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Introduction

The Jacobi process is a Markov process on [-1, 1] given by the following infinitesimal generator:

L = (1 -x 2 ) ∂ 2 ∂ 2 x + (px + q) ∂ ∂x , x ∈ [-1, 1]
for some real p, q, defined up to the first time when it hits the boundary. In fact, it belongs to the class of diffusions associated to some families of orthogonal polynomials, i.e. the infinitesmal generator admits an orthogonal polynomials basis as eigenfunctions ( [START_REF] Bakry | Characterization of Markov Semi-groups on R Associated to Some Families of Orthogonal Polynomials[END_REF]) such as Hermite, Laguerre and Jacobi polynomials . More precisely, if P α,β n denotes the Jacobi polynomial with parameters α, β > -1 defined by :

P α,β n (x) = (α + 1) n n! 2 F 1 -n, n + α + β + 1, α + 1; 1 -x 2 , x ∈ [-1, 1],
then we can see that : L P α,β n = -n(n + α + β + 1)P α,β n for p = -(β + α + 2) and q = β -α. In 1964, Wong resolved the forward Kolmogorov or Fokker-Planck equation (see [START_REF] Wong | The construction of a class of stationnary Markov[END_REF], [START_REF] Revuz | Continuous Martingales And Brownian Motion[END_REF]) y), where B, A are polynomials of degree 2, 1 respectively, and gave the principal solution (p 0 (x, y) = δ x (y)) using the classical Sturm-Liouville theory. This gives rise to a class of stationnary Markov processes satisfying :

∂ 2 y [B(y)p] -∂ y [A(y)p] = ∂ t p, p = p t (x,
lim t→∞ p t (x, y) = x 2 x 1 W (x)p t (x, y)dx = W (y)
where W is the density function solution of the corresponding Pearson equation ( [START_REF] Wong | The construction of a class of stationnary Markov[END_REF]). In our case, p t has the discrete spectral decomposition : [START_REF] Andrews | Special functions[END_REF] p t (x, y) =   n≥0 (R n ) -1 e -λnt P α,β n (x)P α,β n (y)

  W (y), x, y ∈ [-1, 1]
where

λ n = n(n + α + β + 1), W (y) = (1 -y) α (1 + y) β 2 α+β+1 B(α + 1, β + 1)
with B denoting the Beta function and ( [START_REF] Andrews | Special functions[END_REF], p. 99) :

R n 3 = ||P α,β n || 2 L 2 ([-1,1],W (y)dy) = Γ(α + β + 2) 2n + α + β + 1 (α + 1) n (β + 1) n Γ(α + β + n + 1)n!
Few years later, Gasper ([10]) showed that this bilinear sum is the transition kernel of a diffusion and that is a solution of the heat equation governed by a Jacobi operator, generalizing a previous result of Bochner for ultraspherical polynomials ( [START_REF] Bochner | Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions[END_REF]). It is worthnoting that λ n has a quadratic form while in the Hermite (Brownian) and Laguerre (squared Bessel) cases λ n = n. Hence, we will try to subordinate the Jacobi process by the mean of a random time-change in order to get a Mehler type formula. What is quite interesting is that subordinated Jacobi process semi-group, say q t (x, y), is the Laplace transform of p 2/t (x, y). Thus, we recover a suitable expression for p t (x, y) by inverting some Laplace transforms already computed by Biane, Pitman and Yor (see [START_REF] Biane | Probability Laws Related To The Jacobi Theta and Riemann Zeta Functions, and Brownian Excursions[END_REF], [START_REF] Pitman | Infinitely Divisible Laws Associated With Hyperbolic Functions[END_REF]). This will allows us to derive a LDP for the maximum likelihood estimate (MLE) for p in the ultraspherical case, i. e. q = 0 (β = α), a fact conjectured by Zani in her thesis. Then, using a skew product representation of the Jacobi process involving squared Bessel processes, we construct a family {ν t } t of estimators for the index ν of the squared Bessel process based on a Jacobi trajectory observed till time t. This satisfies a LDP with the same rate function derived for the MLE based on a squared Bessel trajectory.

1.1. Inverse Gaussian subordinator. By an inverse Gaussian subordinator, we mean the process of the first hitting time of a Brownian motion with drift B µ t := B t +µt, µ > 0, namely, T µ,δ t = inf{s > 0; B µ s = δt}, δ > 0. Using martingale methods, we can show that for each t > 0, u ≥ 0,

E(e -uT µ,δ t ) = e -tδ( √ 2u+µ 2 -µ)
whence we recover the density below :

ν t (s) = δt √ 2π e δtµ s -3/2 exp - 1 2 ( t 2 δ 2 s + µ 2 s) 1 {s>0}
3 (P α,β n (x)) n≥0 are normalized such that they form an orthogonal basis with respect to the probability measure W (y)dy which is not the same used in [START_REF] Andrews | Special functions[END_REF].

1.2. The subordinated Jacobi Process. Let us consider a Jacobi process (X t ) t≥0 . Then, using (1), the semi-group of the subordinated Jacobi process (X T µ,δ t ) t≥0 is given by:

q t (x, y) = ∞ 0 p s (x, y)ν t (s)ds = W (y) n≥0 (R n ) -1 ∞ 0 e -λns ν t (s)ds P α,β n (x)P α,β n (y) = W (y) n≥0 (R n ) -1 E(e -λnT µ,δ t )P α,β n (x)P α,β n (y) Writing λ n = (n + γ) 2 -γ 2 where γ = α + β + 1 2
, and substituting δ = 1/ √ 2, µ = √ 2γ for α + β > -1 in the expression of ν t , one gets :

E(e -λnT µ,δ t ) = e -nt so that q t (x, y) = W (y) n≥0 (R n ) -1 e -nt P α,β n (x)P α,β n (y)
The last sum has been already computed ( [START_REF] Andrews | Special functions[END_REF], p. 385) :

∞ n=0 (R n ) -1 P α,β n (x)P α,β n (y)r n = 1 -r (1 + r) a m,n≥0 a 2 m+n a+1 2 m+n (α + 1) m (β + 1) n u m v n m!n! = 1 -r (1 + r) a F 4 ( a 2 , a + 1 2 , α + 1, β + 1; u, v) (2) 
where |r| < 1, a = α + β + 2, F 4 is the Appell function and

u = (1 -x)(1 -y)r (1 + r) 2 v = (1 + x)(1 + y)r (1 + r) 2 .
Then, we use the integral representation of F 4 (see [START_REF] Exton | Multiple Hypergeometric Functions And Applications[END_REF], p 51) to get:

q t (x, y) = W (y) Γ(a) 1 -r (1 + r) a ∞ 0 s a-1 e -s 0 F 1 (α + 1; u 4 s 2 ) 0 F 1 (β + 1; v 4 s 2 )ds (1) = W (y) Γ(a) 1 -r (1 + r) a ∞ 0 s a-1 e -s n≥0 P α,β n (z) (α + 1) n (β + 1) n A n s 2n ds (2) = W (y) Γ(a) 1 -r (1 + r) a n≥0 Γ(2n + a) (α + 1) n (β + 1) n P α,β n (z)A n
where in (1), we used (see [START_REF] Magnus | Formulas And Theorems for the Special Functions of Mathematical Physics[END_REF], p 214)

0 F 1 (c; w(1 -r)/2) 0 F 1 (d; w(1 + r)/2) = n≥0 P α,β n (r) (c) n (d) n w n , α = c -1, β = d -1, in (2) 
, we used Fubini Theorem, z = x + y 1 + xy and A = (1 + xy)r 2(1 + r) 2 . Letting r = e -t , then

q t (x, y) = W (y)e a-1 2 t 2 a-1 sinh(t/2) (cosh(t/2)) a n≥0 (a) 2n (α + 1) n (β + 1) n P α,β n (z) (1 + xy) 8 cosh 2 (t/2) n = W (y) tanh(t/2)e a-1 2 t 2 a-1 n≥0 (a) 2n (α + 1) n (β + 1) n P α,β n (z) (1 + xy) 8 n 1 cosh(t/2) 2n+a-1 .
Besides,

q t (x, y) = t e γt 2 √ π ∞ 0 p s (x, y) s -3/2 e -γ 2 s e -t 2 4s ds = t e γt 2 √ 2π ∞ 0 p 2/r (x, y) r -1/2 e -2γ 2 /r e -t 2 8 r dr
Thus, noting that γ = (a -1)/2, we get :

∞ 0 p 2/r (x, y) r -1/2 e -2γ 2 /r e -t 2 8 r dr = √ 2πW (y) 2 a-1 tanh(t/2) t/2 n≥0 (a) 2n (α + 1) n (β + 1) n P α,β n (z) (1 + xy) 8 n 1 cosh(t/2) 2n+a-1 .
1.3. The Jacobi semi-group. The following results are due to Biane, Pitman and Yor (see [START_REF] Biane | Probability Laws Related To The Jacobi Theta and Riemann Zeta Functions, and Brownian Excursions[END_REF], [START_REF] Pitman | Infinitely Divisible Laws Associated With Hyperbolic Functions[END_REF]) :

∞ 0 e -t 2 8 s f C h (s) ds = 1 cosh(t/2) h , h > 0 (3) ∞ 0 e -t 2 8 s f T h (s) ds = tanh(t/2) (t/2) h , h > 0 (4)
where (C h ) and (T h ) are two families of Lévy processes with respective density functions f C h and f T h for fixed h > 0. The densities of C h and T 1 are given by ( [START_REF] Biane | Probability Laws Related To The Jacobi Theta and Riemann Zeta Functions, and Brownian Excursions[END_REF]):

f C h (s) = 2 h Γ(h) p≥0 (-1) p Γ(p + h) p! f τ (2p+h) (s) f T 1 (s) = k≥0 e -π 2 2 (k+ 1 2 ) 2 s 1 {s>0}
where τ (c) = inf{r > 0; B r = c} is the Lévy subordinator ( i. e, the first hitting time of a standard Brownian motion B) with corresponding density :

f τ (2p+h) (s) = (2p + h) √ 2πs 3 exp - (2p + h) 2 2s 1 {s>0} .
Thus :

p 2/r (x, y) = √ 2πrW (y)e 2γ 2 /r 2 a-1 n≥0 (a) 2n (α + 1) n (β + 1) n P α,β n (z) (1 + xy) 8 n × f T 1 ⋆ f C 2n+a-1 (r)
or equivalently (where B stands for the Beta function) :

p t (x, y) = √ πW (y) 2 α+β e γ 2 t √ t n≥0 (a) 2n (α + 1) n (β + 1) n P α,β n (z) (1 + xy) 8 n f T 1 ⋆ f C 2n+α+β+1 ( 2 t ).
1.4. The ultraspherical case. This case corresponds to α = β > -1 2 and we will proceed slight differently. Indeed, a = 2α + 2 and

(2) = 1 -r (1 + r) 2α+2 F 4 (α + 1, α + 3/2, α + 1, α + 1; u, v) = 1 -r (1 + r) 2α+2 1 (1 -u -v) α+3/2 2 F 1 ( 2α + 3 4 , 2α + 5 4 , α + 1; 4uv (1 -u -v) 2 )
where the last equality follows from (see [START_REF] Yu | Integrals and Series[END_REF])

F 4 (b, c, b, b; u, v) = (1 -u -v) -c 2 F 1 (c/2, (c + 1)/2, b; 4uv (1 -u -v) 2 ).
Hence,

q t (x, y) = W (y)e 2α+1 2 t 2 α+1/2 sinh(t) (cosh t -xy) α+3/2 2 F 1 ( 2α + 3 4 , 2α + 5 4 , α + 1; (1 -x 2 )(1 -y 2 ) (cosh t -xy) 2 ) = W (y)e 2α+1 2 t 2 α+1/2 sinh(t) n≥0 [(2α + 3)/4] n [(2α + 5)/4] n (α + 1) n [(1 -x 2 )(1 -y 2 )] n (cosh t -xy) 2n+α+3/2 .
Besides, for h > 0, we may write :

1 cosh t -xy h = k≥0 (h) k k! (xy) k (cosh t) k+h since xy cosh t < 1 ∀x, y ∈] -1, 1[
, ∀t ≥ 0 and where we used:

1 (1 -r) h = k≥0 (h) k k! r k h > 0, |r| < 1.
Consequently, using Gauss duplication formula,

q t (x, y) = K α W (y)e 2α+1 2 t tanh(t) n,k≥0 Γ(ν(n, k, α) + 1)(xy) k k! n! Γ(α + n + 1) (1 -x 2 )(1 -y 2 ) 4 n 1 cosh t ν(n,k,α) where ν(n, k, α) = 2n + k + α + 1/2 and K α = Γ(α + 1)/[2 α+1/2 Γ(α + 3/2)]. Thus, since γ = α + 1/2 when α = β, one has : ∞ 0 p s (x, y) s -3/2 e -γ 2 s e -t 2 4s ds = √ 2πΓ(α + 1) 2 α Γ(α + 3/2) tanh(t) t W (y) n,k≥0 Γ(ν(n, k, α) + 1)(xy) k k! n! Γ(α + n + 1) (1 -x 2 )(1 -y 2 ) 4 n 1 cosh t ν(n,k,α)
or equivalently:

∞ 0 p 1/2s (x, y)e -γ 2 2s e -t 2 2 s ds √ s = √ πΓ(α + 1) 2 α Γ(α + 3/2) tanh(t) t W (y) n,k≥0 Γ(ν(n, k, α) + 1)(xy) k k! n! Γ(α + n + 1) (1 -x 2 )(1 -y 2 ) 4 n 1 cosh t ν(n,k,α)
Using ( 3), (4), f C h et f T 1 (we take t 2 /2 instead of t 2 /8), the density is written :

p 1/2s (x, y) = √ πsΓ(α + 1) 2 α Γ(α + 3/2) W (y)e γ 2 2s
n,k≥0

Γ(ν(n, k, α) + 1) k!n!Γ(α + n + 1) xy 2 k (1 -x 2 )(1 -y 2 ) 4 n f T 1 ⋆ f C ν(n,k,α) (s) Finally p t (x, y) = √ πK α e γ 2 t √ t W (y) n,k≥0 Γ(ν(n, k, α) + 1)(xy) k k!n!Γ(α + n + 1) (1 -x 2 )(1 -y 2 ) 4 n f T 1 ⋆ f C ν(n,k,α) ( 1 2t ) 
2. Application to statistics for diffusions processes 2.1. Some properties of the Jacobi process. In the probability scope, we are used to define the Jacobi process on [-1, 1] as the unique strong solution of the SDE :

dY t = 1 -Y 2 t dW t + (bY t + c)dt. It is straightforward that (Y t ) t≥0 L = (X t/2
) t≥0 where X is the Jacobi process already defined in section 1 with p = 2b, q = 2c. In order to derive some facts, let us make the variable change y → (y + 1)/2, this gives up to a time change (t → 4t) :

dJ t = 2 J t (1 -J t )dW t + [2(c -b) + 4bJ t ] dt = 2 J t (1 -J t )dW t + [d -(d + d ′ )J t ] dt where d = 2(c -b) = q -p = 2(β + 1) and d ′ = -2(c + b) = -(p + q) = 2(α + 1)
, which is the Jacobi process of parameters (d, d ′ ) already considered in [START_REF] Warren | The Brownian Burglar : Conditionning Brownian motion by its local time process[END_REF]. Moreover, authors provide the following skew-product : let Z 1 , Z 2 be two independent Bessel processes of dimensions d, d ′ and starting from z, z ′ respectively. Then :

Z 2 1 (t) Z 2 1 (t) + Z 2 2 (t) t≥0 L = (J At ) t≥0 , A t := t 0 ds Z 2 1 (s) + Z 2 2 (s) , J 0 = z z + z ′ .
Using well known properties of squared Bessel processes (see [START_REF] Revuz | Continuous Martingales And Brownian Motion[END_REF]), one deduce that if d ≥ 2 (β ≥ 0) and z > 0, then J t > 0 a. s. for all t > 0. Since 1 -J is still a Jacobi process of parameters (d ′ , d), then, for d ′ ≥ 2, (α ≥ 0) and z ′ > 0, J t < 1 a. s. for all t > 0. These results fit in the one dimensional case those established in [START_REF] Doumerc | Matrix Jacobi Process[END_REF] for the matrix Jacobi process (Theorem 3. 3. 2, p. 36). Besides, since 0 is a reflecting boundary for Z 1 , Z 2 when 0 < d, d ′ < 2 (-1 < α, β < 0), then both 0 and 1 are reflecting boundaries for J.

LDP in the ultraspherical case.

Let us consider the following SDE corresponding to the ultraspherical Jacobi process:

(5)

dY t = 1 -Y 2 t dW t + bY t dt Y 0 = y 0 ∈] -1, 1[ Let Q b
y 0 be the law of (Y t , t ≥ 0) on the canonical filtered probability space (Ω, (F t ), F) where Ω is the space of ] -1, 1[-valued functions. The parameter b is such that b ≤ -1 (or α ≥ 0), so that -1 < Y t < -1 for all t > 0. The maximum likelihood estimate of b based on the observation of a single trajectory (Y s , 0 ≤ s ≤ t) under Q b 0 is given by

(6) bt = t 0 Ys 1-Y 2 s dY s t 0 Y 2 s 1-Y 2 s ds .
The main result of this section is the following theorem.

Theorem 1. When b ≤ -1, the family { bt } t satisfies a LDP with speed t and good rate function

(7) J b (x) =    - 1 4 (x -b) 2 x + 1 if x ≤ x 0 x + 2 + (b -x) 2 + 4(x + 1) if x > x 0 > b
where x 0 is the unique solution x < -1 of the equation

(b -x) 2 = 4x(x + 1) .

Proof of Theorem 1:

We follow the scheme of Theorem 3.1 in [START_REF] Zani | Large deviations for squared radial Ornestein-Uhlenbeck processes[END_REF]. Let us denote by :

S t,x = t 0 Y s 1 -Y 2 s dY s -x t 0 Y 2 s 1 -Y 2
s ds so that for x > b (resp. x < b), P ( bt ≥ x) = P (S t,x ≥ 0) (resp. P ( bt ≤ x) = P (S t,x ≤ 0)). Therefore, to derive a large deviation principle on { bt }, we seek a LDP result for S t,x /t at 0. Let us compute the normalized cumulant generating function Λ t,x of S t,x :

(8) Λ t,x (φ) = 1 t log E(e φSt,x )
From Girsanov formula, the generalized densities are given by

dQ b a dQ b 0 a = exp (b -b 0 ) t 0 Y s 1 -Y 2 s dY s - 1 2 (b 2 -b 0 2 ) t 0 Y 2 s 1 -Y 2 s ds From Itô formula, F (Y t ) = - 1 2 log(1 -Y 2 t ) = t 0 Y s 1 -Y 2 s dY s + 1 2 t 0 1 + Y 2 s 1 -Y 2 s ds.
Let us denote by

D 1 = {φ : (b + 1) 2 + 2φ(x + 1) ≥ 0} . Set b(φ, x) = -1 -(b + 1) 2 + 2φ(x + 1) for all φ ∈ D 1 . Then : Λ t (φ, x) = 1 t log E b(φ,x) (exp({φ + b -b(φ, x))[F (Y t ) -F (y 0 ) -t/2]})
When starting from y 0 = 0, the semi-group is deduced from that of X :

pt (0, y) = √ 2πK α e γ 2 t/2 √ t n≥0 Γ(2n + α + 3 2 ) 4 n n!Γ(n + α + 1) (1 -y 2 ) n+α f T 1 ⋆ f C 2n+γ (1/t),
where p = -2(α + 1) = 2b ≤ -2 and γ = -(p + 1)/2 = α + 1/2. Denote by

D = {φ ∈ D 1 : G(φ) = b + b(φ, x) + φ < 0} .
For any φ ∈ D, the expectation above is finite and a simple computation gives :

Λ t (φ, x) = - φ + b -b(φ, x) 2 + 1 t log E b(φ,x) ((1 -Y 2 t ) -(φ+b-b(φ,x))/2 ) = Λ(φ, x) + 1 t log √ 2πK α(φ,x) R t (φ, x) √ t where R t (φ, x) = n≥0 Γ(2n -b(φ, x) + 1/2) 4 n n!Γ(n -b(φ, x)) B n - φ + b + b(φ, x) 2 , 1 2 e γ 2 t/2 f T 1 ⋆ f C 2n+γ ( 1 t )
and B stands for the Beta function. Moreover, by dominated convergence theorem

lim t→∞ E b(φ,x) ((1 -Y 2 t ) -(φ+b-b(φ,x))/2 ) = 1 -1 (1 -y 2 ) -[φ+b+b(φ,x)]/2 -1 dy < ∞ for φ ∈ D. Hence Λ t → Λ as t → ∞.
The following lemma details the domain D of Λ t :

Lemma 1. Denote by

φ 0 = - (b + 1) 2 2(x + 1) . i)If x < (b 2 + 3)/2(b -1): then D = (-∞, φ 0 ). ii) If (b 2 + 3)/2(b -1) < x < -1: then D = (-∞, φ 1 ) where φ 1 is solution of G(φ) = 0.
iii) If x > -1: then D = (φ 0 , φ 1 ).

In case i) of Lemma above, Λ is steep. It achieves its unique minimum in φ m solution of ∂Λ/∂φ(φ, x) = 0 , i.e. b(φ, x) = x. It is easy to see that

φ m = x + 1 2 - (b + 1) 2 2(x + 1) < φ 0 .
Hence, Gärtner-Ellis Theorem gives for

x < b < (b 2 + 3)/2(b -1), lim t→∞ 1 t log P ( bt ≤ x) = lim t→∞ 1 t log P (S t,x ≤ 0) = inf φ∈]∞,φ 0 ] Λ(φ, x) = Λ(φ m , x) = - 1 4 (x -b) 2 x + 1 . If b < x < (b 2 + 3)/2(b -1), notice that φ m > 0 and lim t→∞ 1 t log P ( bt ≥ x) = lim t→∞ 1 t log P (S t,x ≥ 0) = inf φ∈(0,φ 0 ] Λ(φ, x) = Λ(φ m , x) = - 1 4 (x -b) 2 x + 1 .
In cases ii) and iii) of Lemma 1, Λ is not steep. Nevertheless, if the infimum of Λ is reached in

• D, we can follow the scheme of Gartner-Ellis theorem for the change of probability in the infimum bound. This infimum is reached if and only if [START_REF] Exton | Multiple Hypergeometric Functions And Applications[END_REF] ∂Λ/∂φ(φ 1 , x) > 0.

This above condition gives the following cases: denote by x 0 the unique solution x < -1 of g(x)

:= 4x(x + 1) -(b -x) 2 = 0. Since g is decreasing on ] -∞, -1] and g(b 2 + 3/(2(b -1)) = (3/4)(b + 1) 2 > 0 = g(x 0 ), then x 0 > (b 2 + 3)/[2(b -1)]. • if (b 2 + 3)/2(b -1) < x < x 0 < -1, the derivative ∂Λ/∂φ(φ 1 , x) > 0, Λ achieves its minimum on φ m and lim t→∞ 1 t log P ( bt ≥ x) = Λ(φ m , x) = - (x -b) 2 4(x + 1
) .

• if x 0 < x < -1 or x > -1, then ∂Λ/∂φ(φ 1 , x) < 0. We apply Theorem 2 of the appendix, which is due to Zani [START_REF] Zani | Large deviations for squared radial Ornestein-Uhlenbeck processes[END_REF]. Let us verify that the assumptions are satisfied. Indeed, the only singularity

φ 1 of R t comes from B (n -[φ + b + b(φ, x)]/2, 1/2) when n = 0, and more precisely, from Γ(-[φ + b + b(φ, x)]/2) . We can write (10) Λ t (φ, x) = Λ(φ, x) + 1 t log Γ - φ + b + b(φ, x) 2 + 1 t log √ 2πK α(φ,x) Rt (φ, x) √ t , where (11) 
Rt (φ, x) = R t (φ, x) Γ(-[φ + b + b(φ, x)]/2) Now ∀n ≥ 0, B n - φ + b + b(φ, x) 2 , 1 2 
Γ - φ + b + b(φ, x) 2 is analytic on some neighbourhood of φ 1 . Besides, φ 1 is a pole of order one, i.e. lim φ→φ 1 ,φ<φ 1 b + φ + b(φ, x) φ -φ 1 = c > 0 ,
and since lim ρ→0 + ρΓ(ρ) = 1, we can write

1 t log Γ - φ + b + b(φ, x) 2 = - log(φ 1 -φ) t + h(φ) t .
The function h is analytic on D and can be extended to an analytic function on ]φ 1ξ, φ 1 +ξ[ for some positive ξ. Finally, we focus on Rt (φ, x)/ √ t and show that it converges uniformly as t → ∞. To proceed, we shall prove that this ratio is bounded from above and below away from 0. Setting A n (t) := e γ 2 t/2 f T 1 ⋆ f C 2n+γ (1/t), one has :

A n (t) √ t ≤ e γ 2 t/2 √ t k,l≥0 U k,n 1/t 0 exp - 1 2 (2n + 2k + γ) 2 s + π 2 (l + 1 2 ) 2 ( 1 t -s) ds s 3/2 = e γ 2 t/2 √ t k,l≥0 U k,n ∞ t exp - 1 2 (2n + 2k + γ) 2 s + π 2 (l + 1 2 ) 2 ( s -t ts ) ds √ s < e -2n 2 k,l≥0 U k,n e -2k 2 ∞ t exp - 1 2 (2n + 2k + γ) 2 (s -t) + π 2 (l + 1 2 ) 2 ( s -t ts ) ds √ ts = e -2n 2 k,l≥0 U k,n e -2k 2 ∞ 0 exp - 1 2 (2n + 2k + γ) 2 s + π 2 l 2 ( s t(t + s) ) ds t(t + s) with U k,n = Γ(2n + k + γ)2 2n+γ (2n + 2k + γ) k!Γ(2n + γ) .
Let Θ(x) = l∈Z e -πl 2 x = 1 + 2 l≥1 e -πl 2 x denote the Jacobi Theta function. Then

A n (t) √ t < e -2n 2   k≥0 U k,n e -2k 2 ∞ 0 exp - (2n + 2k + γ) 2 s 2 Θ πs 2t(t + s) ds t(t + s) + C(n, t)   where C(n, t) = 1 2 √ t k,l≥0 U k,n e -2k 2 ∞ 0 exp - (2n + 2k + γ) 2 s 2 ds √ t + s
Recall that Θ(x) = (1/ √ x)Θ(1/x), which yields :

A n (t) √ t < e -2n 2 k≥0 U k,n e -2k 2 ∞ 0 exp - (2n + 2k + γ) 2 s 2 Θ 2t(t + s) πs ds √ s + C(n) 2 √ t
where

C(n) = e -2n 2 k,l≥0 U k,n e -2k 2 ∞ 0 exp - (2n + 2k + γ) 2 s 2 ds √ s
Since e -l 2 z < e -lz , then Θ(z) ≤ 3 for z > 1. Hence, as 2t/π ≤ 2t(t + s)/(πs), then for t large enough :

A n (t) √ t < 3e -2n 2 k≥0 U k,n e -2k 2 ∞ 0 exp - (2n + 2k + γ) 2 s 2 ds √ s + C(n)
This gives a lower bound for Rt / √ t. Besides,

Rt (φ, x) √ t > √ πΓ(1/2 -b(φ, x)) Γ(-b(φ, x))Γ{[1 -(φ + b + b(φ, x)]/2} A 0 (t) √ t = C(b, φ, x) k,l≥0 (-1) k V k ∞ 0 exp - 1 2 (2k + γ) 2 s + π 2 (l + 1 2 ) 2 ( s t(t + s) ) ds t(t + s)
where V k (t) := U k,0 e -2k(k+γ)t . One may choose t large enough independent of k such that V k (t) ≥ V k+1 (t) for all k ≥ 0. In fact, such t satisfies :

e 2(2k+γ+1)t ≥ e 2t ≥ sup k≥0 U k+1,0 U k,0 = sup k≥0 (k + γ)(2k + γ + 2) (k + 1)(2k + γ) Then : Rt √ t > C(b, φ, x)[V 0 (t) -V 1 (t)] l≥0 ∞ 0 exp - 1 2 γ 2 s + π 2 (l + 1 2 ) 2 ( s t(t + s) ) ds t(t + s) > C(b, φ, x)[γ2 γ -V 1 (t)] l≥0 ∞ 0 exp - 1 2 γ 2 s + π 2 (l + 1) 2 ( s t(t + s) ) ds t(t + s) = C(b, φ, x) 2 [γ2 γ -V 1 (t)] ∞ 0 e -γ 2 s/2 Θ πs 2t(t + s) ds t(t + s) -C(t) .
where

C(t) = 1 2 √ t ∞ 0 e -γ 2 s/2 ds (t + s) < c ∞ 0 e -γ 2 s/2 ds √ s , c < 2 π .
for t large enough. Following the same scheme as for the upper bound, one gets :

Rt √ t > C(b, φ, x) 2 γ2 γ 2 π ∞ 0 e -γ 2 s/2 Θ 2t(t + s) πs ds √ s -C(t) > C(b, φ, x) 2 γ2 γ 2 π -c ∞ 0 e -γ 2 s/2 ds √ s > 0.
As a result, lim

t→∞ 1 t log P ( bt ≥ x) = Λ(φ 1 , x) = -(x + 2 + (b -x) 2 + 4(x + 1)),
which ends the proof of Theorem 1.

2.3. Jacobi-squared Bessel processes duality. By Itô's formula and Lévy criterion, one claims that (Y 2 t ) t≥0 is a Jacobi process of parameters d = 1, d ′ = -2b ≥ 2. Indeed :

dZ t := d(Y 2 t ) = 2Y t dY t + Y t = 2Y t 1 -Y 2 t dW t + [(2b -1)Y 2 t + 1]dt = 2 Z t (1 -Z t )sgn(Y t )dW t + [(2b -1)Z t + 1]dt = 2 Z t (1 -Z t )dB t + [(2b -1)Z t + 1]dt
Using the skew product previously stated, there exists R, a squared Bessel process of dimension d ′ = 2(ν + 1) = -2b and starting from r so that : with associated rate function :

νt := -bt -1 = log(1 -Y 2 t ) + t 2 t 0 Y 2 s 1-Y 2
I ν (x) = (x-ν) 2 4x if x ≥ x 1 := -(ν+2)+2 √ ν 2 +ν+1 3 1 -x + (ν -x) 2 -4x if x < x 1
A glance at both rate functions gives I ν (x) = J -(ν+1) (-(x + 1)) and x 0 = -(x 1 + 1).

Appendix

Let {Y t } t≥0 be a family of real random variables defined on (Ω, F, P ), and denote by µ t the distribution of Y t . Suppose -∞ < m t := EY t < 0. We look for large deviations bounds for P (Y t ≥ y). Let Λ t be the n.c.g.f. of Y t : Λ t (φ) = 1 t log E(exp{φtY t }) , and denote by D t the domain of Λ t . We assume that there exists 0 < φ 1 < ∞ such that for any t sup{φ : φ ∈ D t } = φ 1 and [0, φ 1 ) ⊂ D t . We assume also that for φ ∈ D Assumption 1.

(12) Λ t (φ) = Λ(φ) -α t log(φ 1 -φ) + R t (φ) t where • α > 0 • Λ is analytic on (0, φ 1 ), convex, with finite limits at endpoints, such that Λ ′ (0) < 0, Λ ′ (φ 1 ) < ∞, and Λ ′′ (φ 1 ) > 0.

• R t is analytic on (0, φ 1 ) and admits an analytic extension on a strip D γ β = (φ 1 -β, φ 1 + β) × (-γ, γ), where β and γ are independent of t.

• R t (φ) converges as t → ∞ to some R(φ) uniformly on any compact of D γ β .

Theorem 2. Under 1 For any Λ ′ (0) < y < Λ ′ (φ 1 ), ( 13) lim {yφ -Λ(φ)} .

For any y ≥ Λ ′ (φ 1 ), ( 14) lim The rate function is continuously differentiable with a linear part.

  s ds is another estimator of ν based on a Jacobi trajectory observed till time t. Set t = log u, ds and {ν 1 log u } u satisfies a LDP with speed log u and rate function J -(ν+1) (-(x + 1)). When starting at R 0 = 1, the MLE of ν based on a Bessel trajectory is given by (cf[START_REF] Zani | Large deviations for squared radial Ornestein-Uhlenbeck processes[END_REF], p. 132) :

t→+∞ 1 t

 1 log P (Y t ≥ y) = -sup φ∈(0,φ 1 )

t→+∞ 1 t

 1 log P (Y t ≥ y) = -yφ 1 + Λ(φ 1 ) .