
Periodicity Based Decidable Classes

in a First Order Timed Logic

D. Beauquier 2,1 A. Slissenko 2,3

Laboratory for Algorithmics, Complexity and Logic, CNRS FRE 2673
University Paris-12, France

Abstract

We describe a decidable class of formulas in a first order timed logic that covers a
good amount of properties of real-time distributed systems. Earlier we described a
decidable class based on some finiteness properties, and sketched a decidable class in
a weaker logic that captures periodicity properties, though without complete proof.
The new feature of the decidable class presented here is to be able to treat parametric
properties, in particular, properties that concern an arbitrary number of processes as
compared to the just mentioned class that could express only properties for a fixed,
explicitly given number of processes. As before the properties may use non-trivial
arithmetics. We also state another important feature of the class: if a verification
formula is not true then our algorithm gives a quantifier-free description of all its
counter-models of the complexity involved in the definition of the decidable class
and that is quite representative. In conclusion we discuss theoretical and practical
issues of the complexity and some open questions.

Key words: verification, decidability, first order timed logic, periodic models.
1991 MSC: 68Q60, 03B70

1 Introduction

There are two main approaches to treat the verification problem: model-
checking and theorem-proving.

1 Corresponding author.
2 Address: Dept. of Informatics, University Paris-12, 61 Av. du Gén. de Gaulle,
94010, Créteil, France. Tel: 33 (0)1 45 17 16 47 Fax: 33 (0)1 45 17 66 01.
E-mail: {beauquier,slissenko@univ-paris12.fr}
3 Member of St-Petersburg Institute for Informatics and Automation, Academy of
Sciences of Russia.

Preprint submitted to Elsevier Science 4 December 2005

The model-checking approach replaces the initial problem by its model that
can be very precise for systems with simple structure and without parameters,
but can be far enough from the realistic system and laborious to construct for
more complicated systems. The advantage of model-checking is that many
computer tools, that can treat the constructed models automatically, were
and are being developed. The model-checking approach uses temporal logics
(in fact, in a very limited way) to represent requirements and finite transition
systems to model the program to verify. Many known benchmark problems
like clock synchronization (even for a fixed number of clocks) [Tel00], 15.3, are
out of the scope of presently known model-checking methods.

The other pole of verification uses theorem provers that permit to represent
the verification problem in a direct way, but the proof search is mainly by
hand. There are many interesting efforts to automate the proof search but
nowadays they are not sufficient to facilitate the proof search essentially. The
existing general theorem provers do not have sufficiently developed tools, say,
to represent human heuristics in a user friendly way.

The approach we develop [BS02b] is aimed, in particular, to fill the gap be-
tween the efficiency of model-checking and the generality and expressibility of
theorem proving. This gap can be filled by decision algorithms for classes of
verification problems [BS02b,BS02a] and by convenient methods of represen-
tation of heuristics [Sli99,Sli03]. Here we present results on decidable classes.

From the point of view of logic the verification problem is a problem of proving
a formula of the form

(
ΦRuns → ΦRqrm

)
, where ΦRuns is a formula represent-

ing all the runs of the program to verify and ΦRqrm is a formula representing
the requirements of the functioning of the program. In fact, the formula ΦRuns

is often a conjunction of two parts: one part describes the runs themselves and
another part describes the environment of the program, for example the prop-
erties of input signals like delays of communications, reaction of controlled
devices etc.

Example 1. Suppose we have a distributed algorithm with N processes, and
property R(t, p) says that at moment t there is a certain event in the process
p. We can express that “an R-event cannot be absent in the same process for
a duration greater than d” by the formula

∀ p¬∃ t∃ t′
(

(t′ − t) > d ∧ ∀ τ ∈ [t, t′)¬R(τ, p)
)
. (1)

One may think that this event R as well as its absence must be communi-
cated to other processes to make some consent decisions (a distributed system
without interaction of processes is not a genuine distributed system). �

2

Describing runs of a program is a more laborious procedure, however, for a
given specification language this can be automated, at least to get some basic
complete representation of runs. The word “basic” refers to the fact that
though such a representation is complete, it could be not sufficiently good
for efficient practical application. To make such a representation practically
efficient one may add some simplifications for particular types of programs,
but again such simplifications can be automated, see [BCS00].

The both sets of models mentioned above, namely the models describing re-
quirements and the models describing runs, can be expressed in the logic that
we study — First Order Timed Logic (FOTL) with continuous time. We can
take also a logic with discrete time. However, there are many situations when
continuous time is more adequate, for example, controllers are often specified
using continuous time; one can find continuous time in network protocol spec-
ifications. In our intuitive arguments we often use continuous time. Moreover,
algorithmics of continuous time in our framework is simpler because of the
choice of underlying logical theories treating arithmetic operations over time.
The known worst-case complexity bounds for the theory of real addition are
exponentially better than that for the theory of integer addition (Presburger
arithmetic). For the theory of real addition and multiplication (Tarski algebra)
these bounds, that are the same as for the theory of real addition, are even ‘in-
finitely’ better than that for the theory of integer addition and multiplication
(formal arithmetics) that is undecidable.

What is also important is that quantifier elimination for the theory of real
addition is supported by tools that are rathe often efficient in practice; as
for Presburger arithmetic the existing tools are much less efficient – though
our experience shows that for the both theories the efficiency of tools can be
considerably improved for the verification. However, the method of the present
paper, even if we start with the theory of real addition for specifications, brings
us to Presburger arithmetics to solve the verification problem.

The decidable class of verification problems we consider here is based on the
following observations. The properties related to the functioning of a program
are usually finitely refutable, that is if there is a counter-model for such a prop-
erty then the contradiction is concentrated on a small piece of this counter-
model. In Example 1, if the property (1) is false then there is a process p0 and
2 time moments t0 and t1 such that

(
(t1 − t0) > d ∧ ∀ τ ∈ [t0, t1)¬R(τ, p0)

)
. (2)

So whatever be the behavior of the processes different from p0 or whatever

3

be the behavior of p0 at other time moments, the property will remain false.
Hence, the ‘core’ of the counter-model is concentrated on a piece of interpre-
tation of O(1) complexity.

A more involved finiteness property concerns the behavior of a program.
Roughly, the property we introduce is a far going generalization of the re-
ducibility of runs of finite automata: if such a run contains sufficiently many
states there is a shorter run with the same end states (pumping lemma). In
general this property is false even for rather simple timed systems, for example
for timed automata [AD94] as shown in [BS02a]. However, for practical sys-
tems we often have some kind of reducibility of runs. Here we introduce finite
satisfiability property that deals with runs that have a finite description in-
volving infinitely many time intervals as compared to [BS02b] where finiteness
was direct – a finite model was a model described by a finite set of intervals
such that on each interval the behavior of each function of the vocabulary
was represented by a fixed number of parameters. Here this property of finite
satisfiability says that if we take a run and some finite partial subrun in it then
we can extend it to a run consisting of ultimately periodic pieces (even more
general ones — ultimately repetitive pieces) with a controlled augmentation
of complexity. This is the case for our Example 1 above and Example 3 in
section 3.2 if to write directly a program that verifies the demanded proper-
ties. For these examples we cannot replace “ultimately periodic” by “finite”.
All these examples concern systems that change their states ‘frequently’, in
other words there is an upper bound on the length of time intervals where the
parameters defining the functions remain unchanged.

Combining the both properties, namely finite refutability and finite satisfia-
bility, we define a decidable class of implications

(
ΦRuns → ΦRqrm

)
, where

ΦRuns is finitely satisfiable and ΦRqrm is finitely refutable.

This class has also the following property of a high practical importance: if
the formula is false, the algorithm can extract a description of all its counter-
models (of a given complexity) as a quantifier-free formula. For requirements
with parameters, for example with abstract time constants, the algorithm gives
the constraints on parameters describing forbidden sets.

The structure of the paper is as follows. In section 2 we describe FOTL logic.
Section 3 contains the definitions of finiteness properties. In section 4 we prove
that the existence of an ultimately repetitive model or of chains of such mod-
els of a given complexity is decidable. This proof, though it concerns a more
general case than we studied in [BS99] is simpler than the proof that was
sketched in [BS99]. This decidability result gives a decidable class of verifica-
tion problems. In conclusion we discus s some open questions.

4

2 First Order Timed Logic (FOTL)

The starting idea of FOTL, if to think about decidable classes, is to choose
a decidable theory to treat arithmetics or other concrete mathematical func-
tions, and then extend it by abstract functions of time that are needed to
specify problems under consideration. In some way the theory must be mini-
mal to be sufficient for the purposes of good expressibility. For the purposes
of the present paper we can take as such an underlying theory of arithmetical
operations the theory of mixed real/integer addition with rational constants
and unary multiplications by rational numbers. This theory is known to be
decidable [Wei99].

Though we can consider either discrete time as non negative integers or con-
tinuous time as non negative reals, we take for concreteness the case of con-
tinuous time. Thus we can choose as an underlying arithmetical theory either
the theory of real addition or the mentioned above theory of mixed addition
that might be used to represent, for example, some particular properties not
related to time.

Notations 1

• R is the set of reals, Z the set of integers and N the set of natural numbers.

• T =df R≥0 time treated as a subsort of R.

• Bool = {true, false} are Boolean values; undef will be used for undefined.

2.1 Syntax and semantics of FOTL.

Syntax of FOTL.

The vocabulary W of a FOTL consists of a finite set of sorts, a finite set of
function symbols and a finite set of predicate symbols. A set of variables is
attributed to each sort. Some sorts are predefined, i. e. have fixed interpreta-
tions. Here the predefined sorts are the real numbers R and time T =df R≥0

treated as a subsort of R. The other sorts are finite. If a finite sort has a fixed
cardinality it can be considered as predefined. The interesting finite sorts are
those whose cardinality is not specified, for example the set of processes in a
distributed algorithm. Natural numbers with order or even with addition are
often useful to represent such sorts; for this reason we can add this predefined
sort.

Remark 1. Some kind of infinite discrete sorts can also be treated in the same

5

framework; such sorts appear, for example, in specifications of cryptographic
protocols. We will not introduce such sorts for technical simplicity. We will
neither admit boolean combinations of finite sorts (they can be eliminated —
see [BS02b]). �

Some functions and predicates are also predefined. As predefined constants
we take Bool for boolean values, undef and Q for rational numbers. Addition
+, subtraction − and scalar multiplications of reals by rational numbers are
predefined functions of the vocabulary. The predicates =, ≤, < over reals are
predefined predicates of W . The vocabulary contains = for all types of objects,
and the identity function id of the type T → T to represent the current time.

An abstract function (i. e. without any a priori fixed interpretation) is of the
type T × X → Z, and an abstract predicate is of the type T × X → Bool,
where X is a direct product of finite sorts and Z is an arbitrary sort. The
(sub)vocabulary of abstract functions and predicates will be denoted V .

A vocabulary W being fixed, the notion of term and that of formula over W
are defined in a usual way.

Semantics of FOTL.

A priori we impose no constraints on the admissible interpretations. Thus,
the notions of interpretation, model, satisfiability and validity are treated as
in first order predicate logic modulo the preinterpreted part of the vocabulary.
Thus M |= F , M 6|= F and |= F where M is an interpretation and F is
a formula, denote respectively that M is a model of F , M is a counter-model
of F and F is valid.

Remark that an interpretation f ∗ of a function f of type T ×X → Z describes
a family of temporal processes with value in Z parametrized by the elements
of the interpretation X ∗ of X .

Notations 2

• fx, where f : T ×X → Z, stands for λtf(t, x), i. e. for the function obtained
from f for a fixed x.

• σ− and σ+ denote respectively the left and the right ends of interval σ.

6

2.2 Vocabulary of algorithm versus verification vocabulary.

Though we do not consider here how to represent runs in FOTL (see [BS02b]
on this subject), the following Example 2 gives some hints on the relation of
vocabularies used to specify algorithms and vocabularies used for requirements
and verification.

Example 2. Consider the following algorithm in a self-explanatory notation
(in fact, it is a ‘basic’ Gurevich ASM [Gur95,Gur00]). This algorithm consists
of a set P of non interacting processes. Each process outputs time moments
at which it detects a non zero input.

Vocabulary of the algorithm.

Sorts: T , R, Bool, P.

Input functions: Inp : P → R, CT :→ T , (current time) a predefined function.

Output function: Out : P → T .

Proper internal function: Flag : P → Bool

Initial values (at time moment 0): Flag(p) = true, Inp(p) = 0, Out(p) = 0.

Repeat
ForAll p ∈ P InParallelDo
If Flag(p) ∧ Inp(p) = 0 Then Flag(p) := false ‖Out(p) := 0 EndIf ‖
If ¬Flag(p) ∧ Inp(p) 6= 0 Then Flag(p) := true ‖Out(p) := CT EndIf

EndForAll
EndRepeat

To describe the functioning of this algorithm in a FOTL we introduce timed
versions of functions. For a function f of a type P → Z we introduce a function
f ◦ of type T × P → Z. And in terms of these functions one can describe the
runs of the algorithm. �

2.3 Interpretations related to the verification problem.

Here we introduce specific classes of interpretations of a finite complexity.
These interpretations (representing particular runs) play a key role in our
application to verification problems.

7

In the verification setting we distinguish three kinds of dynamic functions:
external, internal and some auxiliary functions. The requirements should be
finally expressed in terms of inputs/outputs and parameters (that can be
treated as static inputs). Auxiliary functions may appear in the algorithm
that meets the requirements, or be imposed by the user to express directly
the user’s vision of the system. Internal functions are computed by the algo-
rithm and thus, strictly speaking, are described in a piecewise constant way.
However, their ‘physical’ interpretation may be of other nature. For example,
to represent a piece of linear function a · t + b on an interval σ we give two
values a and b for the function and two values σ− and σ+ for the interval. And
these values remain constant up to the moment when the algorithm calculates
the next piece. But the ‘physical’ interpretation of this function that may be
used in guards of the algorithm is not constant — however, it is described as
a term of the vocabulary.

We incorporate these considerations in the following system of notions.

We assume that for every abstract function f of type T ×X → Z there is fixed
a term Uf with values of type Z constructed only from constants, variables and
predefined functions. We may admit a fixed number of such terms Uf for a
given function (as we do in [BS02b]) — the reasoning remains the same with
minor technical changes.

The vocabulary of FOTL does not give many possibilities to construct Uf . We
will consider the following types of terms: first, those of the form z with z being
a variable for an abstract sort (representing abstract constants of the type Z)
if Z is an abstract sort, and second, the terms of the form ξ0t+ ξ1a+ z, where
ξ0, ξ1 ∈ Q and t, a and z are real variables whose role is defined as follows: t
is the time variable standing for the time argument, a is the left end of the
interval on which we consider our function, and z is a real parameter. We
cannot make ξ0 and ξ1 variables because the inclusion of this sort Q to our
vocabulary destroys the decidability we wish to ensure.

In a more general way we can permit that the parameters (ξ0, ξ1) can be
chosen from a finite set Ξf ⊂ Q2, see [BS99,BS02b], or add the second end of
the interval in the expression for Uf ; in the former case, Uf is a finite set of
terms instead of just one term.

We will write Uf also as Uf (t, a, z) to make explicit the parameters. Let ζ be
an interval. We say that fx is Uf -defined on ζ with parameter z0, if for t ∈ ζ
the value fx(t) is defined as fx(t) = Uf (t, ζ

−, z0) (we use Notations 2).

Define also Uid as t, UP (t) for P ∈ VPred as b, where b is a Boolean variable,

8

and thus, Uf is attributed to every f ∈ V .

A partition of T is a sequence π = (ζi)i∈N of non empty disjoint intervals
where: (1) N is a prefix of N, (2)

⋃
i∈N ζi = T , (3) ζ+

i = ζ−i+1 for
0 ≤ i ≤ |N | − 1, (4) ζ−0 = 0, ζ+

k = ∞ if N is finite and k is its last element.

In the logic introduced above one can describe rather directly (see [BS02b,BCS00])
the runs of basic Gurevich Abstract State Machines [BS02b] or while-programs,
transforming the latter into basic Abstract State Machines and applying the
transformation from [BS02b,BCS00].

3 Finiteness Properties

We consider a First Order Timed Logic (FOTL) which is an extension of the
theory of reals R with order, addition and unary multiplications by rationals
Q that are considered as constants in this theory. Such an extension is defined
by abstract sorts and abstract functions f of the type T × X → Z, where
T =df R≥0 is a sort of time treated as a subsort of R, and Z is either T or an
abstract sort. This abstract sort is finite but of unknown cardinality that can
be arbitrary. We assume that there can be also predefined finite sorts (thus of
known cardinality).

For technical simplicity we assume that in the type T ×X → Z of an abstract
function (more general case was considered in [BS02b])

X is one sort, not a direct product,
though this sort may depend on the function.

3.1 Repetitive interpretations

Let f be an abstract function of type T ×X → Z and X ∗ be an interpretation
of X . For x∗ ∈ X ∗ a (finite) partial interpretation ((F)PI) f ∗x∗ of fx∗ is
given by a (finite) set of disjoint intervals, that will be called the support of
the (F)PI, and by the values of parameters that are to be put into Uf to define
fx∗ on each such interval.

A FPI has complexity k if the number of intervals is k.

A partial interpretation (PI) of f is a subset Y∗ of X ∗ and a collection of
PIs, one for each fy∗ , y∗ ∈ Y∗.

9

Let X ∗ be an interpretation of X for each abstract sort X . A partial inter-
pretation (PI) of V is a collection of PIs, one for each abstract function.

A partial interpretation M′ of a function fx∗ is an extension of a partial
interpretation M of fx∗ if every interval of M is contained in an interval of
M′, and the restriction of M′ on intervals of M gives M. In a similar way
we define an extension of a PI of V or W .

In addition to usual finite interpretations we consider ultimately repetitive
interpretations and some more general finitely definable interpretations.

An interpretationM of fx∗ is ultimately repetitive with complexity c and period
h if it is a finite interpretation with complexity c or is a concatenation of a
finite interpretation of complexity c on some interval, say [0, h0), followed
by an interpretation of the following ‘almost periodic’ structure: any interval
Ii = [h0 + i ·h, h0 +(i+1) ·h), i ≥ 0, is partitioned into c consecutive intervals
ζi,j, 0 ≤ j ≤ (c − 1), with periodic structure of lengths: |ζi,j| = |ζi+1,j| and
such that on each ζi,j the function fx∗ is defined by Uf (t, ζ

−
i,j, zj) with the

same zj for a fixed j and for all i. The intervals ζi,j will be called defining
intervals of this ultimately repetitive interpretation.

Chains of Repetitive Interpretations.

A finite prefix of an ultimately repetitive interpretation is exact if its right end
coincides with the right end of one of its defining intervals Ii. We say that an
interpretation is a chain of ultimately repetitive interpretations with complexity
(L, c) if it is a concatenation of at most (L−1) finite exact prefixes of repetitive
interpretations and of one infinite ultimately repetitive interpretation, each of
complexity c.

Now the complexity of a chain of ultimately repetitive interpretations is a pair
of numbers (L, c). We are going to add more components to the complexity
measure.

Remark 2. The periods of repetitive interpretations that constitute a chain
may be different. However, in the context of decidability they must be given
modulo a same, maybe unknown, multiplicative parameter. For example, the
periods may be said to be 2 ·h, 17

5
·h etc. with h being an unknown parameter

(implicitly bound by existential quantifier). This information is presumed to
be extractable from the specifications under consideration, and may look as
“if there is a counter-model then it is a chain of repetitive interpretations with
periods ...”. A particular case is one unknown period.

10

Equivalence.

To reduce the complexity of interpretations in spite of a possibly large amount
of elements in abstract sorts we introduce a notio n of equivalence of inter-
pretations, and on its basis will generalize the complexity measures for PI of
individual fx∗ . Such an equivalence is defined over elements of the interpreta-
tion of abstract sorts for each f .

Without loss of generality, an abstract sort X is interpreted as an initial
segment X ∗ on natural numbers. Let Y∗ ⊂ X ∗. An equivalence E over Y∗

is interval-wise if its classes are intervals. An equivalence E over Y∗ is f -
compatible if y1Ey2 implies that the functions λtf∗(t, y∗1) and λtf∗(t, y∗2) are
equal, i. e. have the same support and have the same values on each interval
of the support.

Complexity of finite partial interpretations

A partial interpretation of f over Y∗ ⊂ X ∗ is a finite partial interpretation
(FPI) of complexity (m, c) if there is an interval-wise equivalence E on Y∗

with at most m classes which is f -compatible and such that each f ∗y∗ with
y∗ ∈ Y∗ has complexity c. (If a function depends on a direct product of
sorts,that we excluded, then we can use the same framework for rectangular-
wise equivalences like we do in [BS02b].)

A finite partial interpretation (FPI) of V of complexity (m, c) is a collection
of FPIs with complexity (m, c), one for each abstract function. A FPI of com-
plexity (m, c) will be called a (m, c)-PI.

Complexity of interpretations

An interpretation of f over X ∗ is a finite interpretation with complexity (m, c)
if there is an interval-wise equivalence E on X ∗ with at most m classes
X1, . . . , Xm such that

• E is f -compatible,

• for each class Xi, there is a partition of time T into c intervals ξi
1, . . . , ξ

i
c

such that for each x∗ ∈ Xi and t ∈ ξi
j we have f ∗x∗(t) = Uf (t, ξ

i−
j , zi

j).

An interpretation of f over X ∗ is ultimately repetitive with complexity (m, c)
if there is an interval-wise equivalence E on X ∗ with at most m classes which

11

is f -compatible and such that for each class, all the f ∗x∗ for x∗ in this class are
ultimately repetitive with complexity c, with the same partition of time and
the same parameters of Uf .

An interpretation of f over X ∗ is a chain of ultimately repetitive interpretations
with complexity (m,L, c) if there is an interval-wise equivalence E on X ∗ with
at most m classes, which is f -compatible and such that for any class, each
f ∗x∗ for x∗ in the class is a chain of ultimately repetitive interpretations with
complexity (L, c)), with the same partition of time and the same parameters
of Uf .

We will define the finiteness properties in terms of FPI contained in models
or counter-models M of the formulas under consideration.

As we are interested only in interpretations with a finite complexity we intro-
duce here the appropriate class of interpretations.

A PI with complexity K will be called a K-PI.

Notations 3.

• For a class C of interpretations we denote by C(K) the set of interpretations
in the class C with complexity K.

• UR is the class of ultimately repetitive interpretations.

• UR∗ is the class of chains of ultimately repetitive interpretations.

• UR∗(K, Λ), where Λ ⊂ Q>0 , is the set of interpretations from UR∗

with complexity K (of the form (m, L, c)) whose period lengths are from Λ.
(Recall that for a given ultimately repetitive interpretation f ∗x∗ , the period
length is fixed, so the set Λ specifies possible period lengths for interpretation
of different functions fx.)

• UR∗(Λ) is the union of all UR∗(K, Λ) over K.

3.2 Finite Refutability and Finite Satisfiability

Let α be a total computable function transforming a complexity value of the
form (m, c) into a complexity value of the form (m, c) or of the form (m, L, c).
Below, K is a complexity of the form (m, c).

A formula G is K-refutable if for every its counter-model M there exists a
K-FPI M′ such that M is an extension of M′ and any extension of M′ to a

12

total interpretation is a counter-model of G.

Speaking informally, finite refutability (with a given complexity) of a formula
means that any counter-model of this formula contains a piece of this com-
plexity that concentrates all the contradictions that determine the fact that
the interpretation is a counter-model; so any extension of this piece will be
again a counter-model.

Finite satisfiability, defined just below, is a notion that is, in some way, dual
to finite refutability. If in a model we take any piece of a given complexity
(imagine that this piece is defined on some amount of separated intervals)
then we can fill the gaps between defined parts by pieces of total complexity
that is bounded as function of the complexity of the given initial piece. This
bound is determined by the augmentation function.

A formula G is (C, K)-satisfiable with augmentation α if for every K-FPI M
extendable to a model of G there is an extension M′ of M from C(α(K)) that
is a model of G.

A formula G is C-satisfiable with augmentation α iff for every K, for every
K-FPI M extendable to a model of G, there is an extension M′ of M from
C(α(K)) that is a model of G.

Remark that we can speak not about finite refutability or satisfiability of
formulas but about that of sets of interpretations: for refutability about of a
set that corresponds to the set of counter-models, and for satisfiability about
a set that corresponds to the set of models.

Example 3. UR∗-satisfiable but not UR-satisfiable formula.
Consider the set of runs of the timed automaton in Figure 1. The state of
the automaton at time t is denoted by loc(t). The clocks are x and y. The
condition y = 2, {y} on the edge from s2 to s1 means that this transition is
fired when the clock y arrives at 2, and after that it is reset to 0. The other
conditions are understood in a similar way.

Fig. 1. An automaton whose some runs are chains of repetitive interpretations.

The set of runs of this automaton is described by some formula, but we will
speak about the set itself. Remark that we do not have abstract sorts of un-
known cardinality, so there is no need to care about equivalences over abstract
sorts. So we will measure complexity by one value c for UR and by two values
(L, c) for UR∗.

We claim that this set of runs is not UR-satisfiable by ultimately repetitive

13

interpretations. Suppose that it is UR-satisfiable with augmentation α for
some complexity c0, and α(c0) = N0. Take a model M such that at moment
t0 = N0 + 1

2
we have loc(t0) = s1, x(t0) = 1

2
and y(t0) = 0. The 1-PI with

support t0 can be extended to a model, but any such extension has complexity
at least N0 + 1.

In return, one can prove that this set of runs is UR∗-satisfiable with identical
augmentation (one can say ‘without augmentation’) and with Λ = {1, 2}.
(Recall that Λ is the set of possible values of the periods length.) �

Remark 3. In [BS02a] we used more general notions of finite refutability
and finite satisfiability where the involved models were considered up to some
equivalence over values of interpretation at fixed time moments. A timed au-
tomaton is reducible with a threshold L if any its run having more than L
changes of states can be replaced by an equivalent run having not more than
L changes. In [BS02a] we proved that the formula representing the runs of a
reducible timed automata is F -satisfiable, and the reducibility is decidable.
The notions of this paper can be also extended in this way.

Remark 4. Finite refutability of properties of functioning of practical real
time systems often (maybe almost always) takes place. For example, the safety
property is usually finitely refutable. As for liveness, too general formulations
can be not finitely refutable. For example, if we consider liveness for the mutual
exclusion with unbounded waiting time, it will not be finitely refutable. But
in any practical system the waiting time is always bounded. If we add such
a bound the liveness becomes finitely refutable. And this puts to the fore a
general principle: adding practical bounds we arrive at finiteness properties.
See [BS02b] for detailed examples.

Remark 5. Intuitively, finite satisfiability of an algorithm means that every
its run is reducible in the following sense: every interval of the run can be
replaced by a piece with the same end states and of bounded complexity with
respect to the class C under consideration. Many control algorithms possess
this property.

4 Decidable Class of the Verification Problem

Class V ERIF (Λ,K, α) of verification problems.

We will use the notation Ch=df UR∗(h · Λ) in our description of the class of
decidable verification problems . Here h ·Λ, where h is a real and Λ is a finite
set of rational numbers, is the set of reals of the form h · λ with λ ∈ Λ.

14

Denote by V ERIF (Λ,K, α) the class of FOTL-formulas of the form (Φ → Ψ)
such that for some h ∈ R>0 the formula Ψ is K-refutable and Φ is (Ch, K)-
satisfiable with augmentation α. So in our description of the decidable class
there is an unknown parameter h.

Recall that Uf is fixed.

Our main goal is to prove a theorem about decidability of the class V ERIF (Λ,K, α).
The following result by V. Weispfenning is needed not only for the proof but
also for a enhanced form of the decidability.

V. Weispfenning’s Quantifier Elimination Theorem.

In [Wei99] V. Weispfenning gives a quantifier elimination for theory L′′ with
mixed variables, namely variables over reals and variables over integers. The
vocabulary of L′′ consists of two just mentioned sorts: reals R and integers
Z ⊂ R, rational numbers Q as constants, (binary) addition, scalar (unary)
multiplication by rational numbers, integer part b c, congruences ≡n modulo
concrete natural numbers n. We consider the vocabulary without congruences
as the latter can be eliminated, see [Wei99]. The first part of the Corollary 3.4
of [Wei99] says the following:

Lemma 4 There is an algorithm assigning to a given L′′-formula Φ a quantifier-
free L′′-formula that is equivalent to Φ.

The theory L′′ is used to formulate our main result:

Theorem 5 Given a complexity K = (m, c), a computable augmentation
function α and a finite set Λ ⊂ Q>0, the validity of formulas from V ERIF (Λ,K, α)
is decidable. Moreover, if a formula of this class is false then its counter-models
of complexity α(K) can be described by a quantifier-free L′′-formula (see also
Theorem 9 for some precisions concerning the role of h in this description).

This Theorem 5 will be proved in this section, and the proof uses Lemma 4.

4.1 Some reductions

The initial observation to describe the decidable classes is the following one:

Proposition 6 Suppose that the existence of h and of a counter-model of
a fixed complexity K from Ch is decidable for closed FOTL-formulas. Given
K = (m, c), the validity of formulas from V ERIF (Λ,K, α) is decidable: such a

15

formula has a counter-model if and only if it has a counter-model of complexity
α(K) in Ch for some h.

Proof. Suppose that a formula F = (Φ → Ψ) from V ERIF (Λ,K, α) has
a counter model M. This M is a counter-model of Ψ and a model of Φ.
K-refutability of Ψ means that there is a restriction M1 of complexity K of
M whose all extensions are counter-models of Ψ. The premise Φ is (Ch, K)-
satisfiable with augmentation α for some h. Thus, M1 can be extended to a
model of Φ with complexity α(K). This extension remains a counter-model of
Ψ, and hence it is a counter-model of F . �

Thus the problem is reduced to the decidability of the existence of a (counter-
)model of a given complexity in our class of models, that can be stated as

Proposition 7 Given a finite set Λ of lengths of periods and a complexity
K, the existence of h and of a (counter-)model from Ch of complexity K is
decidable for FOTL-formulas.

4.2 Elimination of abstract functions

To avoid minor but tedious technical difficulties we will prove Proposition 7 for
UR-models. It will be clear that the case of UR∗-models needs only one more
index for existential variables in order to represent the number L of enchained
ultimately repetitive models.

Let G be a closed FOTL-formula and K be a bound on the complexity of
ultimately repetitive models. We wish to decide whether there exists such a
model of G with the given bound on complexity. We can decide it for finite
models — this was done in [BS02b]. If this procedure gives a negative answer
for finite models we try the procedure to check the existence of ultimately
repetitive models with a non trivial repetitive part.

Simplification of atomic formulas.

We make some trivial simplifications to make easier the presentation of the
decision procedure.

Predicates will be treated as functions with Boolean values.

We replace time variables by real variables.

By adding additional (quantified) variables we can reduce all atomic formulas
to arithmetic (in)equalities or to equalities of the forms respectively

16

• a1 · t1 + · · · + an · tn ω 0, where a1, . . . , an ∈ Q, t1, . . . , tn are real variables
and ω is an arithmetic relation (=, <, ≤, . . .);

• u = f(x, v) where f is an abstract function and x, u and v are variables or
constants of respective types.

The transformations to apply to achieve these forms are standard ones, for
example,

τ = a1 · η1 + · · ·+ am · ηm ↔

∀τ ′1 . . . ∀τ ′m (
∧m

i=1 τ ′i = ηi → τ = a1 · τ ′1 + · · ·+ am · τ ′m),

where ηi are terms, ti are variables and a1, . . . , an ∈ Q.

Description of partitions.

The given complexity K has the form (m, c), where m is the number of equiva-
lence classes of X , c is the number of time intervals to consider. These intervals
can be different for different functions and even for different classes of equiva-
lence of the same function. Concerning the lengths of repetitive parts we know
that they are of the form h · λ with λ ∈ Λ.

Remark 6. Our method works also for the case when all the lengths are
known rational numbers (corresponds to h = 1) — this case is simpler, but
the method does not work for the both possibilities, that is for the case when
some lengths are known and the others are rational multiples of h. Actually, in
this last case, our transformation leads to a formula which contains a product
of a real variable and an integer one. �

We describe the existence of a repetitive model with the mentioned complex-
ity, defined now by two numbers m (the number of equivalence classes) and c
(the number of intervals where the function has a fixed definition), in a theory
that extends a theory L′′ of mixed addition mentioned above. This existence
is described by a formula that states the existence of certain intervals and
partitions and expresses atomic formulas with abstract symbols in arithmeti-
cal terms. For technical simplicity we assume below that all the intervals we
consider are of the form [a, b) with a < b. The general case obliges to intro-
duce Boolean variables to make precise for each end whether it belongs to the
interval or not.

The formula that states the existence of a repetitive model of a given complex-
ity follows the following lines (“ERM” comes from “Existence of a Repetitive
Model”):

17

(ERM1) There exists a positive real h (that defines Ch).
(ERM2) For each sort X there exists its interpretation as an initial interval

[0, MX − 1] of N, MX ≥ 1.
(ERM3) For any abstract function f : T × Xf → Zf there exist natural

numbers
Mf,0 = 0 ≤ Mf,1 ≤ · · · ≤ Mf,m−1 ≤ Mf,m = MXf

− 1
that give a partition of the interpretation of Xf into m classes. The
k-th class (maybe empty) is the set of naturals n ∈ [Mf,k−1, Mf,k),
for k = 1, . . . ,m − 1, and the last class is the set of naturals n ∈
[Mf,m−1, Mf,m](remark that this partition may say that the number of
classes is not greater than m, i. e. the classes are not necessarily non
empty).

(ERM4) The length hf,k of repetitive intervals for f and for the k-th class
of its equivalence is of the form h · λ for λ ∈ Λ. This can be expressed in
terms of the existence of hf,k and of an appropriate disjunction over Λ.

(ERM5) For any abstract function f and for each class of equivalence (this f
and the index of the equivalence class are just indices for the variables:
one index is f and the other is the index k ∈ {0, 1, . . . ,m − 1} of the
equivalence class)
(ERM5.1) there exists an initial interval [0, Hf,k), there exists its parti-

tion into c subintervals defined by points
Hf,k,0 = 0 < Hf,k,1 < · · · < Hf,k,c−1 < Hf,k,c = Hf,k

and there exists a list (Zf,k,j)0≤j<c of parameters of Uf , different
from the beginning of intervals that define fx, where x is in the k-th
equivalence class, on each of these intervals.

(ERM5.2) There exists a partition of [0, hf,k) into c intervals defined by
points

0 < hf,k,1 < · · · < hf,k,c−1 < hf,k,c = hf,k

and there exists a list zf,k,j of parameters of Uf , different from the
beginning of intervals such that Uf with the respective parameters
and the beginning of the intervals

αf,k,i,j=df [Hf,k + i · hf,k + hf,k,j, Hf,k + i · hf,k + hf,k,j+1)
defines fx, where x is in the respective equivalence class, on this
interval for all i ≥ 0.

(ERM6) The variables introduced above permit to represent abstract func-
tions in terms of Uf and thus, to eliminate them — see below.

Remark 7. To have different forms of functions for different equivalence
classes and for different intervals one can consider not a single pair (ξ0, ξ1)
to define Uf but a finite set of such pairs. This generalization is easily treat-
able in the same framework by adding appropriate disjunctions (that are ‘finite
existential quantifiers’) over these pairs. �

18

Arithmetical description of abstract functions.

Recall that the atomic formulas are of the form f(x, t) = v, where x is a
variable for X , t is a variable for R (time was eliminated) and v is a variable
for R, X or pre-interpreted abstract sort, like Bool. Remark that any of x or
t can be dummy. On the other hand, there is no need to consider formulas
where x is a pre-defined abstract sort. Actually if the latter is the case then this
sort is of known cardinality, say, κ, and we can replace f(x, .) by κ functions.
However, v of a pre-defined sort is necessary to treat predicates. For predicates,
Bool will be represented, as any other abstract sort, by an initial segment of
natural numbers, namely, Bool becomes {0, 1}.

The elimination of abstract functions is done as follows. Replace in the given
formula G each occurrence of atomic formula f(t, x) = v by (though the sym-
bols with indices used below are just variables, their role was explained above
in (ERM2)–(ERM5), in particular intervals α were mentioned in (ERM5.2))

∧
0≤k<m

∧
0≤j<s

[(
Mf,k ≤ x < Mf,k+1 ∧ t ∈ [Hf,k,j, Hf,k,j+1)

)

→ Uf (t,Hf,k,j, Zf,k,j) = v
]

∧
∧

0≤k<m

∧
0≤j<s

∀ i
[(

Mf,k ≤ x < Mf,k+1 ∧ t ∈ αf,k,i,j

)
→ Uf (t, α

−
f,k,i,j, zf,k,j) = v

]
(3)

Notations 4

• G̃ is the formula obtained from G after the transformations of atomic for-
mulas according to (3);

• Π is the list of all variables mentioned above in (ERM2)–(ERM5) except h,
i. e. Mf,k, Hf,k,j, hf,k,j, Zf,k,j and zf,k,j for 0 ≤ k < m, 0 ≤ j < s and f ∈ V ;

• B is a conjunction of the inequalities mentioned above in (ERM2)–(ERM5);

• G0 is the formula ∃h∃Π G̃0 where G̃0=df (B ∧ G̃).

Proposition 8 A closed FOTL formula G has an ultimately repetitive model
of complexity K = (m, s) if and only if G0 is valid (interpreted over reals
and integers with their usual relations, addition and multiplication).

Proof. The proof is just a verification that the elimination of abstract sorts
and functions is correct. Intuitively it is clear; a detailed proof may follow the
lines of the proof of Lemma 3 from [BS02b]. �

19

4.3 Quantifier elimination

The formula G0 is not a L′′-formula because of subformulas t ∈ αf,k,i,j and
some of subformulas Uf (t, α

−
f,k,i,j, zf,k,j) = v in (3); these subformulas have

mixed binary multiplications:

Hf,k + i · hf,k · h + hf,k,j ≤ t < Hf,k + i · hf,k · h + hf,k,j+1,

ξ0 · t + ξ1 · (Hf,k + i · hf,k · h + hf,k,j) + z = v (4)

where i is an integer variable and h is a real one (recall that af,k, ξ0, ξ1 are
concrete rational numbers, symbols Hf,k, hf,k,j and t stand for real variables
and z and v may be real variables or rational constants).

All the other atoms are of the form

u = v (5)

with u and v being natural numbers or constants representing elements of
abstract sorts , or of the form

a1 · z1 + · · ·+ an · zn ω c (6)

with ai, c ∈ Q and zj being real variables and ω ∈ {=, <, >,≤,≥}. Remark
that t from (4), as well as h, may be among zj of (6). On the other hand, the
natural number variables from (5) are not involved in any arithmetical terms
and do not mix with variables for reals or with i from (4).

Divide all terms in inequalities (4) and (6) by h. Underline that h > 0 and is
common for the whole formula and quantified by the most exterior existential
quantifier. The bijection z ↔ z

h
preserves the order relations and commutes

with the operations over reals that we use.

Replace expressions z
h
, where z is a variable, by new variables to get a formula

G1=df ∃h∃Π G̃1 (we may, in fact, use the old real variable names, that is we
may replace z

h
by z). This formula G1 is valid iff G0 is valid, and G1 has atoms

of the form (5) and of the form (we use the old notations for real variables
divided by h):

a · i + a1 · z1 + a2 · z2 + · · ·+ c

h
ω 0, (7)

where a, a1, a2, . . . , c ∈ Q, i is an integer variable and the other symbols
stand for real variables.

Now replace in G̃1 each 1
h

by a new variable that we will, however denote by

20

the same letter h. Denote the obtained formula by G̃2. This G̃2 is a L′′-formula.
The whole formula G1 is equivalent to formula G2 that can be represented as

∃h∃Π G̃2. (8)

If to eliminate quantifiers in G̃2 (Lemma 4), we get a quantifier-free L′′-formula
describing all models of bounded complexity (s, m) and with fixed relations
between period lengths of the initial formula G (we are not to forget that
we have changed the ‘meaning’ of initial variables in the meantime). If to
eliminate all quantifiers in (8) we answer the question about the existence of
such a model.

Hence, we have proven the following theorem that is even stronger than Propo-
sition 7:

Theorem 9 Given a closed FOTL-formula G, all its repetitive models (we
mean chains of ultimately repetitive interpretations) of a given complexity in
Ch and all respective h can be represented by a quantifier-free L′′-formula. In
particular the existence of such models is decidable.

Together with Proposition 6 it gives Theorem 5.

Complexity of the decision procedure.

The complexity of the decision procedure is determined by the complexity of
Weispfenning’s Quantifier Elimination and by the complexity of our reduc-
tions. The worst case complexity of Weispfenning’s Quantifier Elimination is

that of the decision procedure for Presburger arithmetics, i. e. 2ln
O(a)

, where
l is the length of the formula (presumed to be in a prenex form), n is the
number of variables and a is the number of blocks of alternating quantifiers.
Our reductions add O(α(k)|V |) variables and (together with transforming the
formula into a prenex form) augment the size of the initial formula exponen-
tially in the general case. However, the formulas that are used to prove the
worst case complexity do not appear in practice.

Conclusion

Though logics that are expressible, and thus relatively easy to use to represent
verification problems directly and completely, are usually undecidable (even
deductively incomplete), practical verification problems seem to be not only
decidable but feasible, that is to be decidable practically efficiently. The reason

21

is that practical algorithms are very far from diagonal Turing machines used to
prove undecidability or high lower bounds, and the requirements that we wish
to prove are also rather particular and simple. So the problem is to describe
their properties that ensure the decidability of the verification problem.

A general source of properties that may help to describe decidable or feasi-
ble classes are hand-made proofs. In such proofs, if to speak about practical
algorithms, we implicitly give a finite description of the algorithm under con-
sideration.

In this paper we are closer to finite automata viewpoint; this viewpoint may
give some other decidable classes. To outline the limits of decidable classes we
cannot avoid proving what classes that seem to be close to a decidable one
are already undecidable. Such a class related to the result of this paper is the
class with several unknown periods.

A more difficult and much more laborious problem is to pass from decidable
classes to feasible ones. One question to elaborate is the representation of runs
in logic. There are many considerations that can improve the efficiency (we
started such kind of analysis in [BCS00]). Another source of improving the ef-
ficiency lies in improving quantifier elimination or, more generally, decidability
procedures, taking into consideration the peculiarities of practical algorithms
and properties.

The description of our decidable class is semantical. The problem of recog-
nizing the class is undecidable (see [BS02a]). An open question is to give
sufficient syntactical conditions to ensure finiteness properties. This can be
done for some properties like safety (finite refutability is, in a way, a general
definition of safety properties) or liveness, for the latter one with a certain
care.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[BCS00] D. Beauquier, T. Crolard, and A. Slissenko. A predicate logic
framework for mechanical verification of real-time Gurevich Abstract State
Machines: A case study with PVS. Technical Report 00–25, University
Paris 12, Department of Informatics, 2000. Available at http://www.univ-
paris12.fr/lacl/.

[BS99] D. Beauquier and A. Slissenko. Decidable classes of the verification
problem in a timed predicate logic. In Proc. of the 12th Intern. Symp. on

22

Fundamentals of Computation Theory (FCT’99), Iasi, Rumania, August 30
–September 3, 1999, Lect. Notes in Comput. Sci, vol. 1684, pages 100–111.
Springer-Verlag, 1999.

[BS02a] D. Beauquier and A. Slissenko. Decidable verification for reducible timed
automata specified in a first order logic with time. Theoretical Computer
Science, 275(1–2):347–388, 2002.

[BS02b] D. Beauquier and A. Slissenko. A first order logic for specification of timed
algorithms: Basic properties and a decidable class. Annals of Pure and
Applied Logic, 113(1–3):13–52, 2002.

[Gur95] Y. Gurevich. Evolving algebra 1993: Lipari guide. In E. Börger, editor,
Specification and Validation Methods, pages 9–93. Oxford University Press,
1995.

[Gur00] Y. Gurevich. Sequential abstract-state machines capture sequential
algorithms. ACM Transactions on Computational Logic, 1(1):77–111, July
2000.

[Sli99] A. Slissenko. Minimizing entropy of knowledge representaion. In Proc.
of the 2nd International Conf. on Computer Science and Information
Technologies, August 17–22, 1999, Yerevan, Armenia, pages 2–6. National
Academy of Sciences of Armenia, 1999.

[Sli03] A. Slissenko. A logic framework for verification of timed distributed
algorithms. Version of April 2001. Technical Report TR 2003–04,
University Paris 12, Laboratory for Algorithmics, Complexity and Logic
(LACL), 2003. Available at http://www.univ-paris12.fr/lacl/.

[Tel00] G. Tel. Introduction to Distributed Algorithms. Cambridge University
Press, 2nd edition, 2000.

[Wei99] V. Weispfenning. Mixed real-integer linear quantifier elimination. In
Proc. of the 1999 Int. Symp. on Symbolic and Algebraic Computations
(ISSAC’99), pages 129–136. ACM Press, 1999.

23

