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Abstract: In this paper, a nonlinear receding-horizon observer is proposed for
state reconstruction in batch terpolymerization reactors. The related investiga-
tions show that the state reconstruction problem may be quite ill conditioned in
the sense that different states may exist that lead to roughly the same output. It
seems however that when constrained receding-horizon estimation is used together
with a dedicated crossing singularity heuristic, state reconstruction is possible even
in presence of measurement noise and up-to 10% error on the r.h.s of the ODE’s
describing the system’s dynamics. The efficiency and the real-time implementabil-
ity of the overall scheme is shown through illustrative scenarios including both
simulation and experimental validation.
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1 INTRODUCTION

Multimonomer systems are usually used to produce poly-
meric materials with suitable final properties. Terpoly-
merization systems usually allow producing high perfor-
mance materials. In order to control the final polymer
properties, such as the polymer composition, it is of high
importance to model and monitor such processes. In this
work, we will be interested in estimating the polymer
composition in emulsion terpolymerization. The hetero-
geneity of emulsion polymerizations makes it difficult to
monitor the concentration of monomer online especially
with the number of monomers involved in the reaction.
Urretabizkain et al. (1994) used an online gas chromator-
graphe to measure the residual amounts of monomer in
emulsion terpolymerization. The authors outlined some
difficulties due to the process heterogeneity and inaccu-
racy of results in the presence of monomer droplets.

Different estimation methods have been used to mon-

itor polymerization processes. The most widely used
method is still the Extended Kalman filter (see for in-
stance Dimitrators et al. (1989), Kozub and Macgregor
(1992), Wang et al. (1995), Scali et al. (1997), Kiparis-
sides et al. (2002)) but different applications of nonlin-
ear techniques can nowadays be found (Hammouri et al.
(1999), Dootingh et al. (1992), Soroush (1997), Tatiraju
et al. (1999) and Alvarez and Lopez (1999)). Recently,
sliding-mode observers were used by BenAmor et al.
(2004) and Aguilar-Lopez and Maya-Yescas (2005) to es-
timate the monomer concentration and average molecu-
lar weight in solution homopolymerization.

While several estimators have been proposed for
polymerization processes, as long as emulsion terpoly-
merization is concerned, only two applications could
be found in the literature. Buruaga et al. (2000)
constructed an open loop observer to estimate the
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polymer composition using calorimetric measurements
combined to the process model. The authors outlined
however that the polymerization rate of each monomer
is not observable from the overall heat of the reaction.
Othman et al. (2001) constructed a closed loop high
gain observer to estimate the polymer composition
and showed by simulation and experimentally that
the system can be observable if the total amounts of
monomers are measured. However, because of the model
complexity (see section 2), the design of such a high
gain observer and the tuning its gain in order to cope
with the system constraints remains a quite involved
task and the observer so obtained is highly dependent
on the structure of the model.

In this work, a receding horizon observer is used
to estimate the individual amounts of monomer in the
reactor as well as the number of moles of radicals in the
polymer (µ) using the overall monomer conversion that
can be obtained by calorimetry. The paper is organized
as follows: First, the process model is presented (section
2). Then, a brief presentation of the receding-horizon ob-
server algorithm is proposed (section 3) with a discussion
on some numerical issues and the associated solutions.
In particular a singularity-cross oriented heuristic is
proposed and its efficiency is shown. The observer is
then applied to the terpolymerization process (section
4). First the robustness of the proposed observer against
model uncertainties is shown by simulating up to 10%
random error on the r.h.s of the system’s equation in
the presence of measurement noise (section 4.1). Then
the observer is validated experimentally (section 4.2)
during the emulsion terpolymerization of butyl acrylate,
methyl methacrylate and vinyl acetate. In all cases, the
real-time implementability of the proposed observer is
assessed under 30 seconds sampling time assumption.

2 Modelling

Assuming that monomers are not soluble in the aqueous
phase and that the reaction takes place mainly in the
polymer particles, the material balances of monomers are
given by:

Ṅi = Qi −RPi i = 1, 2, 3 (1)

The reaction rate in the polymer particles RPi is pro-
portional to the concentration of monomer in the poly-
mer particles ([MP

i ]) and the number of moles of radicals
in the polymer particles (µ):

RPi = µ[MP
i ](kp1iP

P
1 + kp2iP

P
2 + kp3iP

P
3 ) (2)

The time averaged probabilities (PP
i ) that an active

chain be of ultimate unit of type i are defined by:

PP
1 =

α

α + β + γ

PP
2 =

β

α + β + γ
PP

3 = 1− PP
1 − PP

2

(3)

where

α =
[MP

1 ](kp21kp31[MP
1 ] + kp21kp32[MP

2 ] + kp31kp23[MP
3 ])

β =
[MP

2 ](kp12kp31[MP
1 ] + kp12kp32[MP

2 ] + kp13kp32[MP
3 ])

γ =
[MP

3 ](kp13kp21[MP
1 ] + kp21kp23[MP

2 ] + kp13kp23[MP
3 ])

In emulsion polymerization, it is well known that the
reaction can be divided into three intervals. In interval
I, the polymer particles are produced. Modelling of this
interval allows the calculation of the particle size distri-
bution and the average number of radicals per particle
which allows to calculate the total number of moles of
radicals in the polymer particles (µ) in equation 2. This
part of the model will not be considered since it adds a
lot of complexity to the process model besides the fact
that it remains very sensitive to impurities. µ will there-
fore be considered as a parameter in the process model to
be estimated without modelling. It is important to out-
line that µ can undergo important changes during the
reaction since it is affected by the gel effect phenomena.

In interval II, the particle number is supposed to be
constant. Polymer particles are saturated with monomer
and the excess of monomer is stored in the monomer
droplets. During interval III, monomer droplets disap-
pear and all the residual monomer is supposed to be in
the polymer particles. Therefore, the concentration of
monomer in the polymer particles can be calculated by
the following system:

[MP
i ] =



(1− φp
p)Ni∑

j

NjMWj

ρj

, II

Ni∑
j MWj(

NT
j −Nj

ρj,h
+

Nj

ρj
)
, III

(4)

The condition for the existence of monomer droplets
and therefore for determining if the reaction is in interval
II, is governed by the following equation:

N1δ1 + N2δ2 + N3δ3 −
(1− φp

p)
φp

p
σ > 0 (5)

where

δi = MWi(
1
ρi

+
(1− φp

p)
ρi,hφp

p
) , i = 1, 2, 3 (6)
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and

σ =
3∑

j=1

MWjN
T
j

ρj , h
(7)

The overall monomer conversion that can be measured
easily online by calorimetry is defined by:

y =
∑3

i=1 MWi(NT
i −Ni)∑3

j=1 MWjNT
j

(8)

Parameters used for the experimental validation of the
model are given in table 1 where kpij = kpii/rij .

Parameter Value Unit
φp

p 0.4
MW1 128.2 (g/mol)
MW2 100.12 (g/mol)
MW3 86.09 (g/mol)

ρ1 0.89 (g/cm3)
ρ2 0.94 (g/cm3)
ρ3 0.93 (g/cm3)

ρ1,h 1.08 (g/cm3)
ρ2,h 1.15 (g/cm3)
ρ3,h 1.17 (g/cm3)
kp11 4.5× 105 (cm3/mol/s)
kp22 1.28× 106 (cm3/mol/s)
kp33 4.26× 106 (cm3/mol/s)
r12 0.355
r21 1.98
r13 6.635
r31 0.037
r23 22.21
r32 0.07

Table 1: Parameter values of the terpolymerization of
BuA/MMA/VAc (used in the experimental validation)

The recipe used for the experimental validation of the
observer is given by table 2 Othman et al. (2001).

Component Charge (g)
Butyl acrylate 300

Methyl methacrylate 300
Vinyl acetate 60

Sodium dioctyl sulfosuccinate 3
Potassium persulfate 2

Water 2380

Table 2: Recipe of the terpolymerization of
BuA/MMA/VAc

3 The Nonlinear Receding-Horizon Observer

Consider a nonlinear system described by the following
set of ODE’s

ẋ = f(x, u) ; y = h(x) (9)

where x ∈ Rn stands for the state vector, u ∈ Rnu a
vector of exogenous input and y ∈ Rny is the vector
of measured outputs. The state estimation problem
amounts to use the output measurement in order to
retrieve the value of the state vector x.

In this paper, it is assumed that some sampling
period τs > 0 is used to update the computations
leading to sampling instants tk = kτs with k ∈ N. It is
also assumed that the measures are acquired using the
same sampling rate.

In the remainder of the paper, the notation

X(k+)(i, x, u(·)) ; i ≥ k

denotes the forward solution of (9) at instant iτs starting
from state x at instant kτs under the input profile u(·).
Similarly, the notation

X(k−)(i, x, u(·)) ; i ≤ k

is used for backward integration.

Receding-Horizon observers (Michalska and Mayne,
1995) produce an estimation x̂(tk) of the true state
x(tk) by minimizing the output prediction error over
some past time horizon, namely for all k ≥ Nmin

p , the
estimation x̂(tk) is given by:

x̂(tk) = arg min
ξ∈X (tk)

J(tk, ξ, y(·), u(·)) :=

k∑
i=k−Np(k)

‖y(iτs)− h(X(k−)(i, ξ, u(·)))‖2Qi
(10)

where

X The estimation horizon Np(k) is chosen such that:

Np(k) =
{

Nmax
p if k ≥ Nmax

p

k if Nmin
p ≤ k ≤ Nmax

p
(11)

Namely, no optimization-based estimation is made
before at least Nmin

p measurements are available.
More precisely, for k < Nmin

p , an open-loop model
based updating scheme is used according to

x̂(tk) = X((k−1)+)(k, x̂(tk−1), u(·)) (12)

Note that the horizon length does not exceed Nmax
p

since too early measurement may probably be irrel-
evant due to modelling errors and/or the occurrence
of exogenous unmeasured disturbances .
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X The subset X (tk) ⊂ Rn is the subset of admissible
values of the state at instant tk. This enables to
handle constraints on the state that is of great in-
terest in bio-processes state estimation. Typically,
the state components Ni as well as µ must remain
positive and in the particular case of the batch re-
actor under interest, their values cannot exceed the
initial values NT

i plus an amount that may reflect
an upper bound on the initial estimation error.

X Qi are positive definite weighting matrices that may
depend on i either to induce a forgetting behavior
or to enhance local minima avoidance capacity (see
section 3.1 hereafter)

Remark 1. Note that quite often, receding-horizon state
estimation is formulated as an optimization problem in
the unknown z(tk) := x̂(tk −Npτs). The estimated state
at instant tk is then obtained by forward integration of
the system model:

x̂(tk) = X(k−Np)+(k, z(tk), u(·))

This lead to computation in which only forward integra-
tions are used. As a matter of fact, in the absence of
modelling errors, the two estimation schemes are equiv-
alent. However, when the model used by the observer
differs from the real one, the backward-forward scheme
adopted in this paper is more robust. ♠
The optimization problem (10) is generally a constrained
non convex and its solution has to be obtained through
iterative schemes. Considering the discontinuities in
the r.h.s of the terpolymerization process model, the
Downhill simplex algorithm (Press et al., 1992) is used
in this paper since it requires no gradient computations.
The modified Direction Set Powell’s algorithm (Press
et al., 1992) that shares this nice property has also been
tested with almost similar results.

Regardless the iterative scheme being used, its concrete
use for on-line state estimation purpose involves the
definition of a maximum number of function evaluations,
say NFE ∈ N together with a stopping threshold on
the cost function variations ε > 0. Therefore, receding-
horizon state estimation can be shortly denoted as
follows:

x̂(tk) = INF E
ε

(
tk, x̂+(tk−1), y(·), u(·)

)
(13)

where the r.h.s of (13) is the value of the decision variable
ξ that gives the best achieved value of the cost function
(10) by the iterative process under the upper bound NFE

on the number of function evaluations when using the
stopping threshold ε and starting with the initial guess
x+(tk−1) that is computed using the last state estimate
by one step forward integration, namely

x̂+(tk) = X(k−1)+(k, x̂(tk−1), y(·), u(·)) (14)

that is used as an initial guess in the iterative process (13)
(the downhill simplex, powell’s method or whatsoever).

3.1 Numerically indistinguishable states / local
minima

When looking for a solution to the optimization prob-
lem (10), the iterative process (13) may encounter two
problems:

X The presence of numerically indistinguishable states
This arises when at some instant tk, the iteration
reaches some state ξ 6= x(tk) for which

J(tk, ξ, y(·), u(·)) ≈ J(tk, x(tk), y(·), u(·)) ≈ 0

where approximate equality are related to the
threshold ε that is used in (13). Note that the
possibility to face this situation is related to the
fundamental issue of observability and cannot be
avoided by any algorithmic tricks. However, the use
of state constraints may isolate indistinguishable
states that are physically irrelevant. This is one of
the advantages in using optimization based observer.

X The presence of local minima that does not neces-
sarily correspond to a low value of the cost function.

This second problem is an unavoidable issue in noncon-
vex optimization that is generally afforded by multiple
starting points approach when no other characterization
of the global minimum is available. Fortunately, when
dealing with state estimation problem, the global mini-
mum x(tk) one looks for when trying to solve the opti-
mization problem (10) can be strongly characterized by
the following property:

x(tk) is a global minimum of (10) for any
sequence of positive definite weighting matrices
Qi.

This makes the state estimation problem a very particular
optimization problem since the global minimum one is
looking for is THE global minimum of an infinite number
of known functions. A subset of this set of functions
sharing x(tk) as global minimum can be generated by
choosing

Qi = γi · qi · Iny s.t qi > 0 and
∑

i

qi = 1 (15)

where γ ∈]0, 1[ is the forgetting factor while Iny
stands

for the identity matrix in Rny×ny .
Note that since the vector of weights

q̄ :=
(
q1 q2 . . .

)T

is involved in the definition of the cost function (10), the
iterative process (13) can be worth written as follows

x̂(tk) = INF E
ε,q̄

(
tk, x̂+(tk−1), y(·), u(·)

)
(16)

The idea is then to notice that a local minimum for
(10) in which some weighting vector q̄(1) is used may
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probably not remain a local minimum for another
randomly chosen value of q̄(2) since it seems reasonable
to admit that only the true state x(tk) is a singular
point for all possible values of the weighting vector q̄.

Following this intuition, the one trials updating
rule (16) is replaced by the following multiple trials
updating rule:

q̄ ← 1
Np

(
1 1 . . .

)T

xguess ← x̂+(tk−1) [see (14)]
for (i = 1 : Ntrials)

xguess ← INF E
ε,q̄

(
tk, xguess, y(·), u(·)

)
Generate randomly new q̄ satisfying (15).

end
x̂(tk)← xguess

Note that when Ntrial = 1, the last multiple trials up-
dating rule gives the classical iteration (13). Note also
that the above updating rule takes x̂(tk−1), y(·) and u(·)
as inputs and delivers the updated estimation x̂(tk) as
output yielding a dynamic state observer.

4 Application to terpolymerization processes

In this section, the receding horizon observer strategy
proposed in section 3 is used to reconstruct the state
of the batch terpolymerization process. In this section,
both simulation and experimental results are proposed.
Indeed:

X Simulations enable various model uncertainties as
well as measurement noise to be tested and the be-
havior of the proposed state observer can be inves-
tigated.

X Experimental results allow to check the quality of
the pair (model+observer) in the sense that there
is no more a true model to which modeling error
assumptions are associated, but we only have true
measurements and an estimation scheme based on
the system model. This validation is the ultimate
one in the sense that it involves both the quality
of the model and the associated estimation scheme
and answers the only interesting question on whether
the proposed solution (model+observer) enables to
reconstruct the state of the system as well as the
value of µ despite its unknown dynamic.

In order to apply the receding-horizon estimation scheme
proposed in the preceding section to reconstruct the
value of N := (N1, N2, N3) and µ, a constant evolution of
µ is assumed (over the prediction horizon) and the gen-
eral state equation (9) is built up with the state vector
being defined by :

x :=
(
N1 N2 N3 µ

)
∈ R4

+ ; µ̇ = 0

Recall however that despite this constant behavior dur-
ing the prediction horizon, the resulted closed-loop esti-
mation of µ may show dynamic behavior thanks to the
moving horizon technique (see figures 6 and 7).
Considering global relative uncertainties d1, d2 and d3,
the following model is obtained to be used by the ob-
server:

Ṅ =

1 + d1 0 0
0 1 + d2 0
0 0 1 + d3

 · f(x, u) (17)

µ̇ = 0 (18)
y = (1 + ν) · h(x) (19)

Namely, relative uncertainties are introduced directly on
the r.h.s of the system ODE’s through the variables di’s.
This can gather all sources of model discrepancy. On the
other hand measurement noises are introduced through
the variable ν used in the measurement equation (19).

4.1 Simulation results

This section successively illustrates the following points:

♦ The unconstrained state estimation problem
of the terpolymerization process may be ill-
conditioned. This is shown on figure 1 where it
can be noticed that roughly the same output can be
obtained for two quite different state vectors.
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Figure 1: Illustration of an ill conditioned estima-
tion problem. Two quite different initial values of
(N1, N2, N3) lead to almost the same output.

♦ The Receding-Horizon state estimation is ro-
bust against measurement noise and model
uncertainties
In order to check the robustness of the state estima-
tion scheme, the values of the di’s and ν are updated
every sampling period from a uniform random dis-
tribution according to

di(k) = dmax · ri(k) (20)
ν(k) = νmax · rν(k) (21)
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where the ri(k)’s and ν(k) are chosen randomly in
[0, 1]. The results are shown on figures 2 and 3 (re-
spectively without and in the presence of measure-
ment noises) where up to 10% relative errors are
introduced on the r.h.s of the system’s model.
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Figure 2: Observer behavior under model uncertainty
given by (17)-(21) with dmax = 10% and no measurement
noise (νmax = 0). The maximal observation horizon is
Nmax

p = 10 and the number of trials for the singularity
crossing scheme is Ntrials = 4. Initial state of the observer
is x̂(0) = diag(0.8, 1.3, 1.3) · x(0) and µobs = 0.8µmodel.
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Figure 3: Observer behavior under model uncertainty
given by (17)-(21) with dmax = 10% and in the presence
of measurement noise (νmax = 0.01). The maximal ob-
servation horizon is Nmax

p = 15 and the number of trials
for the singularity crossing scheme is Ntrials = 4. Initial
state of the observer is x̂(0) = diag(0.8, 1.3, 1.3) · x(0)
and µobs = 0.8µmodel. Note that concerning the output,
only the true output and the estimated one are shown,
measurement noise is not presented. This scenario uses
a tolerance ε = 10−8 for the optimization subroutine.

♦ In order to show the benefit from the singularity
crossing mechanism introduced in section 3.1, sim-

ulations with Ntrials = 1 and Ntrials = 4 are com-
pared. The results are shown on Figure 4. The
scenario being used is the same as the one depicted
on figure 3.
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Figure 4: Comparison between the observer behavior
when Ntrials = 1 and Ntrials = 4 under the scenario de-
picted on figure 3. Note how the singularity cross mech-
anism enables to avoid drops in the estimation quality
when the observer encounters a singular situation. This
scenario uses a tolerance ε = 10−8 for the optimization
subroutine.

♦ The proposed estimation scheme is real-time
implementable
In order to assess the real-time implementability of
the proposed scheme, the computations that lead to
the results of figure 3 are given on Figure 5. Note
that an explicit upper bound is imposed on the num-
ber of function evaluations. More precisely, the in-
ternal loop of the optimizer stops as soon as the
computation time exceeds the sampling period (30
seconds). Note that all the results shown above use
a tolerance threshold ε = 10−8 for the optimization
subroutine. It is shown in the following section il-
lustrating the experimental validation results that
this precision is unnecessarily high and quite simi-
lar results can be obtained using a lower precision
(for instance ε = 10−3) while reducing dramatically
the computation time (see figures 6 and 7 hereafter).
This is especially true under the multiple trials tech-
nique proposed above.

4.2 Experimental validation

In this section, the ability of the proposed state observer
to reconstruct the individual values of N1, N2 and N3

as well as the unmeasured and dynamically unmodeled
variable µ is shown. Note that in order to experimentally
measure the values of the Ni’s, Samples are withdrawn
during the reaction and an inhibitor is added to stop
the reaction. The latex is then diluted in a solvent

6



0 20 40 60 80 100
0

5

10

15

20

25

30

35

Computation time (in seconds)

Sampling Periods

Figure 5: Computation times needed to achieve the state
estimation depicted on figure 3. Note that an explicit up-
per bound has been imposed in the internal loop of the
optimizer in order to deliver the best estimation that can
be obtained within the available computation time de-
fined by the sampling period (30 seconds). This scenario
uses a tolerance ε = 10−8 for the optimization subrou-
tine.

and injected in a gas chromatograph to measure the
residual amount of monomer. By doing so, the true
values of the Ni can be obtained. This has been done
only during the 80 first minutes of the Batch where
only 9 samples have been analyzed. The dots (*) on
figures 6 and 7 indicate the corresponding measurements.

These figures clearly show the efficiency of the proposed
pair (model,observer) in retrieving with an astonishing
precision the values of the Ni’s despite the unmodelled
dynamic of µ. The rather short computation times (less
than 5 seconds compared to the computation times
obtained under high precision tolerance) underlines how
real-time implementability depends on such parameters
that are difficult to set a priori. Finally, it is worth un-
derlying that the times needed to perform Ntrials = 10
(figure 6) is much less than 10 times the mean compu-
tation time for Ntrials = 1. This strengthens that the
proposed singularity cross technique is different from
the multiple initial guess technique in the sense that
each trials starts from the best result achieved from the
previous trial, only the weighting parameter vector q̄ is
randomly modified.

5 Conclusion & future work

In this paper, it is shown that nonlinear constrained re-
ceding horizon observer can be efficiently used to esti-
mate the individual number of monomers as well as the
dynamically unmodelled number of moles of radicals dur-
ing a batch terpolymerization process. Simulations show
that the proposed scheme presents nice robustness prop-
erties against model discrepancy while experimental val-
idation demonstrates its practical effectiveness and real-

time implementability. Since the scheme can be used
in semi-batch context, future work concerns the use of
the proposed scheme in the design of an output feedback
control of the quality of the resulting product.
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Figure 6: Experimental validation with Ntrials = 10 and tolerance threshold ε = 10−3 for the optimization sub-
routine. Note how the dynamic behavior of µ is recovered despite the constant behavior assumption used in the
receding horizon observer model. The dashed lines show what would be obtained if an open-loop simulator is used
to obtain an on-line estimation of the Ni’s. Note the excellent matching between the experimentally measured
values of the Ni’s and those recovered by the observer. The same scenario is depicted on figure 7 where Ntrials = 1
is used.
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Figure 7: Results under the same experimental validation scenario as figure 6 with Ntrials = 1 and tolerance
threshold ε = 10−3. Note the slight drop in the estimation quality (particularly on N2) compared to figure 6 where
the singularity cross technique is used.
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