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The Labeled perfect matching in bipartite
graphs

Jérôme Monnot∗

Abstract

In this paper, we deal with both the complexity and the approximability of the
labeled perfect matching problem in bipartite graphs. Given a simple graphG =
(V, E) with |V | = 2n vertices such thatE contains a perfect matching (of sizen),
together with a color (or label) functionL : E → {c1, . . . , cq}, the labeled perfect
matching problem consists in finding a perfect matching onG that uses a minimum
or a maximum number of colors.

Key words : Labeled matching, bipartite graphs,NP-complete, approximate algo-
rithms.

1 Introduction

Let Π be aNPO problem accepting simple graphsG = (V,E) as instances, edge-
subsetsE ′ ⊆ E verifying a given polynomial-time decidable propertyPred as solutions,
and the solutions cardinality as objective function; the labeled problem associated toΠ,
denoted by LABELED Π, seeks, given an instanceI = (G,L) whereG = (V,E) is a
simple graph andL is a mapping fromE to {c1, . . . , cq}, in finding a subsetE ′ verifying
Pred that optimizes the size of the setL(E′) = {L(e) : e ∈ E ′}. Note that two versions
of LABELED Π may be considered according to the optimization goal: LABELED Min Π
that consists in minimizing|L(E′)| and LABELED Max Π that consists in maximizing
|L(E ′)|. Roughly speaking, the mappingL corresponds to assigning a color (or a label) to
each edge and the goal of LABELED Min Π (resp.,Max Π) is to find an edge subset using
the fewest (resp., the most) number of colors. If a givenNPO problemΠ is NP-hard, then
the associated labeled problem LABELED Π is clearlyNP-hard (consider a distinct color
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The Labeled perfect matching in bipartite graphs

per edge). For instance, the LABELED Longest path problem or the LABELED maximum
induced matching problem are bothNP-hard. Moreover, if the decision problem associ-
ated toΠ is NP-complete, (the decision problem aims at deciding if a graphG contains an
edge subset verifyingPred), then LABELED Min Π can not be approximated within per-
formance ratio better than2− ε for all ε > 0 unlessP=NP, even if the graph is complete.
Indeed, if we color the edges fromG = (V,E) with a lonely color and then we com-
plete the graph, adding a new color per edge, then it isNP-complete to decide between
opt(I) = 1 andopt(I) ≥ 2, whereopt(I) is the value of an optimal solution. Notably,
it is the case of the LABELED traveling salesman problem or the LABELED minimum
partition problem into paths of lengthk for anyk ≥ 2.

Thus, labeled problems have been mainly studied, from a complexity and an approx-
imability point of view, whenΠ is polynomial, [5, 6, 7, 9, 14, 18, 19]. For example, the
first labeled problem introduced in the literature is the LABELED minimum spanning tree
problem, which has several applications in communication network design. This prob-
lem isNP-hard and many complexity and approximability results have been proposed in
[5, 7, 9, 14, 18, 19]. On the other hand, the LABELED maximum spanning tree problem
has been shown polynomial in [5]. Very recently, the LABELED path and the LABELED

cycle problems have been studied in [6]; in particular, the authors prove that the LABELED

minimum path problem isNP-hard.

In this paper, we go thoroughly into the investigation of the complexity and the ap-
proximability of labeled problems, with the analysis of the matching problem in bipartite
graphs. The maximum matching problem is one of the most known combinatorial op-
timization problem and arises in several applications such as images analysis, artificial
intelligence or scheduling. It turns out that a problem very closed to it has been studied
in the literature, which is called in [12] the restricted perfect matching problem. This
latter aims at determining, given a graphG = (V,E), a partitionE1, . . . , Ek of E andk
positive integersr1, . . . , rk, weather there exists a perfect matchingM onG satisfying for
all j = 1, . . . , k the restrictions|M ∩ Ej| ≤ rj. This problem has some relationship with
the timetable problem, since a solution may be seen as a matching between classes and
teachers that satisfies additional restrictions (for instance, no more thatr labs at the same
time). The restricted perfect matching problem is proved to beNP-complete in [12], even
if (i) |Ej| ≤ 2, (ii) rj = 1, and(iii) G is a bipartite graph. On the other hand, it is shown
in [20] that the restricted perfect matching problem is polynomial whenG is a complete
bipartite graph andk = 2. A perfect matchingM only verifying condition(ii) (that is to
say|M ∩ Ei| ≤ 1) is called good in [8]. Thus, we deduce that the LABELED maximum
perfect matching problem isNP-hard in bipartite graph sinceopt(I) = n iff G contains a
good matching.

In section 2, we analyze both the complexity and the approximability of the LABELED

minimum perfect matching problem and the LABELED maximum perfect matching prob-
lem in 2-regular bipartite graphs. Finally, section 3 focuses on the case of complete
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bipartite graphs.

Now, we introduce some terminology and notations that will be used in the paper. A
matchingM on a graphG = (V,E) is a subset of edges that are pairwise non adjacent;
M is said perfect if it covers the vertex set ofG. In the labeled perfect matching problem
(LABELED PM in short), we are given a simple graphG = (V,E) on |V | = 2n vertices
which contains a perfect matching together with a color (or label) functionL : E →
{c1, . . . , cq} on the edge set ofG. For i = 1, . . . , q, we denote byL−1({ci}) ⊆ E the
set of edges of colorci. The goal of LABELED Min PM (resp.,Max PM ) is to find
a perfect matching onG using a minimum (resp., a maximum) number of colors. An
equivalent formulation of LABELED Min PM could be the following: ifG[C] denotes
the subgraph induced by the edges of colorsC ⊆ {c1, . . . , cq}, then LABELED Min PM
aims at finding a subsetC of minimum size such thatG[C] contains a perfect matching.
The restriction of LABELED PM to the case where each color occurs at mostr times in
I = (G,L) (i.e., |L−1({ci})| ≤ r for i = 1, . . . , q) will be denoted by LABELED PMr.

We denote byopt(I) andapx(I) the value of an optimal and an approximate solution,
respectively. We say that an algorithmA is anε-approximation of LABELED Min PM
with ε ≥ 1 (resp.,Max PM with ε ≤ 1) if apx(I) ≤ ε × opt(I) (resp.,apx(I) ≥
ε × opt(I)) for any instanceI = (G,L).

2 The 2-regular bipartite case

In this section, we deal with a particular class of graphs that consist in a collection
of pairwise disjoints cycles of even length; note that such graphs are 2-regular bipartite
graphs.

Theorem 2.1 LABELED Min PMr is APX-complete in 2-regular bipartite graphs for
any r ≥ 2 .

Proof. Observe that any solution of LABELED Min PMr is anr-approximation. The
rest of the proof will be done via an approximation preserving reduction from the min-
imum balanced satisfiability problem with clauses of size at mostr, MIN BALANCED

r-SAT for short. An instanceI = (C, X) of MIN BALANCED r-SAT consists in a collec-
tion C = (C1, . . . , Cm) of clauses over the setX = {x1, . . . , xn} of boolean variables,
such that each clauseCj has at mostr literals and each variable appears positively as
many time as negatively; letBi denotes this number for anyi = 1, . . . , n. The goal is
to find a truth assignmentf satisfying a minimum number of clauses. MIN BALANCED

2-SAT where2 ≤ Bi ≤ 3 has been shownAPX-complete by the way of anL-reduction
from MAX BALANCED 2-SAT whereBi = 3, [4, 13].
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L(ei,2Bi−1) = c
j′
Bi

ei,2

ei,2Bi

ei,2Bi−1 ei,1

L(ei,1) = c
j′1

L(ei,2Bi
) = cjBi

L(ei,2) = cj1

L(ei,3) = c
j′2

ei,3

Figure 1: The gadgetH(xi) and the color of its edges.

We only prove the caser = 2. Let I = (C, X) be an instance of MIN BALANCED

2-SAT onm clausesC = {C1, . . . , Cm} andn variablesX = {x1, . . . , xn} such that each
variablexi has either 2 occurrences positive and 2 occurrences negative, or 3 occurrences
positive and 3 occurrences negative. We build the instanceI ′ = (H,L) of LABELED

Min PM2 whereH is a collection of pairwise disjoints cycles{H(x1), . . . , H(xn)} and
L colors edges ofH with colorsc1, . . . , cj, . . . , cm, by applying the following process:

• For each variablexi, create2Bi-long cycleH(xi) = {ei,1, . . . , ei,k, . . . , ei,2Bi
}.

• Color the edges ofH(xi) as follows: ifxi appears positively in clausesCj1 , . . . , CjBi

and negatively in clausesCj′1 , . . . , Cj′Bi
, then setL(ei,2k) = cjk

andL(ei,2k−1) = cj′k
for k = 1, . . . , Bi.

Figure 1 provides an illustration of the gadgetH(xi). Clearly,H is made ofn disjoint
cycles and is painted withm colors. Moreover, each color appears exactly twice.

Let f ∗ be an optimal truth assignment onI satisfyingm∗ clauses and consider the
perfect matchingM = ∪n

i=1Mi whereMi = {ei,2k|k = 1, . . . , Bi} if f(xi) = true,
Mi = {ei,2k−1|k = 1, . . . , Bi} otherwise;M uses exactlym∗ colors and thus:

opt(I) ≤ m∗ (1)

Conversely, letM ′ be a perfect matching onH usingapx(I) = m′ colors; if one sets
f ′(xi) = true if ei,2 ∈ M ′, f ′(xi) = false otherwise, we can easily observe that the truth
assignmentf ′ satisfiesm′ clauses.

360



Annales du LAMSADE n˚4-5

apx(I) = val(f ′) (2)

Hence, using inequalities (1) and (2) the result follows.

Trivially, the problem becomes obvious when each color is used exactly once. We
now show that we have a 2-approximation in 2-regular bipartite graphs, showing that the
restriction of LABELED Min PM to 2-regular bipartite graphs is as hard as approximate
as MINSAT.

Theorem 2.2 There exists an approximation preserving reduction from LABELED Min PM
in 2-regular bipartite graphs to MINSAT of expansion c(ε) = ε.

Proof. The result comes from the reciprocal of the previous transformation. Let
I = (G,L) be an instance of LABELED Min PM whereG = (V,E) is a collection
{H1, . . . , Hn} of disjoint cycles of even length andL(E) = {c1, . . . , cm} defines the
label set, we describe every cycleHi as the union of two matchingsMi andMi. We
construct an instanceI ′ = (C, X) of MINSAT whereC = {C1, . . . , Cm} is a set ofm
clauses andX = {x1, . . . , xn} is a set ofn variables, as follows. The clause setC is in
one to one correspondence with the color setL(E) and the variable setX is in one to
one correspondence with the connected components ofG; a literalxi (resp.,xi) appears
in Cj iff cj ∈ L(Mi) (resp.,cj ∈ L(Mi)). We easily deduce that any truth assignmentf
onI ′ that satisfiesk clauses can be converted into a perfect matchingMf onI that usesk
colors.

Using the 2-approximation of MINSAT [15] and the Theorem 2.2, we deduce:

Corollary 2.3 LABELED Min PM in 2-regular bipartite graphs is 2-approximable.

Dealing with LABELED Max PMr, the result of [12] shows that computing agood
matching is NP-hard even if the graph is bipartite and each color appears at most twice;
a good matchingM is a perfect matching using|M | colors. Thus, we deduce from this
result that LABELED Max PMr is NP-hard for anyr ≥ 2. We strengthen this result
using a reduction from MAX BALANCED 2-SAT.

Theorem 2.4 LABELED Max PMr is APX-complete in collection of pairwise disjoints
cycles of even length for any r ≥ 2 .

In the same way, using the approximate result for MAX SAT [2] , we obtain

Corollary 2.5 LABELED Max PM in 2-regular bipartite graphs is 0.7846-approximable.
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s1,j,f(2)

v1,j

s1,j,f(p)

s1,j,f(p−1)

s1,j,f(1) s2,j,f(1)

v2,j

s2,j,f(p)

Figure 2: The gadgetH(xj).

3 The complete bipartite case

When considering complete bipartite graphs, we obtain several results:

Theorem 3.1 LABELED Min PMr is APX-complete in bipartite complete graphs Kn,n

for any r ≥ 6.

Proof. We give an approximation preservingL-reduction (cf. Papadimitriou & Yan-
nakakis [16]) from the set cover problem, MINSC for short. Given a familyS = {S1, . . . ,
Sn0} of subsets and a ground setX = {x1, . . . , xm0} (we assume that∪n0

i=1Si = X), a set
cover ofX is a sub-familyS ′ = {Sf(1), . . . , Sf(p)} ⊆ S such that∪p

i=1Sf(i) = X; MINSC
is the problem of determining a minimum-size set coverS∗ = {Sf∗(1), . . . , Sf∗(q)} of X.
Its restriction MINSC3 to instances where each set is of size at most 3 and each element
xj appears in at most 3 different sets has been provedAPX-complete in [16].

Given an instanceI0 = (S, X) of MINSC, its characteristic graphGI0 = (L0, R0; EI0)
is a bipartite graph with a left setL0 = {l1, . . . , ln0} that represents the members of the
family S and a right setR0 = {r1, . . . , rm0} that represents the elements of the ground
setX; the edge-setEI0 of the characteristic graph is defined byEI0 = {[li, rj] : xj ∈ Si}.
Note thatGI0 is of maximum degree 3 iffI0 is an instance of MINSC3. FromI0, we con-
struct the instanceI = (Kn,n, L) of LABELED Min PM6. First, we start from a bipartite
graph havingm0 connected componentsH(xj) andn0 + m0 colors{c1, . . . , cn0+m0},
described as follows:

• For each elementxj ∈ X, we build a gadgetH(xj) that consists in a bipartite graph
of 2(dGI0

(rj) + 1) vertices and3dGI0
(rj) edges, wheredGI0

(rj) denotes the degree
of vertexrj ∈ R in GI0. The graphH(xj) is illustrated in Figure 2.
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• Assume that vertices{lf(1), . . . , lf(p)} are the neighbors ofrj in GI0, then color
H(xj) as follows: for anyk = 1, . . . , p, L(v1,j, s1,j,f(k)) = L(v2,j, s2,j,f(k)) = cf(k)

andL(s1,j,f(k), s2,j,f(k)) = cn0+j.

• We completeH = ∪xj∈XH(xj) into Kn,n, by adding a new color per edge.

Clearly,Kn,n is complete bipartite and hasn = 2
∑

rj∈R(dGI0
(rj)+1) = 2|EI0|+2m0

vertices. Moreover, each color is used at most 6 times.

Let S∗ be an optimal set cover onI0. FromS∗, we can easily construct a perfect
matchingM∗ on I using exactly|S∗| + m0 colors and thus:

optLABELED Min PM6(I) ≤ optMINSC3(I0) + m0 (3)

Conversely, we show that any perfect matchingM may be transformed into a perfect
matchingM” using the edges ofH and verifying: |L(M”)| ≤ |L(M)|. Let M be a
perfect matching onI and considerM1 the subset of edges fromM that link two different
gadgetsH(xj); we denote byG the multi-graph of vertex set∪jV (H(xj)) and of edge
setM1. Remark that each connected component ofG is eulerian. Each cycleC onG may
be completed into a2|C|-long cycleC ′ on Kn,n in such a way that the two endpoints of
each edge fromC ′ \C do belong to the same gadgetH(xj). If one swaps the edges from
each cycleC by the edges fromC ′ \ C, we obtain a new perfect matchingM ′ of which
every edge has its two endpoints in a same gadgetH(xj) and that verifies|L(M ′)| =
|L(M)|. Now consider for anyj the setM ′

j of edges fromM ′ ∩ H(xj), we setM”j =
{[v1,j, s1,j,f(k)], [v2,j, s2,j,f(k)]} ∪ {[s1,j,f(i), s2,j,f(i)]|i = 1, . . . , p} for somek such that
[v1,j, s1,j,f(k)] ∈ M ′

j or [v2,j, s2,j,f(k)] ∈ M ′
j (if there does not exist such ak, setk = 1).

In any case,M” = (M ′ \ M ′
j) ∪ M”j is a perfect matching that uses no more colors

thanM ′ does. Applying this procedure for anyj = 1, . . . ,m0, we obtain the expected
matchingM” with value apx(I). From such a matching, we may obtain a set cover
S” = {Sk|ck ∈ L(M”)} on I0 verifying:

|S”| = apx(I) − m0 (4)

Using (3) and (4), we deduceoptLABELED Min PM6(I) = optMINSC3(I0)+m0 and|S”|−
optMINSC3(I0) ≤ |L(M))|−optLABELED Min PM6(I). Finally, sinceoptMINSC3(I0) ≥ m0

3
the

result follows.

Applying the same kind of proof to the vertex cover problem in cubic graphs [1], we
obtain that LABELED Min PMr in Kn,n is APX-complete for anyr ≥ 3. In order to
establish this fact and starting from a cubic graphG = (V,E), we associate to each edge
e = [x, y] ∈ E a 4-long cycle{a1,e, a2,e, a3,e, a4,e} together with a colorationL given
by: L(a1,e) = cx, L(a2,e) = cy andL(a3,e) = L(a4,e) = ce. We complete this graph
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into a complete bipartite graph, adding a new color per edge. Each colorcx (∀x ∈ V )
appears 3 times,ce (∀e ∈ E) twice and any other color, once. Hence, the application of
the proof that was made in Theorem 3.1 leads to the announced result. Unfortunately,
we can not apply the proof of Theorem 2.2 since in this latter, on the one hand, we have
some cycles of size 6 and, on the other hand, a color may occurs in different gadgets.
One open question concerns the complexity of LABELED Min PM2 in bipartite com-
plete graphs. Moreover, from Theorem 3.1, we can also obtain a stronger inapproxima-
bility result: one can not compute in polynomial-time an approximate solution that uses
less that(1/2 − ε)ln(optLABELED Max PM(I)) colors in complete bipartite graphs where
optLABELED Max PM(I) is the value of an optimal solution of LABELED Max PM , i.e., the
maximum number of colors used by a perfect matching.

Corollary 3.2 For any ε > 0, LABELED Min PM is not (1
2
− ε) × ln(n) approximable

in complete bipartite graphs Kn,n, unless NP⊂DTIME(nloglogn).

Proof. First, we apply the construction made in Theorem 3.1, except thatI0 = (S, X)
is an instance of MINSC such that the number of elementsm0 is strictly larger than the
number of setsn0. FromI0, we constructn0 instancesI ′

1, . . . , I
′
n0

of LABELED Min PM
whereI ′

i = (H,Li). The colorsLi(E) are the same thanL(E), except that we replace
colorscn0+1, . . . , cn0+m0 by ci.

Let S∗ be an optimal set cover onI0 and assume thatSi ∈ S∗, we consider the
instanceIi of LABELED Min PM . FromS∗, we can easily construct a perfect matching
M∗

i of Ii that uses exactly|S∗| colors. Conversely, letMi be a perfect matching onIi; by
construction, the subsetS ′ = {Sk : ck ∈ L(Mi)} of S is a set cover ofX using|L(Mi)|
sets. Finally, letA be an approximate algorithm for LABELED Min PM , we compute
n0 perfect matchingsMi, applyingA on instancesIi. Thus, if we pick the matching that
uses the minimum number of colors, then we can polynomially construct a set cover on
I0 of cardinality this number of colors.

Sincen0 ≤ m0−1, the sizen of a perfect matching ofKn,n verifies:n = |EI0 |+m0 ≤
n0×m0+m0 ≤ m0(m0−1)+m0 = m2

0. Hence, from any algorithmA solving LABELED

Min PM within a performance ratioρA(I) ≤ 1
2
× ln(n), we can deduce an algorithm

for MINSC that guarantees the performance ratio1
2
ln(n) ≤ 1

2
ln(m2

0) = ln(m0). Since
the negative result of [10] holds whenn0 ≤ m0 − 1, i.e., MINSC is not(1− ε)× ln(m0)
approximable for anyε > 0, unlessNP⊂DTIME(nloglogn), we obtain a contradiction.

On the other hand, dealing with LABELED Max PMr in Kn,n, the result of [8] shows
that the caser = 2 is polynomial, whereas it becomesNP-hard whenr = Ω(n2). Indeed,
it is proved in [8] that, on the one hand, we can compute a good matching inKn,n within
polynomial-time when each color appears at most twice and, on the other hand, there
always exists a good matching in such a graph ifn ≥ 3. An interesting question is
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to decide the complexity and the approximability of LABELED Max PMr whenr is a
constant greater than 2.

3.1 Approximation algorithm for LABELED Min PMr

Let us consider the greedy algorithm for LABELED Min PMr in complete bipartite
graphs that iteratively picks the color that induces the maximum-size matching in the
current graph and delete the corresponding vertices. Formally, ifL(G′) denotes the colors
that are still available in the graphG′ at a given iteration and ifG′[c] (resp.,G′[V ′]) denotes
the subgraph ofG′ that is induced by the edges of colorc (resp., by the verticesV ′), then
the greedy algorithm consists in the following process:

Greedy

1 SetC′ = ∅, V ′ = V andG′ = G;

2 WhileV ′ �= ∅ do

2.1 For anyc ∈ L(G′), compute a maximum matchingMc in G′[c];

2.2 Select a colorc∗ maximizing|Mc|;
2.3 C′ ← C′ ∪ {c∗}, V ′ ← V ′ \ V (Mc∗) andG′ = G[V ′];

3 outputC′;

Theorem 3.3 Greedy is an Hr+r
2

-approximation of LABELED Min PMr in complete
bipartite graphs where Hr is the r-th harmonic number Hr =

∑r
i=1

1
i
, and this ratio is

tight.

Proof. Let I = (G,L) be an instance of LABELED Min PMr, we denote byC′
i

for i = 1, . . . , r be the set of colors of the approximate solution which appears exactlyi
times inC′ and bypi its cardinality; finally, letMi denote the matching with colorsC′

i. If
apx(I) = |C′|, then we have:

apx(I) =
r∑

i=1

pi (5)
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Let C∗ be an optimal solution corresponding to the perfect matchingM∗ of sizeopt(I) =
|C∗|; we denote byEi the set of edges fromM∗ that belong toG[∪i

k=1V (Mk)], the sub-
graph induced by∪i

k=1V (Mk) and we setqi = |Ei\Ei−1| (where we assume thatE0 = ∅).
For anyi = 1, . . . , r − 1, we get:

opt(I) ≥ 1

i

i∑
k=1

qk (6)

Indeed,
∑i

k=1 qk = |Ei| and by construction, each color appears at mosti times in
G[∪i

k=1V (Mk)].

We also have the following inequality for anyi = 1, . . . , r − 1:

opt(I) ≥ 1

r

(
2

i∑
k=1

k × pk −
i∑

k=1

qk

)
(7)

SinceM∗ is a perfect matching, the quantity2
∑i

k=1 k × pk −
∑i

k=1 qk counts the edges
of M∗ of which at least one endpoint belongs toG[∪i

k=1V (Mk)]. Because each color
appears on at mostr edges, the result follows.

Finally, since
∑r

k=1 k × pk is the size of a perfect matching ofG, the following in-
equality holds:

opt(I) ≥ 1

r

r∑
k=1

k × pk (8)

Using equality (5) and adding inequalities (6) with coefficientαi = 1
2(i+1)

for i =
1, . . . , r−1, inequalities (7) with coefficientβi = r

2i(i+1)
for i = 1, . . . , r−1 and inequality

(8), we obtain:

apx(I) ≤
(

Hr + r

2

)
opt(I) (9)

Indeed,
∑r−1

i=1 αi = 1
2
Hr− 1

2
and

∑r−1
i=1 βi = r

2
− 1

2
. Thus,

∑r−1
i=1 (αi + βi)+1 = Hr+r

2
.

The quantitypj appears in inequality (8) and inequality (7) fori = j, . . . , r − 1. Its

total contribution is: 1
r
j × pj + 2

r

(∑r−1
i=j βi

)
j × pj = pj. The quantityqj appears in

inequality (6) fori = j, . . . , r − 1 and inequality (7) fori = j, . . . , r − 1. We have:(∑r−1
i=j

αi

i

)
− 1

r

(∑r−1
i=j βi

)
qj = 0. Thus, using equality (5), the inequality (9) holds.

In order to show the tightness of this bound, consider the instanceI = (Kn,n, L) where
the left setA and the right setB of vertices of the complete bipartite graph are given by
A = {ai,j : i = 1, . . . , r, j = 1, . . . , ni} andB = {bi,j : i = 1, . . . , r, j = 1, . . . , ni},
with n1 = (r + 1)! andni = r! for i = 2, . . . , r. Moreover, the edge coloration verifies:

366



Annales du LAMSADE n˚4-5

apx(I) = 7
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Figure 3: The instanceI whenr = 2.

• For anyi = 1, . . . , r and for anyj = 1, . . . , ni, L(ai,j, bi,j) = ci,� j
i
�.

• For anyi = 2, . . . , r and for anyj = 1, . . . , r!, L(ai,j, b1,i−1+(r−1)(j−1)) = c∗1,j

andL(bi,j, a1,i−1+(r−1)(j−1)) = c∗2,j.

• For anyj = 1, . . . , r!, L(b1,j+(r−1)×r!, a1,(r+1)!−j+1) = c∗1,j

andL(a1,j+(r−1)×r!, b1,(r+1)!−j+1) = c∗2,j.

• We associate a new color to each missing edge.

I is clearly an instance of LABELED Min PMr. The set of colorsC′ = {ci,� j
i
� : i =

1, . . . , r, j = 1, . . . , ni} is the approximate solution outputted byGreedy and it uses
apx(I) = (Hr + r) × r! colors, whereasC∗ = {c∗i,j : i = 1, 2, j = 1, . . . , r!} is the set of
colors that are used by an optimal solution; this latter verifiesopt(I) = 2× r!. The Figure
3 describes the instanceI for r = 2.

We conjecture that LABELED Min PM is notO(nε)-approximable in complete bipar-
tite graphs. Thus, a challenge will be to give better approximate algorithms or to improve
the lower bound.
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