂n(x̂)





 , (13)

where x̂ = (x− µ̂X)/σ̂X and ŷ = (y − µ̂Y )/σ̂Y .

In order to estimate the conditional quantile function θ(x, ·)←, define, for fixed
θ ∈ (0, 1),

ŷn,1 = µ̂Y + σ̂Y

{

ρ̂nx̂+
√

1 − ρ̂2
n

√

x̂ψ̂n(x̂)Φ
−1(θ)

}

, (14)

ŷn,2 = µ̂Y + σ̂Y

{

ρ̂nx̂+ ρ̂nψ̂n(x̂) +
√

1 − ρ̂2
n

√

x̂ψ̂n(x̂)Φ
−1(θ)

}

. (15)

Estimating µX , µY , σX , σY and ρ is a classical topic, and the empirical ver-
sion of each quantity can easily be used. Under the assumption of elliptical
distributions, however, one can observe a better stability when the Pearson
correlation coefficient is estimated by ρ̂n = sin(πτ̂n/2), where τ̂n is the empir-
ical Kendall’s tau. See e.g. Hult and Lindskog (2002) for more details. This
estimator is

√
n-consistent and asymptotically normal.

Consider now the problem of the estimation of ψ. Since auxiliary functions
are defined up to asymptotic equivalence, a particular representant must be a
priori chosen in order to define the estimator. We assume that an admissible
auxiliary function is

ψ(x) =
1

cβ
x1−β , (16)

for some constants c > 0 and β > 0. Under this assumption, estimation of ψ
boils down to estimating c and β.

A wide literature exists on estimators of β, see e.g. Beirlant et al. (1999),
Gardes and Girard (2006), Dierckx et al. (2006), among others. The method
chosen here is the one proposed in Beirlant et al. (1996). Let kn be a user
chosen threshold and Rj,n, 1 ≤ j ≤ n be the order statistics of the sample
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R1, . . . , Rn. The estimator of β is obtained as the slope of the Weibull quantile
plot at the point (log log(n/kn), log(Rn−kn,n)):

β̂n =
k−1
n

∑kn

i=1 log log(n/i) − log log(n/kn)

k−1
n

∑kn

i=1 log(Rn−i+1,n) − log(Rn−kn,n)
. (17)

An estimator of c is then naturally given by

ĉn =
1

k

kn
∑

i=1

log(n/i)

Rβ̂n

n−i+1,n

. (18)

Actually, in our context, the radial component is not observed. We estimate
the Ris by

R̂2
i = X̂2

i + (Ŷi − ρ̂nX̂i)
2/(1 − ρ̂2

n) ,

where X̂i = (Xi − µ̂X)/σ̂X and Ŷi = (Yi − µ̂Y )/σ̂Y , and we plug these values

in (17) and (18). Define then ψ̂n(x) = x1−β̂n/(ĉnβ̂n).

3.2 Discussion of the estimation error versus approximation error

Denote

ẑn,1 =
y − ρ̂nx

√

1 − ρ̂2
n

√

xψ̂n(x)
, ẑn,2 =

y − ρ̂nx− ρ̂nψ̂n(x)
√

1 − ρ̂2
n

√

xψ̂n(x)
,

z1 =
y − ρx

√

(1 − ρ2)
√

x2−β/(cβ)
, z2 =

y − ρx− ρx1−β/(cβ)
√

(1 − ρ2)
√

x2−β/(cβ)
.

Then, for i = 1, 2,

θ̂n,i(x, y) − θ(x, y) = Φ(ẑn,i) − Φ(zi) + Φ(zi) − θ(x, y) .

This shows that the estimators defined in (12) have two sources of error: the
first one, Φ(ẑn,i) − Φ(zi), comes from the estimation of ρ, µ, σ and ψ, and
the second one, Φ(zi)− θ(x, y), from the asymptotic nature of the approxima-
tions (4) and (6).

The order of magnitude of the estimation error can be measured by the rate of
convergence of the estimators. In order to obtain a rate of convergence for the
estimators β̂n and ĉn, we assume that H is a Von Mises distribution function
with

ψH(x) =
1

cβ
x1−β{1 + t(x)} , (19)

10



where t is a regularly varying function 1 with index ηβ for some η < 0. This
implies that H̄(x) = exp{−cxβ [1 + s(x)]}, where s is also regularly varying
with index ηβ. Under this assumption, the function ψ defined in (16) is an
admissible auxiliary function and Girard (2004) has shown that β̂n is k1/2

n -
consistent, for any sequence kn such that

kn → ∞ , k1/2
n log−1(n/kn) → 0 , k1/2

n b(log(n/kn)) → 0 ,

where b is regularly varying with index η, see (Girard, 2004, Theorem 2) for
details. Similarly, it can be shown that k1/2

n (ĉn − c) = OP (1) under the same
assumptions on the sequence kn. Thus, for any x, ψ̂n(x) is a k1/2

n -consistent
estimator of ψ(x). Besides, ρ̂n, µ̂n and σ̂n are

√
n-consistent, so the estimation

error Φ(ẑn,i) − Φ(zi) is of order k−1/2
n in probability.

If ψH satisfies (19), then Hypothesis 2 holds, and Theorem 3 and Lemma 16
provide a bound for the deterministic approximation error Φ(zi)− θ(x, y). By
Example 14, we see that the second order correction is useful only if η < −1/2.

3.3 Discussion of an alternative method

The method described previously makes use of the asymptotic approxima-
tions of Theorem 3. It could be thought that a direct method, making use
of Formula (A.1) and of an estimator of H̄, would yield a better estimate
of θ(x, y), since it would avoid this approximation step. Recall however that
we specifically need to estimate the tail of the radial distribution, so that a
nonparametric estimator of H cannot be considered. The traditional solution
given by extreme value theory consists in fitting a parametric model for the
tail. This will always induce an approximation error.

Nevertheless, there exists a situation in which the approximation error can be
canceled: If the radial component is exactly Weibull distributed, i.e. H̄(x) =
exp{−cxβ}, then ψH satisfies (16), so for any x, u > 0, (8) implies that

H̄(xu)

H̄(x)
= exp

{

∫ xu

x

ds

ψ(s)

}

.

Therefore, in this specific case, a consistent estimator of θ(x, y), say θ̂n,3(x, y),
can be introduced, which does not make use of any asymptotic expansion as

1 A function f is regularly varying at infinity with index α if for all t > 0,
limx→∞ f(tx)/f(x) = tα.
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in Theorem 3. Through formula (A.1), we get explicitly:

θ̂n,3(x, y) = 1−
∫ π/2

arctan(t̂0)
K̂(x̂, x̂, cos(u)) du+

∫ arctan(t̂0)

−Û0

K̂(x̂, ŷ, sin(u+ Û0)) du

2
∫ π/2
0 K̂(x̂, x̂, cos(u)) du

, (20)

where

K̂(x, y, v) = exp

{

∫ y/v

x

ds

ψ̂n(s)

}

,

t̂0 = (ŷ/x̂− ρ̂n)/
√

1 − ρ̂2
n , Û0 = arctan(ρ̂n/

√

1 − ρ̂2
n) ,

x̂ = (x− µ̂X)/σ̂X , ŷ = (y − µ̂Y )/σ̂Y .

We included this estimator in the simulation study as a benchmark when
looking at elliptical Kotz distributed observations (see Table 1 or Example 14).

4 Simulation study

To assess the performance of the proposed estimators, we simulated sev-
eral families of bivariate standard elliptical distributions. Recall that a stan-
dardized bivariate elliptical density function can be written as f(x, y) =
Cg{(x2 − 2ρxy + y2)/(1− ρ2)}, where g is called the generator, ρ is the Pear-
son correlation coefficient and C is a normalizing constant. The density of the
radial component R is given by H ′(r) = Krg(r2), where K is a normalizing
constant (see, e.g., Fang et al. (1990)).

The distributions used are presented in Table 1. The Pearson correlation coeffi-
cient will be either ρ = 0.5 or ρ = 0.9. Three of them (Normal, Kotz and Logis)
are Von Mises distributions which satisfy both Hypothesis 2 and (19); in ad-
dition, the Von Mises auxiliary function of the Kotz distribution satisfies (16).
The Lognor and the modified Kotz distributions satisfy Hypothesis 2 but not
(16), and finally the bivariate Student distribution has a regularly varying
radial component, so it does not satisfy any of the assumptions. These three
distributions are used to explore the robustness of the proposed estimation
method.

In each case, 200 samples of size 500 were simulated. Several values of x were
chosen, corresponding to the (1 − p)-quantile of the marginal distribution of
X, with p = 10−3, p = 10−4 and p = 10−5. For each value of x, we computed
(by numerical integration) the theoretical values of y corresponding to the

12



Table 1
Bivariate elliptical distributions used for the simulations. The elliptical generator g
is given, the Von Mises auxiliary function ψH (or an equivalent), and the values of
the parameters used (in addition to ρ ∈ {0.5, 0.9}).
Bivariate law Generator g(u) ψH(x) Parameters

Normal e−u/2 1/x+O(1/x3)

Kotz uβ/2−1 exp(−uβ/2) x1−β/β β ∈ {1, 4}
Logis† e−u/(1 + e−u)2 (1 + e−x

2

)/(2x)

Modified Kotz g⋆(u)
‡ x1−β/(1 + β log x) β = 3/2

Lognor† e−(log2 u)/8/u x/ log x+O(x/ log3 x)

Student (1 + u/ν)−(ν+2)/2 − ν ∈ {3, 20}
† “Logis” and “Lognor” refer to the elliptical distributions with logistic and lognor-
mal generator, respectively.
‡ g⋆(u) = {(3/8) log u+ 1/2}u−1/4 exp{−(1/2)u3/4 log u}.

probability θ(x, y) = .05, .1, .2, . . . , .8, .9, .95. Then we estimated θ(x, y) via
the three proposed methods (cf. Section 3). For the estimation of the auxil-
iary function ψ, the threshold chosen corresponds to the highest 10% of the
estimated R̂is. It must be noted that this choice is independent of x. For each
fixed x we also estimated the conditional quantile function θ(x, ·)← by both
methods (14) and (15). We did not compute the estimated quantile function
for Method 3 since it would involve the numerical inversion of the integrals
wich appear in (A.1). This actually is one advantage of Methods 1 and 2 over
Method 3.

Some general features can be observed, which comfort the theoretical expec-
tations. (i) First of all, in the given range of x and y, there were hardly any
observations, so that the empirical conditional distribution function is useless.
(ii) For a given probability θ, the variability of the estimators slightly increases
with x for all underlying distributions. For a given x, the variability of the es-
timators is greater for medium values of θ. (iii) The results for the Student
distribution are as expected: if the degree of freedom ν is large, the estima-
tion shows a high variability but moderate bias, while if ν is small, then the
estimation is clearly inconsistent. (iv) The results for the Logis and modified
Kotz distributions are similar to the Gaussian distribution. (v) As described
in Section 3.3, Method 3 is markedly better for the Kotz distribution only.

Hence we have chosen to report only the results for the largest value of x (cor-
responding to the 10−5-quantile of the marginal distribution of X) and the
Normal, Kotz (with parameter β = 1 and β = 4) and Lognor distributions,
for ρ = .5 and ρ = .9. Figures A.1-A.4 illustrate the behavior of the estimators
of the probability θ: Median, 2.5% and 97.5% quantiles of the estimation error
θ̂n,i(x, y)− θ(x, y) (i = 1, 2, 3) are shown as a function of the estimated proba-

13



bility. Figure A.5 shows the estimated conditional quantile functions ŷn,i(x, y)
(i = 1, 2) and the theoretical conditional quantile function y = θ(x, ·)← for
only three distributions and ρ = .9, because the results are much more stable
as the correlation or the distribution vary. Median, 2.5% and 97.5% quantiles
of the estimated conditional quantile function ŷn,i(x, y) (i = 1, 2) are given as
a function of the probability.

From these simulation results, one can see that the estimator of θ by Method
1 presents a systematic positive bias, which of course induces an underestima-
tion of the conditional quantile function. As expected, Method 2 corrects this
systematic bias; the correction is better when ρ is large. This is also true for
the Lognormal generator, though in a lesser extent.

As already mentioned, the Lognor and modified Kotz distributions do not
satisfy Assumption (19). In both cases the radial component belongs to an
extended Weibull type family, with auxiliary function ψ of the form

ψ(x) = cx1−β(log x)−δ{1 + o(1)} ,

with c > 0, β ≥ 0 and δ > 0 if β = 0. The modified Kotz distribution
corresponds to β = 3/2 and δ = 1 and Lognor corresponds to β = 0 and
δ = 1. The simulation results are much better for the modified Kotz than for
the Lognor distribution. This tends to prove that the method is not severely
affected by the logarithmic factor, as long as β > 0.

5 Concluding remarks

In this paper we focused attention on elliptically distributed random pairs
(X, Y ) having a rapidly varying radial component. Three methods have been
proposed to estimate the conditional excess probability θ(x, y) for large x.
Under this specific assumption of elliptical distributions, Methods 2 and 3
revealed comparable results and outperformed Method 1.

Methods 1 and 2 make use of an asymptotic approximation of the conditional
excess distribution function by the Gaussian distribution function. As shown
by Balkema and Embrechts (2007), this approximation remains valid outside
the family of elliptical distributions, under geometric assumptions on the level
curves of the joint density function of (X, Y ). This suggests that these methods
may be robust to departure from the elliptical family. This is the subject of
current research.
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A Appendix

Proof of Theorem 3:
Define U0 = arctan(ρ/

√
1 − ρ2). For x > 0 and y ∈ (0, x), we have

P(X > x , Y > y) = P

(

R >
x

cosU
∨ y

ρ cosU +
√

1 − ρ2 sinU
; −U0 ≤ U ≤ π

2

)

.

Set t0 = (y/x−ρ)/
√

1 − ρ2. Then −U0 < arctan(t0), and x/ cosu > y/(ρ cosu+√
1 − ρ2 sin u) if and only if u > arctan(t0). Hence,

P(X > x , Y > y) =
∫ π/2

arctan(t0)
H̄
{

x

cosu

}

du

2π

+
∫ arctan(t0)

−U0

H̄

{

y

sin(u+ U0)

}

du

2π
,

P(Y > y | X > x)

=

∫ π/2
arctan(t0) H̄(x/ cos(u))du+

∫ arctan(t0)
−U0

H̄(y/ sin(u+ U0))du

2
∫ π/2
0 H̄(x/ cos(u))du

. (A.1)

If t0 ≥ 0, i.e. y − ρx ≥ 0, the changes of variables v = 1/ cos(u) and v =
1/ sin(u+ U0) yield:

P(Y > y | X > x) =
I1 + I2
I3

, (A.2)

with

I1 =
∫ ∞

w1

H̄(vx)

H̄(x)

dv

v
√
v2 − 1

,

I2 =
∫ ∞

w2

H̄(vy)

H̄(x)

dv

v
√
v2 − 1

,

I3 = 2
∫ ∞

1

H̄(vx)

H̄(x)

dv

v
√
v2 − 1

,

w1 =
√

1 + t20 =
√

1 + (y/x− ρ)2/(1 − ρ2) ,

w2 = xw1/y .

If t0 < 0, then

P(Y > y | X > x) =
I3 − I1 + I2

I3
. (A.3)
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Denote w0 = x(w1−1)/ψ(x). In I1 and I3, the change of variable v = 1+ ψ(x)
x
t

yields

I1 =

√

ψ(x)

x

∫ ∞

w0

H̄(x+ tψ(x))

H̄(x)

dt

(1 + tψ(x)
x

)
√

1 + t
2
ψ(x)
x

√
2t
,

I3 = 2

√

ψ(x)

x

∫ ∞

0

H̄(x+ tψ(x))

H̄(x)

dt

(1 + tψ(x)
x

)
√

1 + t
2
ψ(x)
x

√
2t
.

In I2, the change of variable vy = x+ tψ(x) yields

I2 =
ψ(x)

x

∫ ∞

w0

H̄(x+ tψ(x))

H̄(x)

(y/x) dt

(1 + tψ(x)
x

)
√

1 − (y/x)2 + 2tψ(x)
x

+ ψ2(x)
x2 t2

.

Set Ji =
√

x/ψ(x)Ii, i = 1, 3 and J2 = (x/ψ(x))I2. We start with I1 and I3.
We will use the following bound, valid for all B,C > 0,

0 ≤ 1 − 1

(1 + C)
√

1 +B
≤ B/2 + C , (A.4)

which follows from straightforward algebra and the concavity of the function
x 7→

√
1 + x. Applying this bound with B = ψ(x)

x
t
2

and C = ψ(x)
x
t yields

0 ≤ 1 − 1

(1 + tψ(x)
x

)
√

1 + t
2
ψ(x)
x

≤ 5

4

ψ(x)

x
t .

We thus have

∣

∣

∣J1 −
√

2πΦ̄(
√

2w0)
∣

∣

∣+
∣

∣

∣J3 −
√

2π
∣

∣

∣ ≤ 3χ(x)
∫ ∞

0
Θ(t)

dt√
2t

+
15

16

√
2π

ψ(x)

x
.

Hence

I1
I3

= Φ̄(
√

2w0) +O

(

χ(x) +
ψ(x)

x

)

. (A.5)

Consider now J2. Applying the bound (A.4) with C = tψ(x)/x and

B = {2tψ(x)

x
+
ψ2(x)

x2
t2}/

√

1 − (y/x)2 ,

and making use of Hypothesis 2, we obtain

∣

∣

∣

∣

∣

∣

J2 −
(y/x)

√
2πϕ(

√
2w0)

√

1 − (y/x)2

∣

∣

∣

∣

∣

∣

≤ y/x
√

1 − (y/x)2
χ(x)

∫ ∞

0
Θ(t) dt+

y/x

1 − (y/x)2

ψ(x)

x





√

1 −
(

y

x

)2

+ 1 +
ψ(x)

x



 .
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Choose y = ρx+
√

1 − ρ2
√

xψ(x)z for some fixed z ∈ R. Then for large enough
x it does hold that 0 < y < x and

y/x
√

1 − (y/x)2
=

ρ√
1 − ρ2

+O
(

√

ψ(x)/x
)

.

Thus,

I2
I3

=
ρ√

1 − ρ2

√

ψ(x)

x
ϕ(

√
2w0) + O

(

χ(x) +
ψ(x)

x

)

. (A.6)

For z ≥ 0 and large enough x, plugging (A.5) and (A.6) into (A.2) yields

θ(x, y) = Φ(
√

2w0) −
ρ√

1 − ρ2

√

ψ(x)

x
ϕ(

√
2w0) + O

(

χ(x) +
ψ(x)

x

)

.

For z < 0 and large enough x, plugging (A.5) and (A.6) into (A.3) yields

θ(x, y) = Φ̄(
√

2w0) −
ρ√

1 − ρ2

√

ψ(x)

x
ϕ(

√
2w0) + O

(

χ(x) +
ψ(x)

x

)

.

Note now that w0 = z2/2+O(ψ(x)/x), hence
√

2w0 = |z|+O(ψ(x)/x). Thus,

in both cases z ≥ 0 and z < 0, (4) holds. Set z = z′ + ρ
√

ψ(x)/x/
√

1 − ρ2. A

Taylor expansion of Φ and ϕ around z′ yields (6).

2

Proof of Lemma 7:

H̄{x+ tψ(x)}
H̄(x)

− e−t = exp

{

−
∫ x+tψ(x)

x

ds

ψ(s)

}

− e−t

= exp

[

−
∫ t

0

ψ(x)

ψ{x+ sψ(x)}ds

]

− e−t .

Applying the inequality |e−a − e−b| ≤ |a− b|e−a∧b valid for all a, b ≥ 0 yields

∣

∣

∣

∣

∣

H̄{x+ tψ(x)}
H̄(x)

− e−t
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ t

0

ψ{x+ sψ(x)} − ψ(x)

ψ{x+ sψ(x)} ds

∣

∣

∣

∣

∣

exp

[

−t ∧
∫ t

0

ψ(x)

ψ{x+ sψ(x)} ds

]

.

Denote
∫ t

0

|ψ{x+ sψ(x)} − ψ(x)|
ψ{x+ sψ(x)} ds = I(x, t)

and

exp

[

−t ∧
∫ t

0

ψ(x)

ψ{x+ sψ(x)} ds

]

= E(x, t) .
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Case ψ increasing. If ψ is nondecreasing, then ψ′ ≥ 0 and ψ′ is decreasing.
Thus, for any δ > 0 and large enough x, ψ′(x) ≤ δ and

∫ t

0

ψ(x)

ψ{x+ sψ(x)} ds ≥
∫ t

0

ψ(x)

ψ(x) + sψ′(x)ψ(x)
ds

=
∫ t

0

ds

1 + sψ′(x)
≥
∫ t

0

ds

1 + sδ
=

1

δ
log(1 + δt) .

This implies that E(x, t) ≤ (1+δt)−1/δ for large enough x. Since ψ is increasing
and ψ′ is decreasing, we also have

I(x, t) ≤ ψ′(x)
∫ t

0

sψ(x)

ψ{x+ sψ(x)} ds ≤ ψ′(x)
t2

2
.

Thus, for any δ > 0, I(x, t)E(x, t) = O(|ψ′(x)|t2(1 + δt)−1/δ).

Case ψ decreasing. If ψ is monotone non increasing, then

∫ t

0

ψ(x)

ψ{x+ sψ(x)} ds ≥ t

and E(x, t) ≤ e−t. Also, since |ψ′| is decreasing,

I(x, t) ≤ |ψ′(x)|
∫ t

0

sψ(x)

ψ{x+ sψ(x)} ds .

If ψ has a positive limit at infinity, then I(x, t) = O(ψ′(x)t2). Otherwise,
limx→∞ ψ(x) = 0 and (9) holds. This yields, for large enough x,

I(x, t) ≤ |ψ′(x)|
∫ t

0

sψ(x)

ψ{x+ sψ(x)} ds

≤ c1|ψ′(x)|
∫ t

0
sec2sψ(x) ds ≤ c1|ψ′(x)|

∫ t

0
ses/2 ds .

Thus I(x, t) = O(|ψ′(x)|t2et/2) and I(x, t)E(x, t) = O(|ψ′(x)|t2e−t/2). This
concludes the proof. 2

Proof of Lemma 16: Write

∣

∣

∣

∣

∣

H̄{x+ tψ(x)}
H̄(x)

− e−t
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

H̄{x+ tψ(x)}
H̄{x+ tψH(x)} − 1

∣

∣

∣

∣

∣

e−t (A.7)

+
H̄{x+ tψ(x)}
H̄{x+ tψH(x)}

∣

∣

∣

∣

∣

H̄{x+ tψH(x)}
H̄(x)

− e−t
∣

∣

∣

∣

∣

, (A.8)

H̄{x+ tψ(x)}
H̄{x+ tψH(x)} = exp

[

−
∫ tψ(x)/ψH (x)

t

ψH(x)

ψ{x+ sψH(x)} ds

]

.
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If ψH is increasing, then

∣

∣

∣

∣

∣

∫ tψ(x)/ψH (x)

t

ψH(x)

ψH{x+ sψH(x)} ds

∣

∣

∣

∣

∣

≤ tξ(x) , (A.9)

exp

[

−
∫ tψ(x)/ψH (x)

t

ψH(x)

ψH{x+ sψH(x)} ds

]

≤ etξ(x) . (A.10)

Since ξ(x) → 0, gathering (A.9) and (A.10) yields, for large enough x,

∣

∣

∣

∣

∣

H̄{x+ tψ(x)}
H̄{x+ tψH(x)} − 1

∣

∣

∣

∣

∣

e−t ≤ tξ(x)e−t/2 . (A.11)

If ψH is decreasing and limx→∞ ψH(x) > 0, the ratio ψH(x)/ψH{x+ sψ(x)} is
bounded above and away from 0, so that

∣

∣

∣

∣

∣

∫ tψ(x)/ψH (x)

t

ψH(x)

ψ{x+ sψH(x)} ds

∣

∣

∣

∣

∣

≤ Ctξ(x),

and (A.11) still holds.

If ψH is decreasing and limx→∞ ψH(x) = 0, then applying (9) gives that the
left-hand side of the previous equation is bounded by Ctξ(x) exp{2c2ψ(x)t}.
Thus, for large enough x, (A.11) still holds.

This provides a bound for the right-hand side of (A.7). The term (A.8) is
bounded by Lemma 16. 2

Proof of (10): We proceed as in the proof of Lemma 7.

H̄{x+ tψ(x)}
H̄(x)

= exp

{

−
∫ [x+tψ(x)]

[x]

ds

ψ(s)

}

= exp

[

−
∫ ([x+tψ(x)]−[x])/ψ(x)

0

ψ(x)

ψ([x] + sψ(x))
ds

]

,

∫ ([x+tψ(x)]−[x])/ψ(x)

0

ψ(x)

ψ([x] + sψ(x))
ds− t

=
∫ ([x+tψ(x)]−[x])/ψ(x)

0

ψ(x) − ψ([x] + sψ(x))

ψ([x] + sψ(x))
ds+

[x+ tψ(x)] − [x]

ψ(x)
− t .

By concavity of ψ,

|ψ(x) − ψ([x] + sψ(x))|
ψ([x] + sψ(x))

= O((s ∨ 1)ψ′([x])) .
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By definition of the integral part,

t− 1/ψ(x) ≤ [x+ tψ(x)] − [x]

ψ(x)
≤ t+ 1/ψ(x) .

The previous bounds yield

∣

∣

∣

∣

∣

∫ ([x+tψ(x)]−[x])/ψ(x)

0

ψ(x)

ψ([x] + sψ(x))
ds− t

∣

∣

∣

∣

∣

= O
(

(t ∨ 1)2ψ′([x]) + 1/ψ(x)
)

.

We must also give a lower bound for the integral. Since ψ is concave increasing,
ψ([x] + sψ(x)) ≤ ψ(x) + sψ′(x)ψ(x), hence

∫ ([x+tψ(x)]−[x])/ψ(x)

0

ψ(x)

ψ([x] + sψ(x))
ds ≥

∫ t−1/ψ(x)

0

ds

1 + sψ′(x)

=
1

ψ′(x)
log(1 + tψ′(x) − ψ′(x)/ψ(x)) .

Since ψ′(x) → 0 and ψ(x) → ∞, the arguments of the proof of Lemma 7 can
be applied again to conclude the proof of (10). 2
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Fig. A.1. Median, 2.5% and 97.5% quantiles of the estimation error
θ̂n,i(x, y) − θ(x, y) (i = 1, 2, 3) as a function of the estimated probability. Gaussian
distribution. First row: ρ = .9; second row: ρ = .5.
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Fig. A.2. Median, 2.5% and 97.5% quantiles of the estimation error
θ̂n,i(x, y) − θ(x, y) (i = 1, 2, 3) as a function of the estimated probability. Kotz dis-
tribution, β = 1. First row: ρ = .9; second row: ρ = .5.
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Fig. A.3. Median, 2.5% and 97.5% quantiles of the estimation error
θ̂n,i(x, y) − θ(x, y) (i = 1, 2, 3) as a function of the estimated probability. Kotz dis-
tribution, β = 4. First row: ρ = .9; second row: ρ = .5.
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Fig. A.4. Median, 2.5% and 97.5% quantiles of the estimation error
θ̂n,i(x, y) − θ(x, y) (i = 1, 2, 3) as a function of the estimated probability. Lognor
distribution. First row: ρ = .9; second row: ρ = .5.
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Fig. A.5. Median (solid line), 2.5% and 97.5% quantiles (dashed lines) of the es-
timated conditional quantile function ŷn,i (i = 1, 2) defined in (14) and (15) and
theoretical conditional quantile function y (dotted line) as a function of the probabil-
ity θ. First row: Normal distribution; second row: Kotz distribution, β = 4; Lognor
distribution. For each of them ρ = .9.
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