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B.P. 239, F-54506 Vandœuvre les Nancy Cedex, France

bInstitute for Condensed Matter Physics, UA-79011 Lviv, Ukraine

cInstitut für Theoretische Physik, Johannes Kepler Universität Linz, A-4040 Linz,

Austria

Abstract

We study the quasi-long-range ordered phase of a 2D XY model with quenched
site-dilution using the spin-wave approximation and expansion in the parameter
which characterizes the deviation from completely homogeneous dilution. The re-
sults, obtained by keeping the terms up to the third order in the expansion, show
good accordance with Monte Carlo data in a wide range of dilution concentrations
far enough from the percolation threshold. We discuss different types of expansion.

Key words: XY model, topological transition, random systems
PACS: 05.50.+q Lattice theory and statistics; Ising problems – 75.10 General
theory and models of magnetic ordering

The XY model in two dimensions is the simplest example of a system exhibit-
ing “quasi-long-range order” (QLRO), which appears at low temperatures in a
number of physical models of great importance, e.g. magnetic films with planar
anisotropy, but also thin-film superfluids or superconductors, two-dimensional
solids, 2d-classical Coulomb gas or fluctuating surfaces and the roughness
transition [1,2]. Although no exact solution exists for this model, most of its
properties are known from different approaches.

Destruction of long range ordering is due to the presence of stable topologi-
cal defects (vortices) [3,4,5], a situation which strongly contrasts with usual
ordering in systems undergoing a ferromagnetic phase transition. First, the
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magnetization of the XY model on an infinite 2D lattice remains zero at any
non-zero temperature [6], thus it is impossible to describe in the thermody-
namic limit the quasi-long-range ordered phase by this usual order parameter,
however the spin-spin pair correlation function gives a distinct indication of
QLRO. Its asymptotic behaviour changes from exponential at high tempera-
tures to power low decay at low temperatures. This transition is referred to
as the Berezinskii-Kosterlitz-Thouless (BKT) transition and the point where
this change of behaviour occurs is the BKT temperature.

A quantity of interest which characterizes the QLRO phase, is then the tem-
perature dependent exponent of the correlation function:

η(T ) = − lim
|R|→∞

ln 〈Sr · Sr+R〉
ln |R| . (1)

The spin-wave analysis of the model gives a reliable value of η for small enough
temperatures [8]. The reliability of the harmonic approximation for this model
is grounded by the RG analysis [5].

The case of the (classical) XY model on a regular lattice (without defects)

H = −1

2

∑

r

∑

r′

J(r − r′) (Sx
r Sx

r′ + Sy
rS

y
r′) , (2)

has been studied intensively (when J(r − r′) is limited to nearest neighbours)
and its properties are well known (see e.g. Ref. [2]). The addition of defects
(site-dilution, bond-dilution) has been considered as a trivial modification,
since the Harris criterion [9] states in this case that the universality class of the
diluted model remains the same as that of the pure one. It means that the crit-
ical exponents of both pure and disordered models are unchanged, when eval-
uated at their corresponding BKT points, e.g. ηdil(T dil

BKT ) = ηpure(T pure
BKT ), but

the functions ηpure(T ) and ηdil(T ) characterizing the low temperature phase of
pure and disordered systems are different and the exact behaviour of ηdil(T )
is a question which deserves attention. For example, it is not obvious how
the impurities can interact with the vortices and influence the QLRO. This
question is addressed e.g. in Refs. [10,11].

In a previous paper [12] the influence of uncorrelated (normally distributed)
site-dilution was considered and a perturbation expansion for the case of weak
dilution was proposed. The two-spin coupling term J(r − r′) in Eq. (2) was
replaced by J(r − r′)crcr′ with

cr =











1, if the site r has a spin;

0, if the site r is empty.
(3)
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The physical quantities which characterize the system with quenched disor-
der after the thermodynamical averaging must be averaged over all possible
configurations of dilution. This configurational averaging is denoted as (...):

(...) =
∏

r

∑

cr=0,1

[cδ1−cr,0 + (1 − c)δcr,0](...), (4)

where c is the concentration of occupied sites.

Starting with the Hamiltonian in the harmonic approximation,

H =
1

4

∑

r

∑

r′

J(r − r′) (θr − θr′)
2 crcr′ , (5)

and realizing the Fourier transformation of the variables:

θr =
1√
N

∑

k

eikrθk, θk =
1√
N

∑

r

e−ikrθr, (6)

J(r) =
1

N

∑

q

eiqrν(q), ν(q) =
∑

r

e−iqrJ(r), (7)

(N is the number of sites in the lattice, and k runs over the 1st Brillouin
zone), one has

H =J
∑

k

γkθkθ−k + J
∑

k

∑

k′

(γk+k′ − γk − γk′)ρ(k + k′)θkθk′ (8)

+J
∑

k

∑

k′

∑

q

(2 − γq) [ρ(−k − k′ − q)ρ(q) − ρ(−k − q)ρ(−k′ + q)] θkθk′

where ρ(q) = 1
N

∑

r e−iqr(1 − cr), and γk ≡ 1
2J

[ν(0) − ν(k)] = 2 − cos kxa −
cos kya on the square lattice. The first term is the Hamiltonian of the pure
system, so one can consider ρ as a parameter of perturbation of this Hamil-
tonian. Note, that power of ρ corresponds to the number of sums over k. A
classification of the perturbation theory series with respect to number of sums
over k corresponds to the expansion in the ratio of the volume of effective
interaction to the elementary cell volume [13]. Taking this ratio to be small
means that it is valid for the short-range interacting systems, which holds for
our problem.

The linear approximation in ρ-expansion presented in Ref. [12] gives the result
for the exponent of the pair correlation function:

ηdil = (1 + 2(1 − c)) ηpure + O(ρ2). (9)
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Here we can report the result for this expansion up to the second order in ρ:

ηdil =
(

1 + 2.73(1 − c) + 1.27(1 − c)2
)

ηpure + O(ρ3), (10)

The figures follow from numerical estimate of sums. The 1st and 2nd order
perturbation expressions fit the Monte Carlo results only for very small con-
centrations of dilution (see Fig. 1). Unfortunately the calculation of the third
order seems to be too tedious and perhaps does not deserve so much effort,
therefore it is desirable to investigate another road.

In the present paper we propose to introduce the parameter of expansion in a
different manner in order to extend the region of reliability of the expansion to
stronger dilutions (but of course still far enough from the percolation threshold
where the whole approach fails) and to improve convergence. We will keep the
notation ρ, but from now on one should understand it as the deviation from
homogeneously diluted system:

ρ(q) =
1

N

∑

r

e−iqr(cr − c). (11)

We did not make any assumption about weakness of disorder, we may thus
expect that the results of this expansion will be less sensitive to the value of
dilution c. Rewriting the Hamiltonian with this new parameter one gets

H = c2J
∑

k

γkθkθ−k − cJ
∑

k

∑

k′

(γk+k′ − γk − γk′)ρ(k + k′)θkθk′

+ J
∑

k

∑

k′

∑

q

(2 − γq) [ρ(−k − k′ − q)ρ(q) − ρ(−k − q)ρ(−k′ + q)] θkθk′

≡ c2Hpure + Hρ + Hρ2 , (12)

where the first term is the Hamiltonian of the pure system now with a renor-
malized coupling.

The spin-spin pair correlation function,

G2(R) = crcr+R 〈cos(θr+R − θr)〉 = crcr+R

〈

cos(θr+R − θr)e
−β(Hρ+H

ρ2 )
〉

∗
〈

e−β(Hρ+H
ρ2 )
〉

∗

(13)

can be expanded in ρ and then configurationally averaged. In (13), 〈...〉∗
stands for the averaging with the pure system Hamiltonian with renormal-
ized coupling c2J . Using (4) one has the equalities: ρ(q) = 0, ρ(q)ρ(q′) =
c(1 − c) 1

N
δq+q′,0 and ρ(q)ρ(q′)ρ(q′′) = c(1 − 3c + 2c2) 1

N2 δq+q′+q′′,0, which,
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inserted into the expansion lead after tedious calculations to the third order
expression

crcr+R 〈cos(θr+R − θr)〉 = c2 〈cos(θr+R − θr)〉∗
×
[

1 − 1 − c

c3

1

βJN2

∑

k,k′

(γk+k′ − γk − γk′)2

γ2
kγk′

sin2 kR

2

+
1 − 3c + 2c2

c4

1

βJ

(

2
N

∑

k

sin2 kR

2

γk

− 1
N3

∑

k,k′,k′′

(γ
k+k′

−γk−γ
k′

)(γ
k′−k′′

−γ
k′
−γ

k′′
)(γ

k+k′′
−γk−γ

k′′
)

γ2
k
γ
k′

γ
k′′

sin2 kR

2

)]

. (14)

In the limit N → ∞, R → ∞ we have found for the sums in (14):

1

N

∑

k

sin2 kR

2

γk

≈ const + 1
2π

ln R
a
,

1

N2

∑

k

∑

k′

(γ
k+k′

−γk−γ
k′

)2

γ2
k
γ
k′

sin2 kR

2
≈ const′ + 0.73

2π
ln R

a
, (15)

1

N3

∑

k,k′,k′′

(γ
k+k′

−γk−γ
k′

)(γ
k′−k′′

−γ
k′
−γ

k′′
)(γ

k+k′′
−γk−γ

k′′
)

γ2
k
γ
k′

γ
k′′

sin2 kR

2

≈ const′′ + 0.27
2π

ln R
a
.

The figures 0.73 and 0.27 come from numerical summation. It appears that to
zeroth-order, the change of exponent comes from a renormalization of the cou-
pling strength, the first-order term is identically vanishing. For small enough
temperatures it is now possible to write the pair correlation function in the
power law form:

G2(R) ≈ c2(R/a)−ηdil

. (16)

Reminding the correlation function exponent of the pure system in the SW
approximation, ηpure = (2πβJ)−1, we can write

ηdil = ηpure

(

1

c2
+ 0.73

1 − c

c3
− 0.27

1 − 3c + 2c2

c4

)

+ O(ρ4). (17)

The first term in the brackets, 1/c2, corresponds to the zeroth order in the
expansion, the first-order term is identically vanishing as was already noted
before, the second and third terms in the brackets correspond to the second-
and third-order terms in the ρ-expansion respectively.
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Fig. 1. Comparison between the 1st (which in fact coincides with the 0th), 2nd
and 3rd-order expansions and MC simulations at very low temperatures (the values
of (βJ)−1 are indicated in the legend). Expressions (9) and (10) of the previous
expansion are shown (thin lines) for comparison. Insert shows the vicinity of the
pure system.

In order to check these expressions, simulations of 2D XY-spins are performed
using Wolff’s cluster Monte Carlo algorithm [15]. The low-temperature phase
being critical, local updates of single spins would suffer from the critical slow-
ing down. Implemented in the case of the XY model, the Wolff algorithm first
introduces bonds through the Ising variables defined by the sign of the projec-
tion of the spin variables along some random direction. Then clusters of sites
are built by a bond percolation process (here the random graph model of the
Fortuin-Kasteleyn representation). The percolation threshold for these bonds
coincides with the Kosterlitz-Thouless point [16], which guarantees the effi-
ciency of the Wolff cluster updating scheme [15] at TKT. In the low-temperature
phase we are interested in, this algorithm could be less efficient, but neverthe-
less preferable to a local updating, since the correlation length is diverging.
Using this procedure, we discard typically 105 sweeps for thermalization, and
the measurements are performed on typically 105 production sweeps. Averages
over disorder are performed using typically 103 samples. There is no need of a
better statistics. The boundary conditions are chosen periodic and the critical
exponent η(T ) of the correlation function is measured indirectly through the
finite-size scaling behaviour of the magnetization

MT (L) ∼ L−xσ(T ), xσ(T ) =
1

2
η(T ), (18)

6



where the last scaling relations holds in two dimensions.

In Figure 1, we compare the 0th to 3rd order expansions (remember that
the 1rd order term vanishes) with the MC data. The agreement is quite good
using the expansion parameter (11) which provides a clear improvement of the
previous expansion given by expressions (9) and (10). Of course the question
of the next order is not settled, but now we are on the way to counting higher
orders or even summing the whole series. Another direction of future work
would be to implement the same type of perturbation expansion within the
Villain model [17] and to explore the deconfining transition of the diluted
model.
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