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Etude des Equilibres de Nash, Jeux de Potentiel et Jeux de Congestion

 [23] dont on présentera différents modèles.

Introduction

Après quelques brefs rappels sur la théorie des jeux, on présentera, dans la section 2, les résultats de Conitzer et Sandholm [START_REF] Conitzer | Complexity Results about Nash Equilibria[END_REF] concernant le problème de la determination de l'existence d'un équilibre de Nash, la plupart des cas étudiés étant NP -difficiles. On rappelle qu'un équilibre de Nash est un vecteur de stratégies mixtes, une pour chaque agent i, telles qu'aucun agent ne peut améliorer sa rémunération en changeant sa stratégie alors que les autres gardent la même. Dans la section 3 on va se focaliser sur différents types de jeux de potentiels qui ont la particularité de posséder un équilibre de Nash pur et on présentera en particulier les résultats de [START_REF] Fabrikant | The complexity of pure Nash Equilibria[END_REF] et [START_REF] Monderer | Potential Games[END_REF]. Pour finir, dans la section 4, on étudiera plusieurs modèles de jeux de congestion en commençant par celui de Rosenthal [START_REF] Rosenthal | A class of games possessing pure-strategy Nash equilibria[END_REF], puis ceux de Konishi et al. [START_REF] Konishi | Equilibria in a model with partial rivalry[END_REF], Milchtaich [START_REF] Milchtaich | Congestion models with player specific payoff functions[END_REF], Quint et Shubik [START_REF] Quint | A model of migration[END_REF] et Voorneveld et al. [START_REF] Voorneveld | Congestion Games and Potentials Reconsidered[END_REF].

2 Résultats sur la complexité des Equilibres de Nash

Equilibres ayant certaines propriétés dans les jeux de forme normale

Les resultats présentés dans cette section sont issus de [START_REF] Conitzer | Complexity Results about Nash Equilibria[END_REF]. Conitzer et Sandholm y présentent une réduction grâce à laquelle ils améliorent les résultats de Gilboa et Zemel sur la determination de l'existence d'un équilibre de Nash et montrent que compter le nombre d'équilibres de Nash (ou des ensembles connectés d'équilibres de Nash) est Pdifficile (sous-sections 2.2 et 2.3). Ensuite, ils montrent que determiner l'existence d'un équilibre Bayes-Nash à stratégies pures est N P -difficile, ce que l'on présentera dans la sous-section 2.4. On montrera, finalement, que determiner l'existence d'un équilibre de Nash à stratégies pures dans un jeu stochastique (de Markov) est PSPACE-difficile même si le jeu est invisible. Tous ces résultats sont valables même si le jeu ne comporte que 2 joueurs et qu'il est symétrique.

Définitions Définition 1 Dans un jeu de forme normale, on a un ensemble d'agents A, et pour chaque agent i, un ensemble de stratégies Σ i et une fonction de rémunération u

i : Σ 1 × Σ 2 ו • •× Σ |A| → R.
Définition 2 Une stratégie mixte σ i pour un joueur i est une distribution de probabilités sur Σ i . Un cas spécial de stratégie mixte est une stratégie pure, où toutes les probabilités sont sur un seul elément de Σ i . Définition 3 Etant donné un jeu de forme normale, un équilibre de Nash est un vecteur de stratégies mixtes, une pour chaque agent i, telles qu'aucun agent ne peut améliorer sa rémunération en changeant sa stratégie alors que les autres gardent la même (on dit que i dévie unilatéralement). C'est à dire, pour tout i et toute autre stratégie mixte σ i , on a E[u i (s 1 , s 2 , . . . , s i , . . . , s |A| )] ≥ E[u i (s 1 , s 2 , . . . , s i , . . . , s |A| )], où chaque s i vient de σ i et chaque s i de σ i .

On peut maintenant présenter la réduction de [START_REF] Conitzer | Complexity Results about Nash Equilibria[END_REF]. Définition 4 Soit φ une formule booléenne de forme conjective normale. Soit V son ensemble de variables (avec |V | = n), L l'ensemble des littéraux correspondants (un positif et un négatif pour chaque variable) 0 , et C son ensemble de clauses. La fonction v : L → V nous donne la variable correspondant à un littéral, c'est à dire v(x 1 ) = v(-x 1 ) = x 1 . On définit G(φ) comme étant le jeu symétrique à 2 joueurs de forme normale suivant. Soit Σ ≡ Σ 1 = Σ 2 = L ∪ V ∪ C ∪ {f }. Soit les fonctions de rémunération suivantes :

u 1 (l 1 , l 2 ) = u 2 (l 2 , l 1 ) = 1 pour tout l 1 , l 2 ∈ L avec l 1 = -l 2 ; -u 1 (l, -l) = u 2 (-l, l) = -2 pour tout l ∈ L ; -

u 1 (l, x) = u 2 (x, l) = -2 pour tout l ∈ L, x ∈ Σ -L ; -u 1 (v, l) = u 2 (l, v) = 2 pour tout v ∈ V , l ∈ L avec v(l) = v ; -u 1 (v, l) = u 2 (l, v) = 2 -n pour tout v ∈ V , l ∈ L avec v(l) = v ; -u 1 (v, x) = u 2 (x, v) = -2 pour tout v ∈ V , x ∈ Σ -L ; -u 1 (c, l) = u 2 (l, c) = 2 pour tout c ∈ C, l ∈ L avec l / ∈ c ; -u 1 (c, l) = u 2 (l, c) = 2 -n pour tout c ∈ C, l ∈ L avec l ∈ c ; -u 1 (c, x) = u 2 (x, c) = -2 pour tout c ∈ C, x ∈ Σ -L ; -u 1 (f, f ) = u 2 (f, f ) = 0 ; -u 1 (f, x) = u 2 (x, f ) = 1 pour tout x ∈ Σ -{f }. Théorème 1 Si (l 1 , l 2 , . . . , l n ) (où v(l i ) = x i ) satisfait φ,
alors G(φ) possède un équilibre de Nash dans lequel les deux joueurs jouent l i avec une probabilité 1 n , où la rémunération de chaque joueur est 1. De plus, le seul autre équilibre de Nash est celui où les deux joueurs jouent f et recoivent une rémunération de 0 chacun.

Preuve : On commence par montrer que ces combinaisons de stratégies mixtes constituent un équilibre de Nash. Si (l 1 , l 2 , . . . , l n ) (où v(l i ) = x i ) satisfait φ et l'autre joueur joue l i avec une probabilité 1 n , jouer l'un de ces l i nous donne une rémunération de 1. D'un autre côté, jouer la négation d'un de ces l i nous donne une rémunération de

1 n (-2)+ n-1 n (1) < 1. Jouer une variable v nous donne la rémunération 1 n (2-n)+ n-1 n (2) = 1 (
puisque pour un des l i que l'autre joueur joue parfois on a v(l i ) = v). Jouer une clause c nous donne une rémunération de au plus 1 n (2-n)+ n-1 n (2) = 1 (car un des l i que l'autre joueur joue parfois est présent dans la clause c, puisque l i satisfait φ). Finalement, jouer f donne la rémunération 1. Il s'ensuit que jouer n'importe lequel des l i que l'autre joueur joue parfois est une reponse optimale, et donc que si les deux joueurs jouent chacun un de ces l i avec une probabilité 1 n est un équilibre de Nash. Il est clair que le cas où les deux joueurs jouent f est aussi un équilibre de Nash car jouer n'importe quoi d'autre quand l'autre joueur joue f nous donne la rémunération -2.

Il reste à démontrer qu'il n'existe pas d'autre équilibre de Nash. Si l'autre joueur joue toujours f , l'unique meilleure réponse est de jouer aussi f , puisque jouer n'importe quoi d'autre nous donnera une utilité -2. Dans le cas contraire, étant donnée une stratégie mixte de l'autre joueur, on considère la rémunération d'un joueur sachant que l'autre ne joue pas f . (C'est à dire, la distribution de probabilités sur les stratégies de l'autre joueur est proportionnelle à la distribution de probabilité constituée par la stratége mixte de ce joueur, sauf que f est choisi avec une probabilité 0). Si cette rémunération est plus petite que 1, alors le joueur fera mieux en jouant f (qui donne une utilité égale á 1 quand l'autre joueur ne joue pas f , et est aussi meilleur que la stratégie originale quand l'autre joueur joue f ). Donc cela ne peut être un équilibre de Nash.

Pour le cas où un des joueur joue f et l'autre non, il n'y a pas d'équilibre de Nash, donc supposons que les deux joueurs jouent f avec un probabilité inférieure à 1. Considérons le bien-être social espéré (E[u 1 + u 2 ]) étant donné qu'aucun des joueurs ne joue f . Il est facile de vérifier que l'on obtiendra aucune configuration donnant un bien-être social supérieur à 2. De plus, toute configuration dans laquelle un joueur joue un élément de V ou C entraîne un bien-être social strictement inférieur à 2. Il s'ensuit que si un des deux joueurs joue un élément de V ou C, le bien-être social espéré, en supposant qu'aucun des joueurs ne joue f , est strictement inférieur à 2. Par linéarité de l'éspérance, il s'ensuit que l'utilité espérée d'au moins un des joueurs est strictement inférieure à 1, en supposant que personne ne joue f , et d'après le raisonnement ci-dessus, ce joueur pourrait améliorer son utilité en jouant f plutot qu'une distribution de probabilités sur ses stratégies autres que f . On en conclut qu'aucun élément de V ou C n'est joué dans un équilibre de Nash. Donc on peut supposer que les deux joueurs ne mettent que des probabilités positives sur les stratégies de L ∪ {f }. Si l'autre joueur met des probabilités positives sur f , alors jouer f est une meilleure stratégie que jouer n'importe quel élément de L (puisque les deux auront une utilité égale à 1 si l'autre joue un élément de L, mais jouer f est une meilleure stratégie si l'autre joue f ). Il s'ensuit que le seul équilibre dans lequel un des joueurs joue f est celui où les deux joueurs jouent f . Maintenant on peut supposer que les deux joueurs ne mettent que des probabilités positives sur les éléments de L. Supposons que pour un certain l ∈ L, la probabilité qu'un des joueurs joue l ou -l est inférieure à 1 n . Alors, l'utilité espérée de l'autre joueur de jouer v(l) est strictement supérieure à 1 n (2n) + n-1 n (2) = 1, et cela ne peut pas être un équilibre de Nash. Donc, on peut affirmer que pour tout l ∈ L, la probabilité qu'un joueur joue l ou -l est précisément 1 n . Si le joueur 1 met des probabilités positives sur un élément de L et que le joueur 2 met des probabilités positives sur la négation de ce même élément, les deux joueurs obtiennent une utilité espérée inférieure à 1 et feraient mieux en jouant f . Donc, dans un équilibre de Nash, si le joueur 1 joue l avec une certaine probabilité, le joueur 2 doit jouer l avec une probabilité de 1 n . Donc on peut affirmer que pour chaque variable, il y a exactement un de ses littéraux qui est joué par les deux joueurs avec une probabilité de 1 n . Il s'ensuit que dans chaque équilibre de Nash (en plus de celui dans lequel les deux joueurs jouent f ), les littéraux qui sont parfois joués correspondent à un assignement de variables.

Il reste à montrer que si cet assignement ne satisfait pas φ, alors nous n'avons pas un équilibre de Nash. Soit c ∈ C une clause qui n'est pas satisfaite par cet assignement, c'est á dire qu'aucun de ses littéraux n'est joué. Alors, jouer c donnerait une utilité égale à 2, et les deux joueurs feraient mieux de jouer cela. Donc il existe un équilibre de Nash dans G(φ) dans lequel chaque joueur a une utilité 1 si et seulement si φ est satisfiable ; le seul autre équilibre est celui où les deux joueurs jouent 0 et les deux obtiennent une utilité 0. Cependant toute définition sensée de l'"optimisation du bien-être social" nous pousserait plutot à préférer le premier type d'équilibre. Dans ce sens, déterminer si un "bon" équilibre existe est donc un problème difficile. De plus, ce type d'équilibre est optimal pour le jeu, même quand les joueurs coopèrent, et donc, trouver si un tel type d'équilibre existe est un problème difficile. Les corollaires suivants illustrent les points abordés ci-dessus(chaque corollaire découle directement du théorème 1). 

Compter le nombre d'équilibres dans les jeux de forme normale

On s'intéresse de manière générale à la caractérisation de tous les équilibres d'un jeu. Une caractérisation simple est, par exemple, le nombre d'équilibres d'un jeu (le nombre d'équilibres dans un jeu de forme normale a été étudié dans le pire ( [START_REF] Mclennan | Generic 4x4 two person games have at most 15 nash equilibria[END_REF]) et dans le meilleur ( [START_REF] Mclennan | On the expected number of nash equilibria of a normal form game[END_REF]) des cas). On peut utiliser le théorème 1 pour montrer que déterminer ce nombre dans un jeu de forme normale donné est difficile.

Corollaire 8 Même dans les jeux symétriques à 2 joueurs, compter le nombre d'équilibres de Nash est P-difficile .

Preuve : Le nombre d'équilibres de Nash dans notre jeu G(φ) est le nombre d'assignements qui satisfont φ, plus un. Or, compter le nombre d'assignements satisfiant une formule CNF est P-difficile [START_REF] Valiant | The complexity of computing the permanent[END_REF].

Il est facile de construire des jeux dans lesquels on a un continuum d'équilibres de Nash. Dans de tels jeux, il serait plus significatif de se demander combien il existe de continuum distincts d'équilibres. De manière plus formelle, on peut se demander combien un jeu possède d'ensembles connectés maximaux d'équilibres(un ensemble connecté maximal est un ensemble connecté qui n'est pas un sous-ensemble propre d'un ensemble connecté).

Corollaire 9 Même dans les jeux symétriques à 2 joueurs, compter le nombre d'ensembles connectés maximaux d'équilibres de Nash est P-difficile.

Preuve : Chaque équilibre de Nash dans G(φ) constitue un ensemble connecté maximal, donc le nombre d'ensembles connectés maximaux est égal au nombre d'assignements satisfiant φ, plus un.

Les résultats sur la P-difficulté les plus intéressants sont ceux pour lesquels les questions de recherche et d'existence sont faciles, comme par exemple compter le nombre d'assortiments bipartis parfaits (perfect bipartite matchings en anglais). Dans le cas des équilibres de Nash, la question de l'existence est triviale : il a été prouvé de manière analytique (par le théorème du point fixe de Kakutani) qu'un équilibre de Nash existe toujours [START_REF] Nash | Equilibrium points in n-person games[END_REF]. La complexité de la question de recherche reste un problème ouvert.

Equilibres Bayes-Nash à stratégies pures

Les équilibres à stratégies pures sont particulièrement appréciés car ils évitent l'inconfortable nécéssité d'une distribution aléatoire sur des stratégies pour lesquelles les joueurs n'ont aucun interêt [START_REF] Fudenberg | Game Theory[END_REF]. Dans les jeux de forme normale avec un petit nombre de joueurs il est facile de déterminer l'existence d'équilibres à stratégies pures : on peut simplement vérifier, pour chaque combinaison de stratégies pures, si elle constitue un équilibre de Nash. Cependant, ce n'est pas faisable dans les jeux Bayesiens, dans lesquels les joueurs ont une information privée concernant leur propre préférence (représenté par des types). Dans ce cas, les joueurs doivent conditionner leurs actions sur leurs types, donc l'espace de stratégies de chaque joueur est exponentiel sur le nombre de types. Dans cette sous-section, on montre que la question de savoir si un équilibre Bayes-Nash à stratégies pures existe est en fait N P-difficile même dans les jeux symétriques à deux joueurs. D'abord, on donne la définition standard d'un jeu Bayesien et d'un équilibre Bayes-Nash issue de la théorie des jeux.

Définition 5 Dans un jeu Bayesien, on a un ensemble d'agents A ; pour chaque agent i, un ensemble de types Θ

i ; une distribution commune φ sur Θ 1 × Θ 2 × . . . × Θ |A| ; pour chaque agent i, un ensemble de stratégies Σ i ; et pour chaque agent i, une fonction d'utilité u i : Θ i × Σ 1 × Σ 2 × . . . × Σ |A| → R.
Définition 6 (tirée de [START_REF] Harsanyi | Game with incomplete information played by Bayesian players[END_REF]) Etant donné un jeu Bayesien, un équilibre Bayes-Nash (BNE) est un vecteur de stratégies mixtes, une pour chaque couple i, θ i ∈ Θ i , tel qu'aucun agent n'a d'interêt à dévier de sa stratégie, pour chacun de ses types, en supposant que les autres ne changent pas de stratégie. C'est à dire, pour tout i, θ i ∈ Θ i , et pour toute autre stratégie mixte σ i,θ i , on a

E θ -i |θ i [E[u i (θ i , s 1,θ1 , s 2,θ2 , . . . , s i,θ i , . . . , s |A|,θ |A| )]] ≥ E θ -i |θ i [E[u i (θ i , s 1,θ1 , s 2,θ2 , . . . , s i,θ i , . . . , s |A|,θ |A| )]] où tout s i,θ i vient de σ i,θ i et tout s i,θ i vient de σ i,θ i .
On peut maintenant définir le problème que l'on va étudier

Définition 7 (PURE-STRATEGY-BNE) Etant donné un jeu Bayesien, on cherche s'il existe un BNE dans lequel toutes les stratégies σ i,θ i sont pures.

La preuve de la N P-difficulté de ce problème se base sur une reduction depuis le problème de SET-COVER que l'on définit ci-après. -

u 1 (S i , S j ) = u 2 (S j , S i ) = 1 pour tout S i et S j ; -u 1 (S i , s j ) = u 2 (s j , S i ) = 1 pour tout S i et s j / ∈ S i ; -u 1 (S i , s j ) = u 2 (s j , S i ) = 2 pour tout S i et s j ∈ S i ; -u 1 (s i , s j ) = u 2 (s j , s i ) = -3k pour tout s i et s j ; -u 1 (s j , S i ) = u 2 (S i , s j ) = 3 pour tout S i et s j / ∈ S i ; -u 1 (s j , S i ) = u 2 (S i , s j ) = -3k pour tout S i et s j ∈ S i .
On montre maintenant que les deux instances sont équivalentes. D'abord supposons qu'il existe S c1 , S c2 , . . . , S c k tel que 1≤i≤k S c i = S. Supposons que les deux joueurs jouent comme suit : quand leur type est θ i , ils jouent S c i . On pretend que c'est un BNE. Pour cela, supposons que l'autre joueur emploie cette stratégie. Alors,comme pour tout s j il existe au moins un S c i tel que s j ∈ S c i , l'utilité espérée de jouer s j est au plus 1 k (-3k) + k-1 k 3 < 0. Il s'ensuit que jouer n'importe quel S j (qui donne une utilité de 1) est optimal. Donc il existe un BNE à stratégies pures. Supposons maintenant qu'il existe un BNE à stratégies pures. On remarque d'abord que dans un BNE à stratégies mixtes (non-pures), les deux joueurs jouent un element de S pour un certain type : si l'autre joueur joue parfois un s j , l'utilité de jouer un s i est au plus 1 k (-3k)+ k-1 k 3 < 0, alors que jouer un S i à la place garantit une utilité au moins égale à 1. Donc il y a au moins un joueur qui ne joue jamais d'élement de S. Maintenant supposons que l'autre joueur joue parfois un s j . On sait qu'il existe un S i tel que s j ∈ S i . Si le premier joueur joue ce S i , cela lui donnera une utilité au moins égale à

1 k 2+ k-1 k 1 = 1+ 1 k .
Puisqu'il doit faire au moins aussi bien dans l'équilibre, et qu'il ne joue jamais d'élément de S, il doit parfois recevoir une utilité égale à 2. Donc, il existe S a et s b ∈ S a tel que le premier joueur joue parfois S a et le deuxième joue parfois s b . Mais alors, jouer s b donne au deuxième joueur une utilité au plus égale à 1 k (-3k) + k-1 k 3 < 0, et il ferait mieux en jouant plutot un S i . (Contradiction.) On peut en conclure que dans un BNE à stratégies non-pures, aucun élément de S n'est joué. Revenons à notre équilibre à stratégies pures, considérons l'ensemble de tous les S i qui sont joués par le joueur 1 pour un certain type. Il est clair qu'il ne peut y avoir au maximum que k ensembles de ce genre. On affirme qu'ils couvrent S. S'ils ne couvrent pas un certain élément s j , l'utilité espérée de jouer s j pour le joueur 2 est 3 (car le joueur 1 ne joue jamais d'élément de S). Mais cela signifie que le joueur 2 (qui ne joue jamais d'élément de S non plus) ne joue pas de facon optimale. (Contradiction.) Donc, il existe un set cover.

Equilibres de Nash à stratégies pures dans les jeux stochastiques

Après avoir observé les jeux à une seule étape, nous allons maintenant porter notre attention sur les jeux à étapes multiples dans lesquels, à chaque étape, les joueurs doivent agir et recevoir un paiement en conséquence. Il y a déjà eu quelques recherches sur la complexité de jouer des jeux répétés et séquentiels. Par exemple, determiner si un automate particulier est une meilleure réponse est N P-complet [START_REF] Ben-Portah | The complexity of computing a best response automaton in repeated games with mixed strategies[END_REF]. Trouver un automate fournissant la meilleure réponse quand les automates considérés sont bornés est N Pcomplet [START_REF] Papadimitriou | On players with a bounded number of states[END_REF]. La question de savoir si un joueur donné avec rappel imparfait ("imperfect recall" en anglais) peut garantir d'obtenir un certain paiement en utilisant des stratégies pures est N P-complet [START_REF] Koller | The complexity of two-person zero-sum games in extensive form[END_REF] ; et en général, donner la meilleure réponse à une stratégie arbitraire peut même être non-calculable [START_REF] Zame | Non-computable strategies and discounted repeated games[END_REF]. Dans cette section, on présente un résultat de PSPACE-difficulté sur l'existence d'un équilibre à stratégies pures.

Un jeu multi-étapes est typiquement représenté comme un jeu stochastique (de Markov), dans lequel il y a un sous-ensemble d'états , le jeu changeant d'état d'une étape à l'autre [START_REF] Shapley | Stochastic games[END_REF][START_REF] Sobel | Noncooperative stochastic games[END_REF][START_REF] Fudenberg | Game Theory[END_REF]. A chaque étape, la rémunération des joueurs dépend de leurs actions, mais aussi de l'état courant du jeu. De plus, la probabilité de passer dans un état donné est déterminée par l'état courant et les actions des joueurs dans cet état. Les résultats sur la difficulté de tels jeux ne peuvent être obtenus en formulant un jeu étant connu comme difficile tel que le jeu de Go généralisé [START_REF] Lichtenstein | Go is polynomial-space hard[END_REF] ou QSAT [START_REF] Stockmeyer | Word problems requiring exponential time[END_REF] comme des jeux de Markov, car une telle formulation devrait spécifier un nombre exponentiel d'états. Même si le nombre d'états est polynomial, la difficulté du problème peut être dûe au fait que les espaces de stratégies sont extrêmement riches. Dans cette section, on montre la PSPACE-difficulté de ce problème, même pour une variante dans laquelle les espaces de stratégies sont simples (dans le sens que le joueurs ne peuvent pas conditionner leurs actions sur les évenements du jeu). En général, un joueur n'a pas toujours besoin de connaître l'état actuel du jeu, ni les actions prises par les autres joueurs dans les étapes précédentes, ni les paiements qu'il a accumulés. Un cas extrême est celui dans lequel les joueurs n'ont aucun moyen de connaître ces paramètres et jouent donc à l'aveuglette. Un tel jeu est appellé jeu de Markov invisible. Il est relativement facile de spécifier une stratégie pure dans un jeu de Markov invisible, car il n'existe rien pour conditionner le choix des actions. De ce fait, une telle stratégie est "simplement" une séquence infinie d'actions (pour un joueur i, une séquence {a k i }, où il joue systématiquement l'action a k i à l'étape k, sans considérer quoi que ce soit). Malgré l'apparente simplicité du jeu, on montre ci-après que le problème consistant à déterminer si un équilibre à stratégies pures existe est extrêmement difficile.

Définition 10 (PURE-STRATEGY-INVISIBLE-MARKOV-NE) Etant donné un jeu de Markov invisible, on cherche s'il existe un équilibre de Nash dans lequel toutes les stratégies sont pures.

On montre que ce problème est PSPACE-difficile, en effectuant une réduction depuis le problème PERIODIC-SAT, connu comme étant PSPACE-complet [START_REF] Orlin | The complexity of dynamix languages and dynamic optimization problems[END_REF]. 

Définition 11 (PERIODIC-SAT) On définit une formule CNF φ(0) sur des variables {x

0 1 . . . x 0 n } ∪ {x 1 1 . . . x 1 n }. Soit φ(k),
Σ ≡ Σ 1 = Σ 2 = {t, f } ∪ C.
Les probabilités de transition entre les états du jeu et les utilités des joueurs sont définies de manière à ce que l'état r soit un état absorbant à partir duquel aucun équilibre de Nash à stratégies pures ne peut être atteint. Elles assurent également que le jeu aboutira à l'état r s'il atteint un des états t j i,c ( donc aucun équilibre de Nash à stratégies pures ne peut être obtenu si le jeu passe par un état t j i,c ). Le reste de la preuve montre qu'il existe un équilibre de Nash à stratégies pures en partant du postulat qu'il existe un assignement de valeurs booléenes pour les variables de la formule φ(k) et qu'un tel équilibre n'existe pas dans le cas contraire (la preuve complète est disponible dans [START_REF] Conitzer | Complexity Results about Nash Equilibria[END_REF]).

On peut utiliser le même argument, de manière plus simple, pour montrer la difficulté du cas où le jeu possède un nombre fini d'étapes.

Théorème 4 PURE-STRATEGY-INVISIBLE-MARKOV-NE est N P-difficile, même quand le jeu est symétrique, à 2 joueurs, les transitions sont déterministes et le jeu possède un nombre fini d'étapes.

3 Jeux de potentiel

Définitions

Considérons un graphe avec comme ensemble de sommets Σ 1 × . . . × Σ n et une arête (s, s ) si s et s ne diffèrent que d'une seule composante et u i (s ) > u i (s). Si ce graphe est acyclique, on dit que les dynamiques de Nash convergent.

Proposition 1 Si les dynamiques de Nash convergent, alors il existe un equilibre de Nash pur.

Schéma de preuve : Les puits du graphe sont précisément les équilibres de Nash du jeu.

Soit G(u 1 , u 2 , . . . , u n ), un jeu de forme stratégique avec un nombre fini de joueurs. L'ensemble des joueurs est A = {1, 2, . . . , n}, l'ensemble des stratégies du joueur i est Σ i et la fonction de paiement du joueur i est u i : Σ → R, où Σ = Σ 1 × Σ 2 × . . . × Σ n . Pour un ensemble S ⊆ A, -S représente l'ensemble complémentaire de S, et Σ S représente le produit cartésien × i∈S Σ i . Pour les ensembles de singletons {i}, Σ {-i} sera noté Σ -i .

Une fonction P : Σ → R est un potentiel ordinal pour G, si pour tout i ∈ A et pour tout a -i ∈ Σ -i on a : u i (a -i , x)u i (a -i , z) > 0 ssi P (a -i , x) -P (a -i , z) > 0, ∀x, z ∈ Σ i Définition 12 G est un jeu de potentiel ordinal, s'il admet un potentiel ordinal. Soit w = (w i ) i∈A , un vecteur de nombres positifs que l'on appellera des poids. Une fonction P : Σ → R est un w-potentiel pour G si pour tout i ∈ A et pour tout s -i ∈ Σ -i , on a :

u i (s -i , x) -u i (s -i , z) = w i P (s -i , x) -P (s -i , z) pour tout x, z ∈ Σ i .

Définition 13 G est un jeu de w-potentiel s'il admet un w-potentiel (On dit aussi que P est un potentiel pondéré et que G est un jeu de potentiel pondéré).

Une fonction P : Σ → R est un potentiel exact (ou, plus simplement, un potentiel) pour G si elle est un potentiel pondéré pour G avec w i = 1 pour tout i ∈ A. Définition 14 G est un jeu de potentiel exact (ou, plus simplement, un jeu de potentiel) s'il admet un potentiel.

Propriétés

Lemme 1 Soit P un potentiel ordinal pour G(u 1 , u 2 , . . . , u n ), l'ensemble des équilibres de G(u 1 , u 2 , . . . , u n ) coincide avec l'ensemble des équilibres de G(P, P, . . . , P ), le jeu dans lequel on remplace les fonctions de rémunération par la fonction de potentiel. En d'autres termes, s ∈ Σ est un point d'équilibre pour G si et seulement si pour tout i ∈ A P (s) ≥ P (s -i , x) pour tout x ∈ Σ i Donc, si P admet une valeur maximale dans Σ, alors G possède un équilibre à stratégies pures.

Corollaire 10 Tout jeu de potentiel ordinal fini possède un équilibre de Nash pur.

Un chemin Σ est une sequence γ = (y 0 , y 1 , . . .) telle que pour tout k ≥ 1 il existe un unique joueur i tel que y k = (y k-1 -i , x) pour x = y k-1 i dans Σ i . y 0 est appelé le point initial de γ, et si γ est fini, alors son dernier élément est appellé le point terminal de γ. Un chemin γ = (y 0 , y 1 , . . .) est un chemin d'amélioration pour G si pour tout k ≥ 1, on a u i (y k ) > u i (y k-1 ), où i est le seul joueur changeant de stratégie à l'étape k. On dit que G possède la propriété d'amélioration finie (ou FIP pour Finite Improvement Property) si tout chemin d'amélioration est fini.

Lemme 2 Tout jeu de potentiel ordinal fini possède la FIP.

Preuve : Pour tout chemin d'amélioration γ = (y 0 , y 1 , . . .), on a , par le Lemme 1 P (y 0 ) < P (y 1 ) < . . . Comme Σ est un ensemble fini, la séquence γ doit être finie.

Il est clair que dire d'un jeu qu'il possède la FIP et que ses dynamiques de Nash convergent est équivalent. Donc, tout chemin d'amélioration maximal doit aboutir à un équilibre de Nash.

Il est interessant de remarquer que posséder la FIP n'est pas équivalent à avoir un potentiel ordinal.

Une fonction P : Σ → R est un potentiel ordinal généralisé pour G, si pour tout i ∈ A, pour tout s -i ∈ Σ -i , et pour tout x, z ∈ Σ i , u i (s -i , x)u i (s -i , z) > 0 implique que P (s -i , x) -P (s -i , z) > 0

Lemme 3 Un jeu fini G a la FIP si et seulement si G admet un potentiel ordinal généralisé.

Preuve : Soit G un jeu qui a la FIP. On définit la relation binaire ">" sur Σ comme suit : x > y ssi x = y et il existe un chemin d'amélioration fini γ ayant comme point initial y et comme point terminal x. La FIP implique que la relation ">" est transitive. Soit

Z ⊆ Σ. On dira que Z est représenté s'il existe Q : Z → R telle que pour tout x, y ∈ Z, x > y implique Q(x) > Q(y). Soit Z un sous-ensemble représenté maximal de Σ. On va prouver que Z = Σ. Supposons x / ∈ Z. Si x > z pour tout z ∈ Z, on étend Q en Z ∪ {x} en définissant Q(x) = 1 + max z∈Z Q(z), ce qui contredit la maximalité de Z. Si z > x pour tout z ∈ Z, on étend Q en Z ∪{x} en définissant Q(x) = min z∈Z Q(z)-1, ce qui est aussi en contradiction avec la maximalité de Z. Sinon, nous étendons Q et contredisons la maximalité de Z en définissant Q(x) = (a + b)/2, où a = max{Q(z) : z ∈ Z, x > z}, et b = min{Q(z) ∈ Z, z > x}. Donc Σ est représenté (et admet un potentiel ordinal généralisé Q).

Corollaire 11 Soit G un jeu fini ayant la FIP. Supposons en plus que pour tout i ∈ A et pour tout s

-i ∈ Σ -i u i (s -i , x) = u i (s -i , z), ∀x = z ∈ Σ i .
Alors G a un potentiel ordinal.

Preuve : Il suffit de remarquer que la condition supplémentaire sur G implique que chaque potentiel ordinal généralisé pour G est aussi un potentiel ordinal pour G. La preuve découle donc du lemme 3.

Définition 15 Un jeu

G = A, (Σ i ) i∈A , (u i ) i∈A est un -jeu de coordination s'il existe une fonction u : Σ → R telle que u i = u pour tout i ∈ A ; -jeu fictif si pour tout i ∈ A et tout σ -i ∈ Σ -i il existe un k ∈ R tel que u i (σ i , σ -i ) = k pour tout σ i ∈ Σ i .
Dans un jeu de coordination, les joueurs poursuivent le même but, ce que reflètent les fonctions de rémunération identiques. Dans un jeu fictif, la rémunération d'un joueur ne dépend pas de sa propre stratégie.

Théorème 5 Soit G = A, (Σ i ) i∈A , (u i ) i∈A un jeu. G est un jeu de potentiel exact si et seulement si il existe deux fonctions

(c i ) i∈A et (d i ) i∈A telles que -u i = c i + d i pour tout i ∈ A -A, (Σ i ) i∈A , (c i ) i∈A est un jeu de coordination, et -A, (Σ i ) i∈A , (d i ) i∈A est un jeu fictif.
Preuve : La partie "si" est triviale : la fonction de rémunération du jeu de coordination est une fonction de potentiel exact pour G. Pour prouver la partie "seulement si", on définit P comme étant un potentiel exact pour G.

Pour tout i ∈ A, u i = P + (u i - P ). Il est clair que A, (Σ i ) i∈A , (P ) i∈A est un jeu de coordination. Soit i ∈ A, σ -i ∈ Σ -i et σ i , θ i ∈ Σ i . Alors u i (σ i , σ -i ) -u i (θ i , σ -i ) = P (σ i , σ -i ) -P (θ i , σ -i ) implique u i (σ i , σ -i ) -P (σ i , σ -i ) = u i (θ i , σ -i ) -P (θ i , σ -i ). Donc A, (Σ i ) i∈A , (u i -P ) i∈A est un jeu fictif.
Les jeux de potentiel ordinal ont un grand nombre de potentiels ordinaux. Pour les jeux de potentiel exact, on a : Lemme 4 Soit P 1 et P 2 , deux potentiels pour le jeu G. Alors il existe une constante c telle que P 1 (s) -P 2 (s) = c pour tout s ∈ Σ.

Preuve : z ∈ Σ i donné. Pour tout y ∈ Σ, on définit H(y) = n i=1 [u i (s i-1 ) -u i (s i )], où s 0 = y et pour tout 1 ≤ i ≤ n, s i = (s i-1
-i , z i ). Si l'on dénote P 1 et P 2 par P , alors par le lemme 1, on a H(y) = P (y) -P (z) pour tout y ∈ Σ. D'où

P 1 (y) -P 2 (y) = c pour tout y ∈ Σ.
Le lemme 4 implique que l'ensemble de profils de stratégies maximisant une fonction de potentiel d'un jeu de potentiel exact ne dépend pas d'une fonction de potentiel particulière. Des stratégies maximisant le potentiel ont été utilisées dans le lemme 1 pour prouver l'existence d'un équilibre de Nash pur pour les jeux de potentiel ordinal. Le "maximiseur de potentiel" (Potential-Maximizer), défini formellement pour un jeu de potentiel de la manière suivante P M(G) = {σ ∈ Σ | σ ∈ argmax θ∈Σ P (θ) pour une fonction de potentiel P de G peut alors être utilisé comme un outil de "raffinement" d'équilibre, comme suggéré par Monderer et Shapley [START_REF] Monderer | Potential Games[END_REF].

Jeux de congestion 4.1 Modèle de Rosenthal

Dans un modèle de congestion, les joueurs utilisent plusieurs ressources, sélectionnées dans un "réservoir" commun. Les coûts ou bénéfices qu'un joueur dérive de l'utilisation d'une ressource sont déterminés par le nombre de joueurs utilisant cette ressource. Le but de cette sous-section est de définir le modèle de congestion de Rosenthal [START_REF] Rosenthal | A class of games possessing pure-strategy Nash equilibria[END_REF]. Dans ce modèle chaque joueur sélectionne un sous-ensemble de ressources. L'allocation associée à chaque ressource est une fonction qui ne dépend que du nombre de joueurs utilisant cette ressource. La rémunération d'un joueur est la somme des allocations associées à chaque ressource dans son choix de stratégies, étant donnés les choix des autres joueurs. On peut établir l'existence d'un équilibre de Nash pur en construisant une fonction de potentiel exact pour de tels jeux de congestion. Monderer et Shapley [START_REF] Monderer | Potential Games[END_REF] ont montré que tout jeu de potentiel exact est isomorphique à un jeu de congestion. Leur preuve étant assez complexe, Voorneveld et al. [START_REF] Voorneveld | Congestion Games and Potentials Reconsidered[END_REF] en donne une plus courte et plus intuitive basée sur le théorème 5.

Un modèle de congestion est défini par :

-A un ensemble fini de joueurs ; -F un ensemble fini de ressources ; -pour chaque joueur i ∈ A, son ensemble de stratégies Σ i est une famille de sousensembles de F ; -pour chaque ressource f ∈ F , w f : {1, . . . , n} → R est la fonction d'allocation de la ressource f , avec w f (r), r ∈ {1, . . . , n} les allocations pour chaque utilisateur de la ressource f si le nombre total d'utilisateurs est r. Ce modèle permet de définir un jeu de congestion avec A comme ensemble de joueurs, Σ i le profil de stratégies du joueur i ∈ A et u i : Σ → R est défini comme suit :

pour chaque σ = (σ 1 , . . . , σ n ) ∈ Σ et pour chaque f ∈ F , on a n f (σ) = |{i ∈ A : f ∈ σ i }|, le nombre d'utilisateurs de la ressource f si les joueurs choisissent σ. Alors u i (σ) = f ∈σ i w f (n f (σ)).
Cette définition implique que chaque joueur n'est rémunéré qu'en fonction des ressources qu'il utilise et du nombre d'utilisateurs de ces ressources. Remarquons que les fonctions d'allocations peuvent donner des valeurs négatives représentant le coût d'utilisation d'une ressource. Le résultat principal de l'article de Rosenthal, formulé en termes de potentiel exact, est donné dans la proposition suivante. La preuve est triviale est peut donc être omise.

Proposition 2 Soit G un jeu de congestion défini comme ci-dessus. Alors G est un jeu de potentiel exact. Une fonction de potentiel est donnée par P : Σ → R définie pour tout σ = (σ i ) i∈A ∈ Σ comme suit :

P (σ) = f ∈ i∈A σ i n f (σ) l=1 w f (l)
Puisque Σ est un ensemble fini, le jeu possède un équilibre de Nash à stratégies pures.

Soit G = A, (Σ i ) i∈A , (u i ) i∈A et H = A, (Θ i ) i∈A , (v i ) i∈A deux jeux ayant le même ensemble de joueurs. G et H sont isomorphiques si pour tout i ∈ A il existe une bijection ϕ i : Σ i → Θ i telle que u i (σ 1 , . . . , σ n ) = v i (ϕ 1 (σ 1 ), . . . , ϕ n (σ n )) ∀(σ 1 , . . . , σ n ) ∈ Σ
Un jeu de congestion dans lequel les ressources ont des allocations non-nulles seulement si tous les joueurs les utilisent est clairement un jeu de coordination. De plus, tout jeu de coordination peut être formulé dans cette forme, comme le montre la preuve du théorème suivant.

Théorème 6 Tout jeu de coordination est isomorphique à un jeu de congestion.

Preuve : G = A, (Σ i ) i∈A , (u) i∈A un jeu de coordination à n joueurs dans lequel chaque joueur a la même fonction de rémunération u. Pour chaque σ ∈ Σ on a une ressource différente f (σ). On définit le modèle de congestion suivant A, F,

(Θ i ) i∈A , (w f ) f ∈F avec F = ∪ σ∈Σ {f (σ)}, pour chaque i ∈ A : Θ i = {g i (σ i )|σ i ∈ Σ i } où g i (σ i ) = ∪ σ -i ∈Σ -i {f (σ i , σ -i )} et pour chaque f (σ) ∈ F : w f (σ) (r) = u(σ) si r = n 0 sinon
Pour tout σ ∈ Σ : ∩ i∈A g i (σ i ) = {f (σ)}, donc le jeu correspondant à ce modèle de congestion est isomorphique à G (l'isomorphisme associe σ i à g i (σ i )).

Considérons maintenant un jeu de congestion dans lequel les allocations pour une certaine ressource sont non-nulles uniquement si elle n'est utilisée que par un seul joueur. Si pour chaque joueur, étant donné les choix de stratégies des autres joueurs, on choisit une ressource et on garde toujours la même, sans se soucier de ses propres choix de stratégies, on a un jeu fictif.

Théorème 7 Tout jeu fictif est isomorphique à un jeu de congestion.

Preuve : Soit G = A, (Σ i ) i∈A , (u i ) i∈A un jeu fictif. Pour chaque i ∈ A et chaque σ -i ∈ Σ -i on a une ressource différente f (σ -i ). On définit le modèle de congestion A, M,

(Θ i ) i∈A , (w f ) j∈F avec F = ∪ i∈A ∪ σ -i ∈Σ -i {f (σ -i )}, pour tout i ∈ A : Θ i = {h i (σ i )|σ i ∈ Σ i } où h i (σ i ) = {f σ -i |σ -i ∈ Σ -i } ∪ {f (θ -j |j ∈ A \ {i} et θ -j ∈ Σ -j est tel que θ i = σ i }, et pour tout f (σ -i ) ∈ M : w f (σ -i ) (r) = u i (σ i , σ -i ) si r = 1 (avec σ i ∈ Σ i arbitraire) 0 sinon Pour tout i ∈ A, σ-i ∈ Σ -i , et σi ∈ Σ i : i est l'unique utilisateur de f (σ -i ) dans (h j (σ j )) j∈A et toutes les autres ressources dans h i (σ i ) ont plus d'un utilisateur. Pourquoi ? Soit i ∈ A, σ-i ∈ Σ -i , et σi ∈ Σ i . Alors f (σ -i ) ∈ h i (σ i ) et pour tout j ∈ A \ {i} : f (σ -i ) / ∈ h j (σ j ), donc i est le seul utilisateur de f (σ -i ) dans (h j (σ j )) j∈A . Soit f ∈ h i (σ i ), f = f (σ -i ). -Si f = f (θ -i ) pour θ -i ∈ Σ -i , alors θ -i = σ-i implique que θ j = σj pour j ∈ A \ {i}, donc f = f (θ -i ) ∈ h j (σ j ). -Si f = f (θ -j ) pour j ∈ A \ {i} et θ -j ∈ Σ -j avec θ i = σi , alors f = f (θ -j ) ∈ h j (σ j ).
Dans les deux cas f a plus d'un utilisateur. Donc le jeu correspondant à ce modèle de congestion est isomorphique à G (l'isomorphisme associe σ i à h i (σ i )).

Dans les deux théorèmes précédents, on a prouvé que les jeux fictifs et les jeux de coordinations sont des jeux de congestion. En utilisant la décomposition du théorème 5, on obtient le théorème suivant : Théorème 8 Tout jeu de potentiel exact est isomorphique à un jeu de congestion.

Preuve : Soit G = A, (Σ i ) i∈A , (u i ) i∈A un jeu de potentiel exact. On le découpe en un jeu de coordination et un jeu fictif comme dans le théorème 5 et on prend leurs jeux de congestions isomorphiques associés comme dans les théorèmes 6 et 7. Sans perte de généralité, on prend leurs ensembles de ressources disjoints. On peut contruire une jeu de congestion isomorphique à G en prenant l'union des deux ensembles de ressources, les fonctions d'allocation comme dans les théorèmes 6 et 7, et les ensembles de stratégies

Θ i = {g i (σ i ) ∪ h i (σ i )|σ i ∈ Σ i }.
Dans un jeu de congestion de réseau les familles de stratégies Σ i sont assimilées implicitement à des chemins dans un réseau. Soit un réseau (V, E), deux noeuds a i , b i ∈ V pour tout joueur i ∈ A et une fonction d'allocation, les arêtes jouant le rôle de ressources. Le sous-ensemble de F disponible comme actions pour le joueur i est l'ensemble de tous les chemins de a i à b i . On suppose que le réseau est orienté. Un jeu de congestion de réseau est symétrique si tous les joueurs ont les mêmes points de départ et d'arrivée a et b. Habituellement, les fonctions d'allocations sont appellées fonctions de retard dans les jeux de congestion de réseau. On présente dans la sous-section suivante les résultats de complexité obtenus par A.Fabrikant, C.H.Papadimitriou et K.Talwar [START_REF] Fabrikant | The complexity of pure Nash Equilibria[END_REF].

Compléxité des jeux de congestion (Modèle de Rosenthal)

Théorème 9 Il existe un algorithme polynomial permettant de trouver un équilibre de Nash pur dans les jeux de congestions de réseau symétriques.

Preuve : L'algorithme calcule l'optimum de la fonction P (σ) donnée dans le théorème 2. Puisque l'optimum est aussi un optimum local, l'état résultant σ est un équilibre de Nash pur. L'algorithme est une reduction vers le problème de min-cost flow. Etant donné un réseau N = V, E, a, b et la fonction de retard (w e ) e∈E , on remplace dans N chaque arête e par n arêtes parallèles entre les mêmes noeuds, chacune ayant une capacité égale à 1, et avec les coûts e (1), . . . , w e (n). Il est facile de vérifier que chaque min-cost flow (entier) du nouveau réseau est un état qui minimise P (σ).

PLS-Complétude

Théorème 10 Il est P LS -Complet de trouver un équilibre de Nash pur dans les jeux de congestion de réseau des types suivants :

(1) Jeux de congestion généraux.

(2) Jeux de congestion symétriques.

(3) Jeux de congestion de réseau asymétriques.

Schéma de preuve : Soit le problème suivant : étant donnée une instance de notall-equal-3SAT avec des poids sur les clauses et ne contenant que des littéraux positifs, trouver un assignement de variables booleénnes satisfiant les clauses dont le poids total ne peut être amélioré en flippant une variable. On appelle ce problème POSNAE3FLIP ; On sait d'après [START_REF] Shäffer | Simple local search problems that are hard to solve[END_REF] que ce problème est PLScomplet. Pour prouver (1), Papadimitriou et al. [START_REF] Fabrikant | The complexity of pure Nash Equilibria[END_REF] construisent un jeu de congestion tel que ses équilibres de Nash sont les optima locaux de l'instance POSNAE3FLIP. La preuve de (2) est une réduction du cas non-symétrique vers le cas symétrique. Pour la preuve plus compliquée de (3), ils modifient le problème POSNAE3FLIP en un nouveau qu'ils appellent WITNESSED XPNAE3FLIP et prouvent :

-Il existe une PLS-réduction depuis WITNESSED XPNAE3FLIP vers NETWORK CONGESTION GAME. -WITNESSED XPNAE3FLIP est PLS-complet.

Autres modèles

Les jeux présentés par Konishi, Le Breton, et Weber [START_REF] Konishi | Equilibria in a model with partial rivalry[END_REF], Milchtaich [START_REF] Milchtaich | Congestion models with player specific payoff functions[END_REF] et Quint et Shubik [START_REF] Quint | A model of migration[END_REF] sont similaires, dans le sens où les fonctions d'utilité des joueurs sont caractérisées par un effet de congestion. Les différentes classes de jeux dont on va parler dans cette sous-section sont identifiées par des ensembles de propriétés concernant la structure des interactions stratégiques. En particulier, Konishi et al. [START_REF] Konishi | Equilibria in a model with partial rivalry[END_REF] imposent les hypothèses (P1)-(P4), présentées ci-après, pour un jeu G = A, (Σ i ) i∈A , (u i ) i∈A .

(P1) Il existe un ensemble fini F tel que Σ i = F pour tout joueur i ∈ A.

L'ensemble F est appelé "ensemble de ressources" et une stratégie pour un joueur i est de σ j σ i si σ j = σ i , g sinon, et que u i (σ i , θ -i ) = u i (σ i , θ -i ) où pour chaque j ∈ A \ {i} :

θ j = σ i si θ j = σ i , g sinon.
On remarque que pour chaque h ∈ F , n h (σ i , σ -i ) = n h (σ i , θ -i ). Donc (P3) implique u i (σ i , σ -i ) = u i (σ i , θ -i ). Donc, u i (σ i , σ -i ) = u i (σ i , σ -i ) = u i (σ i , θ -i ) = u i (θ i , θ -i ).

Konishi et al. [START_REF] Konishi | Equilibria in a model with partial rivalry[END_REF] et Milchtaich [START_REF] Milchtaich | Congestion models with player specific payoff functions[END_REF] ont démontré indépendamment le théorème suivant Théorème 11 Tout jeu G = A, (Σ i ) i∈A , (u i ) i∈A satisfiant (P1), (P2), (P3) et (P4), possède un équilibre de Nash pur.

On rappelle que, étant donné un jeu G = A, (Σ i ) i∈A , (u i ) i∈A , un profil de stratégies σ est un équilibre de Nash fort si pour tout S ⊆ A et tout profil de stratégies θ S ∈ Σ S , il existe au moins un joueur i ∈ S tel que u i (θ S , σ -S ≤ u i (σ). On note SNE(G) l'ensemble des équilibres de Nash forts du jeu G. En général, l'existence d'un équilibre de Nash fort n'est pas garantie, mais Konishi et al. [START_REF] Konishi | Equilibria in a model with partial rivalry[END_REF] montrent Théorème 12 Pour tout jeu satisfiant (P1), (P2), (P3) et (P4), l'ensemble des équilibres de Nash forts est non vide.

Quint et Shubik [START_REF] Quint | A model of migration[END_REF] proposent un modèle dans lequel l'hypothèse que tous les joueurs possèdent le même ensemble de ressources (établie par (P1)) est levée. Les jeux appartenant aux classes définies jusqu'alors n'admettent pas forcément de fonction de potentiel. Considérons maintenant la condition de "cross-symmetry" (littérallement "symétrie croisée"), qui établit le fait que les rémunérations sur certaines ressources sont indépendantes des joueurs, du moment que le nombre d'utilisateurs reste le même. Preuve : Soit G = A, (Σ i ) i∈A , (u i ) i∈A satisfiant (P1) et (P5). Pour tout f ∈ F et σ, θ ∈ Σ tels que n f (σ) = n f (θ), on a par (P5) : s'il existe i, j ∈ A tels que σ i = θ j = f , alors u i (σ) = u j (θ). Cela montre que pour tout f ∈ F il existe une fonction d'allocation w f : {1, . . . , n} → R telle que pour tout σ ∈ Sigma, si σ i = f , alors u i (σ) = w f (n f (σ)). Cela fait du jeu G, un jeu de congestion défini comme dans la sous-section 4.1 1 . Le résultat découle maintenant de la Proposition 2. 

Remarque

(

  P1') Il existe un ensemble fini F tel que Σ i ⊆ F pour tout i ∈ A.En supposant que la condition (P1') est vérifiée, il est toujours simple de vérifier que (P2') implique (P2) et (P3). Mais la réciproque n'est plus vraie comme dans le lemme 5.Exemple : on choisitA = {1, 2, 3}, F = {a, b, c} et les ensembles de stratégies Σ 1 = {a, b}, Σ 2 = {a}, Σ 3 = {a, c}. Ce jeu satisfait (P1'). La condition (P3) n'impose aucune contrainte supplémentaire et (P2) impose que u 1 (b, a, a) = u 1 (b, a, c) et u 3 (a, a, c) = u 3 (b,a, c). Cela n'implique pas que u 2 (a, a, c) = u 2 (b, a, a), condition requise par (P2').Quint et Shubik [27] montrentThéorème 13 Tout jeu satisfiant (P1'), (P2') et (P4) possède un équilibre de Nash pur.

( P5 )

 P5 Pour tous profils de stratégies σ, θ ∈ Σ et tous joueurs i, j ∈ A : siσ i = θ j = f et n f (σ) = n f (θ), alors u i (σ) = u j (θ).Remarquons que (P5) et (P1) impliquent (P2'), et donc (P2) et (P3). De plus, (P1) et (P5) garantissent l'existence d'un potentiel exact. Théorème 14 Tout jeu satisfiant (P1) et (P5) est un jeu de potentiel exact.

Proposition 3 Proposition 4

 34 Le théorème est toujours vrai si on remplace (P1) par (P1'). La Proposition 2 nous dit aussi que la fonction d'allocation (w f ) f ∈F induit le potentiel P : σ →f ∈∪ i∈A {σ i } n f (σ) l=1 w f (l).Voorneveld et al.[START_REF] Voorneveld | Congestion Games and Potentials Reconsidered[END_REF] définissent une classe de jeux de congestion C satisfiant (P1), (P5) mais aussi (P4)C = {G = A, (Σ i ) i∈A , (u i ) i∈A | G satisfait (P1), (P4) et (P5)}.pour laquelle ils obtiennent le résultat suivant : Théorème 15 Pour tout jeu appartenant à la classe C, SNE = NE = PM. 2Schéma de preuve Pour tout jeu G, SNE(G) ⊆ NE(G) et pout tout jeu de potentiel exact, P M(G) ⊆ NE(G). Il suffit alors de prouver les deux propositions suivantes Pour tout jeu G ∈ C, NE(G) ⊆ P M(G). Pour tout jeu G ∈ C, NE(G) ⊆ SNE(G).

espérée égale, et au moins un joueur a une utilité espérée strictement su- périeure aux autres). Corollaire 4 Même dans les jeux symétriques à 2 joueurs , il est N P-difficile de déter

  Ces résultats nous montrent qu'il est difficile d'obtenir des informations sommaires sur les équilibres de Nash d'un jeu.(Le corollaire 5 et des versions moindres des corollaires 2, 6 et 7 ont été démontrées pour la première fois par Gilboa et Zemel[START_REF] Gilboa | Nash and correlated equilibria : Some complexity considerations[END_REF].)

	Corollaire 1 Même dans les jeux symétriques à 2 joueurs, il est N P-difficile de dé-
	terminer s'il existe un équilibre de Nash donnant un bien-être social espéré(standard)
	(E[	u i ]) au moins égal à k, même quand k est le bien-être social maximum pouvant
	1≤i≤|A|	
	être obtenu dans le jeu.
	Corollaire 2 Même dans les jeux symétriques à 2 joueurs, il est N P-difficile de déter-
	miner s'il existe un équilibre de Nash dans lequel tous les joueurs ont une utilité espérée
	au moins égale à k, même quand k est le plus grand nombre tel qu'il existe une distri-
	bution sur les résultats du jeu telle que tous les joueurs ont une utilité espérée au moins
	égale à k.	
	Corollaire 3 Même dans les jeux symétriques à 2 joueurs, il est N P-difficile de déter-
	miner s'il existe un équilibre de Nash Pareto-optimal.(Une distribution sur les résultats
	d'un jeu est Pareto-optimale s'il n'y a aucune autre distribution telle que tous les joueurs
	ont une utilité -
	miner s'il existe un équilibre de Nash où le joueur 1 a une utilité espérée au moins égale
	à k.	
	Corollaire 5 Même dans les jeux symétriques à 2 joueurs, il est N P-difficile de déter-
	miner s'il existe plus d'un équilibre de Nash.
	Corollaire 6 Même dans les jeux symétriques à 2 joueurs, il est N P-difficile de déter-
	miner s'il existe un équilibre de Nash dans lequel le joueur 1 joue parfois x ∈ Σ 1 .
	Corollaire 7 Même dans les jeux symétriques à 2 joueurs, il est N P-difficile de déter-
	miner s'il existe un équilibre de Nash dans lequel le joueur 1 ne joue jamais x ∈ Σ 1

Définition 8 (SET-COVER)

  Etant donné un ensemble S = s 1 , . . . , s n , des sous-ensembles S 1 , S 2 , . . . , S m de S avec 1≤i≤m S i = S, et un entier k. On cherche s'il existe S c1 , S c2 , . . . , S c k tel que 1≤i≤k S c i = S. On réduit d'une instance arbitraire du SET-COVER vers l'instance de PURE-STRATEGY-BNE suivante. Soit deux joueurs, avecΘ ≡ Θ 1 = Θ 2 = {θ 1 , . . . , θ k }. φ est uniforme. De plus, Σ ≡ Σ 1 = Σ 2 = {S 1 , S 2 , . . . , S m ,s 1 , s 2 , . . . , s n }. Les fonctions d'utilité choisies ne dépendent pas des types, donc on omet l'argument type dans leur définition. Elles sont définies comme suit :

	Théorème 2 PURE-STRATEGY-BNE est N P-difficile, même dans les jeux symétriques
	à deux joueurs où φ est uniforme.

Preuve :

  donné que l'état courant est s 1 et que les joueurs jouent les actions a 1 , . . . , a n ; -Pour chaque joueur i, une fonction de paiement u i : S × Σ 1 × . . . × Σ n → R, où u i (s, a 1 , . . . , a n ) nous donne le paiement du joueur i dans l'état s quand les joueurs jouent a 1 , . . . , a n ; -Un facteur de réduction δ, tel que l'utilité totale de l'agent i est :

	inf
	δ k u i (s k , a k i , . . . , a k n )
	k=0
	où s k est l'état du jeu à l'étape k et les joueurs jouent les actions a k 1 , . . . , a k n à
	l'étape k.
	Définition 9 Un jeu stochastique (de Markov) est constitué de :
	-Un ensemble de joueurs A, avec |A| = n ;
	-Un ensemble d'états S, par lesquels le jeu va transiter ;
	-Pour chaque joueur i, un ensemble d'actions Σ i qui peuvent être jouées dans n'im-
	porte quel état ;

-Une fonction de probabilité de transition p :

S × Σ 1 × . . . × Σ n × S → [0, 1] où p(s 1 , a 1 , . . . ,

a n , s 2 ) nous donne la probabilité que le jeu soit dans l'état s 2 à la prochaine étape étant

  Schéma de : la preuve se base sur une réduction du problème PERIODIC-SAT vers une instance symétrique à 2 joueurs de PURE-STRATEGY-INVISIBLE-MARKOV-NE dans laquelle l'espace d'états est S = {s i } 1≤i≤n ∪ {t1 i,c } 1<i≤2n;c∈C ∪ {t 2 i,c } 1<i≤2n;c∈C ∪ {r}, où C est l'ensemble des clauses de φ(0). L'espace de stratégies (actions) des joueurs est

	la même formule, sauf que tous les exposants sont
	incrémentés de k. On cherche s'il existe un assignement de valeurs booléennes pour les
	variables k=0,1,... {x k 1 . . . x k n } tel que la formule φ(k) est satisfaite pour tout k = 0, 1, . . ..

Théorème 3 PURE-STRATEGY-INVISIBLE-MARKOV-NE est PSPACE-difficile, même quand le jeu est symétrique, à 2 joueurs et les transitions sont déterministes.

Si x

est une variable, x 1 et -x 1 sont des littéraux. On fait la différence entre la variable x 1 et le littéral x 1 .

où l'on associe le choix d'une ressource f ∈ F , au choix d'un ensemble de ressources {f } ⊆ F

SNE = Strong Nash Equilibrium, NE = Nash Equilibrium et PM = Potential Maximizer

Problèmes

On ne peut pas savoir en temps polynomial s'il existe un equilibre de nash pur dans les graphes généraux la plus grande famille pour laquelle on sait qu'il existe des equilibres de nash pur est justement la famille des jeux de congestion. On sait que le modèle de Milchtaich et Konishi et al. possède au moins un équilibre de Nash pur mais on ne connaît pas la fonction de potentiel permettant d'établir ce résultat.

choisir un élément de F .

(P2) Pour tout profil de stratégies σ ∈ Σ et tout joueur i, j ∈ A : si σ i = σ j et σ j ∈ Σ j est telle que σ i = σ j , alors u i (σ j , σ -j ) = u i (σ j , σ -j ).

Konishi et al. [START_REF] Konishi | Equilibria in a model with partial rivalry[END_REF] appellent cette hypothèse "independence of irrelevent choices" (littéralement "indépendance des choix hors de propos") : pour chaque joueur i ∈ A et chaque profil de stratégies σ l'utilité de i ne changera pas si l'ensemble de joueurs qui choisissent la même ressource que le joueur i n'est pas modifiée.

Soit σ ∈ Σ, f ∈ F . On note n f (σ) le nombre d'utilisateurs de la ressource f dans le profil de stratégies σ. La troisième propriété peut alors être définie comme suit :

Cette condition d'anonymat reflète l'idée que la rémunération du joueur i dépend du nombre de joueurs choisissant d'utiliser les ressources plutôt que de leur identité. La quatrième hypothèse, appelée "partial rivalry" (littérallement "rivalité partielle"), établit le fait que chaque joueur i ne regrettera pas que d'autres joueurs ayant choisi la même ressource que lui, en choisissent une autre. Plus formellement :

(P4) Pour tout joueur i ∈ A, chaque profil de stratégies σ ∈ Σ, chaque joueur j = i tel que σ j = σ i et chaque σ j = σ i : u i (σ j , σ -j ) ≤ u i (σ j , σ -j ).

Bien que Milchtaich [START_REF] Milchtaich | Congestion models with player specific payoff functions[END_REF] introduise son modèle d'une manière légèrement différente, la classe de jeux en résultant est la même. Plus spécifiquement, Milchtaich pose les conditions (P1), (P4), et la suivante :

En d'autres termes, l'utilité du joueur i dépend uniquement du nombre de joueurs ayant choisi la même ressource que lui. En supposant (P1), on peut prouver directement que (P2') implique (P2) et (P3). La réciproque est également vraie.

Lemme 5 Tout jeu

alors la condition (P2') est directement vérifiée. Sinon, pour un usage répété de (P2), on sait que pour un g fixé tel que g = σ i , u i (σ i , σ -i ) = u i (σ i , σ -i ) où pour chaque j ∈ A \ {i} :