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The Labeled perfect matching in bipartite
graphs

Jérobme Monndt

Abstract

In this paper, we deal with both the complexity and the approximability of the
labeled perfect matching problem in bipartite graphs. Given a simple gragh
(V, E) with |V| = 2n vertices such thaE’ contains a perfect matching (of sizg,
together with a color (or label) functioh : £ — {c1,..., ¢}, the labeled perfect
matching problem consists in finding a perfect matchingzotihat uses a minimum
or a maximum number of colors.

Key words : Labeled matching, bipartite grapH$P-complete, approximate algo-
rithms.

1 Introduction

Let IT be aNPO problem accepting simple graplis = (V, E) as instances, edge-
subsetss’ C F verifying a given polynomial-time decidable propeftyed as solutions,
and the solutions cardinality as objective function; the labeled problem associdied to
denoted by laABELED TI, seeks, given an instande= (G, L) whereG = (V,E) is a
simple graph and. is a mapping fromE to {cy, . .., ¢}, in finding a subsek’ verifying
Pred that optimizes the size of the sb{E’") = {L(e) : e € E'}. Note that two versions
of LABELED II may be considered according to the optimization goaB#LED Min I1
that consists in minimizingZ(E")| and LABELED Max II that consists in maximizing
|L(E")|. Roughly speaking, the mappidgcorresponds to assigning a color (or a label) to
each edge and the goal oRRELED Min II (resp.,M ax II) is to find an edge subset using
the fewest (resp., the most) number of colors. If a gM&®O problemlI is NP-hard, then
the associated labeled problemaeLED II is clearlyNP-hard (consider a distinct color
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The Labeled perfect matching in bipartite graphs

per edge). For instance, th@BELED Longest path problem or theABELED maximum
induced matching problem are bdtfiP-hard. Moreover, if the decision problem associ-
ated toll is NP-complete, (the decision problem aims at deciding if a gi@@iontains an
edge subset verifyingred), then LABELED Min II can not be approximated within per-
formance ratio better thah— ¢ for all ¢ > 0 unlessP=NP, even if the graph is complete.
Indeed, if we color the edges frod = (V, E)) with a lonely color and then we com-
plete the graph, adding a new color per edge, thenNtRscomplete to decide between
opt(I) = 1 andopt(I) > 2, whereopt(I) is the value of an optimal solution. Notably,
it is the case of the ABELED traveling salesman problem or theéRELED minimum
partition problem into paths of lengthfor anyk > 2.

Thus, labeled problems have been mainly studied, from a complexity and an approx-
imability point of view, whenlI is polynomial, [5, 6, 7, 9, 14, 18, 19]. For example, the
first labeled problem introduced in the literature is theBELED minimum spanning tree
problem, which has several applications in communication network design. This prob-
lem isNP-hard and many complexity and approximability results have been proposed in
[5,7,9, 14, 18, 19]. On the other hand, theHELED maximum spanning tree problem
has been shown polynomial in [5]. Very recently, theBELED path and the RBELED
cycle problems have been studied in [6]; in particular, the authors prove thaaH® ED
minimum path problem islP-hard.

In this paper, we go thoroughly into the investigation of the complexity and the ap-
proximability of labeled problems, with the analysis of the matching problem in bipartite
graphs. The maximum matching problem is one of the most known combinatorial op-
timization problem and arises in several applications such as images analysis, artificial
intelligence or scheduling. It turns out that a problem very closed to it has been studied
in the literature, which is called in [12] the restricted perfect matching problem. This
latter aims at determining, given a gragh= (V, F), a partitionZ,, . .., £ of £ andk
positive integers,, . . ., 7, weather there exists a perfect matchivigon G satisfying for
allj =1,...,ktherestrictiongM N E;| < r;. This problem has some relationship with
the timetable problem, since a solution may be seen as a matching between classes and
teachers that satisfies additional restrictions (for instance, no more ldizs at the same
time). The restricted perfect matching problem is proved thiBecomplete in [12], even
if (4) |E;| <2, (i) r; = 1, and(iii) G is a bipartite graph. On the other hand, it is shown
in [20] that the restricted perfect matching problem is polynomial wiiga a complete
bipartite graph an& = 2. A perfect matching\/ only verifying condition(i7) (that is to
say|M N E;| < 1) is called good in [8]. Thus, we deduce that theglELED maximum
perfect matching problem NP-hard in bipartite graph sinegt(7) = n iff G contains a
good matching.

In section 2, we analyze both the complexity and the approximability of ¥eELED
minimum perfect matching problem and thedeLED maximum perfect matching prob-
lem in 2-regular bipartite graphs. Finally, section 3 focuses on the case of complete
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bipartite graphs.

Now, we introduce some terminology and notations that will be used in the paper. A
matchingM on a graph? = (V, E) is a subset of edges that are pairwise non adjacent;
M is said perfect if it covers the vertex set@f In the labeled perfect matching problem
(LABELED PM in short), we are given a simple graph= (V, E) on |V| = 2n vertices
which contains a perfect matching together with a color (or label) fundionF —
{e1,...,¢,} onthe edge set afi. Fori = 1,...,q, we denote by.~'({¢;}) C F the
set of edges of colof;. The goal of LABELED Min PM (resp.,Max PM) is to find
a perfect matching o using a minimum (resp., @ maximum) number of colors. An
equivalent formulation of BBELED Min PM could be the following: ifG[C] denotes
the subgraph induced by the edges of coldrs {c, ..., ¢}, then LABELED Min PM
aims at finding a subsét of minimum size such tha®|[C] contains a perfect matching.
The restriction of lABELED PM to the case where each color occurs at md#nes in
I=(G,L)(.e,|L7'({c})] <rfori=1,...,q)wil be denoted by IABELED P M,..

We denote bypt(I) andapz(I) the value of an optimal and an approximate solution,
respectively. We say that an algorithiis anc-approximation of IABELED Min PM
with ¢ > 1 (resp.,Max PM with ¢ < 1) if apz(I) < & x opt(I) (resp.,apz(l) >
e x opt(I)) for any instancd = (G, L).

2 The2-regular bipartite case

In this section, we deal with a particular class of graphs that consist in a collection
of pairwise disjoints cycles of even length; note that such graphs are 2-regular bipartite
graphs.

Theorem 2.1 LABELED Min PM, is APX-complete in 2-regular bipartite graphs for
anyr > 2.

Proof. Observe that any solution ofABELED Min P M, is anr-approximation. The
rest of the proof will be done via an approximation preserving reduction from the min-
imum balanced satisfiability problem with clauses of size at mp$fliIN BALANCED
r-SAT for short. An instancé = (C, X') of MIN BALANCED r-SAT consists in a collec-
tionC = (C4,...,C,,) of clauses over the s& = {x,...,x,} of boolean variables,
such that each clausg; has at most- literals and each variable appears positively as
many time as negatively; le®; denotes this number for aniy= 1,...,n. The goal is

to find a truth assignment satisfying a minimum number of clauses.INMBALANCED
2-SAT where2 < B; < 3 has been showAPX-complete by the way of ah-reduction
from MAX BALANCED 2-SAT whereB; = 3, [4, 13].
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L(ej2p;—1) = Cj/B
i

Figure 1: The gadgdl (z;) and the color of its edges.

We only prove the case = 2. Let] = (C, X) be an instance of Mi BALANCED
2-SaT onm clause€ = {C4,...,C,,} andn variablesX = {z4,...,z,} such that each
variablex; has either 2 occurrences positive and 2 occurrences negative, or 3 occurrences
positive and 3 occurrences negative. We build the instdhce (H, L) of LABELED
Min PM, whereH is a collection of pairwise disjoints cycld${(z,),..., H(x,)} and

L colors edges off with colorsc,, . .., cj,. .., ¢y, by applying the following process:
e For each variable;, create2B;-long cycleH (z;) = {e;1,..., €k, - .-, €28, }-

e Colorthe edges ol/ (z;) as follows: ifz; appears positively in clausey,, .. ., Cj,,.

and negatively in clauses;, , ..., C}, , then setl.(e; ;) = ¢j, andL(e;or-1) = cjt

fork=1,...,B,.

Figure 1 provides an illustration of the gaddétx;). Clearly, H is made of» disjoint
cycles and is painted withn colors. Moreover, each color appears exactly twice.

Let f* be an optimal truth assignment dnsatisfyingm* clauses and consider the
perfect matchingl/ = U, M; whereM; = {e; |k = 1,...,B;} if f(x;) = true,
M; ={e;on-1|k =1,..., B;} otherwise;M uses exactlyn* colors and thus:

opt(I) <m* 1)

Conversely, letM’ be a perfect matching off usingapx(I) = m’ colors; if one sets
f'(z;) = trueif e;0 € M', f'(x;) = false otherwise, we can easily observe that the truth
assignmeny’ satisfiesn’ clauses.
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apz(I) = val(f") 2)

Hence, using inequalities (1) and (2) the result follows.

Trivially, the problem becomes obvious when each color is used exactly once. We
now show that we have a 2-approximation in 2-regular bipartite graphs, showing that the
restriction of LABELED Min PM to 2-regular bipartite graphs is as hard as approximate
as MINSAT.

Theorem 2.2 Thereexistsan approximation preserving reduction fromLABELED Min PM
in 2-regular bipartite graphsto MINSAT of expansion ¢(e) = e.

Proof.  The result comes from the reciprocal of the previous transformation. Let
I = (G, L) be an instance of ABELED Min PM whereG = (V, E) is a collection
{Hy,...,H,} of disjoint cycles of even length anbl(E) = {cy,...,c,} defines the
label set, we describe every cyclé as the union of two matching®/; and M;. We
construct an instanc€ = (C, X) of MINSAT whereC = {C},...,C,,} is a set ofm
clauses and = {zi,...,x,} is a set ofn variables, as follows. The clause geis in
one to one correspondence with the color BeE') and the variable seX is in one to
one correspondence with the connected componerds efliteral z; (resp.,z;) appears
in C; iff ¢; € L(M,;) (resp.,c; € L(M;)). We easily deduce that any truth assignmgént
on [’ that satisfieg clauses can be converted into a perfect matchifigon / that uses:
colors.

Using the 2-approximation of MiSAT [15] and the Theorem 2.2, we deduce:
Corollary 2.3 LABELED Min PM in2-regular bipartite graphsis 2-approximable.

Dealing with LABELED Max PM,., the result of [12] shows that computinggaod
matching is NP-hard even if the graph is bipartite and each color appears at most twice;
a good matching\/ is a perfect matching usind/| colors. Thus, we deduce from this
result that LABELED Max PM, is NP-hard for anyr > 2. We strengthen this result
using a reduction from Mx BALANCED 2-SAT.

Theorem 2.4 LABELED Max PM, is APX-complete in collection of pairwise digoints
cycles of even length for any r > 2.

In the same way, using the approximate result forX\BAT [2] , we obtain
Corollary 25 LABELED Max PM in2-regular bipartite graphsis0.7846-approximable.
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°1.5,f(1) 2,5, (1)

S1.5.f(p) °2,5.f(p)

Figure 2: The gadget (z;).

3 Thecomplete bipartite case

When considering complete bipartite graphs, we obtain several results:

Theorem 3.1 LABELED Min PM, is APX-complete in bipartite complete graphs &, ,,
for any r > 6.

Proof. We give an approximation preservirigreduction (cf. Papadimitriou & Yan-
nakakis [16]) from the set cover problem W5 C for short. Given a famil§ = {54,. ..,

Sn, } Of subsets and a ground s€t= {1, ..., z,,} (we assume that®, S; = X), a set
cover ofX is a sub-familyS’ = {Sy1), ..., Sy} € Ssuchthat)_, Sy, = X; MINSC
is the problem of determining a minimum-size set caSer= {Sy-(1),..., Sy(g} of X.

Its restriction MNSG; to instances where each set is of size at most 3 and each element
x; appears in at most 3 different sets has been prév@d-complete in [16].

Given aninstanc&, = (S, X) of MINSC, its characteristic gragh;, = (L, Ro; Ey,)
is a bipartite graph with a left séty = {l;,...,l,,} that represents the members of the
family S and a right seR, = {r1,...,rn,} that represents the elements of the ground
setX; the edge-set’;, of the characteristic graph is defined By, = {[l;,r;] : z; € S;}.
Note thatG, is of maximum degree 3 iff; is an instance of MNSC;. From I, we con-
struct the instancé = (K, ,, L) of LABELED Min PMs. First, we start from a bipartite
graph havingn, connected componentg(xz;) andn, 4+ mq colors{cy, ..., cugtme }»
described as follows:

e Foreach element; € X, we build a gadgef/ (=) that consists in a bipartite graph
of 2(dg,, (r;) + 1) vertices anddg, (r;) edges, wherég, (r;) denotes the degree
of vertexr; € Rin Gy,. The graphf (z;) is illustrated in Figure 2.
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e Assume that vertice$l;,...,ls,)} are the neighbors of; in Gy, then color
H(z;) as follows: foranyk = 1,....p, L(vyj, 1,5, re)) = L(v2,5. 525, 5k)) = Crh)
andL(sy,j,7(k): S2,j,5(k)) = Cuoti-

e We completef! = U, cx H (z;) into K, ,,, by adding a new color per edge.

Clearly, K., is complete bipartite and has= 2}, 5 (de,, (r;)+1) = 2|Ep[+2mg
vertices. Moreover, each color is used at most 6 times.

Let S* be an optimal set cover ofy. From S*, we can easily construct a perfect
matchingM* on I using exactlyS*| 4+ mq colors and thus:

OPtLaBELED Min PMg (I) < optminsc (]0) + myo (3)

Conversely, we show that any perfect matchiignay be transformed into a perfect
matchingM” using the edges off and verifying: |L(M”)| < |L(M)|. Let M be a
perfect matching ori and considef/, the subset of edges froi that link two different
gadgetsH (z;); we denote byG the multi-graph of vertex set; V' (H (z;)) and of edge
setM;. Remark that each connected componertt @ eulerian. Each cycl€ on G may
be completed into &|C|-long cycleC’ on K, ,, in such a way that the two endpoints of
each edge from” \ C' do belong to the same gadgétz;). If one swaps the edges from
each cycle” by the edges front” \ C, we obtain a new perfect matchirdd’ of which
every edge has its two endpoints in a same gadfjet;) and that verifiesL(M')| =
|L(M)|. Now consider for any the setM; of edges fromM' N H (z;), we setM”; =
i svirmls [v2g, 5250w UAls1.56), s2500]li = 1., p} for somek such that
[V14; S15.7k)) € M OF [v2, 895 7)) € Mj (if there does not exist suchia setk = 1).

In any caseM” = (M'\ M;}) U M”; is a perfect matching that uses no more colors
than M’ does. Applying this procedure for any= 1, ..., mg, we obtain the expected
matching M” with value apxz(I). From such a matching, we may obtain a set cover
S§” = {Sk|cr. € L(M”)} on I, verifying:

87| = apx(I) —mo (4)

Using (3) and (4), we dedu@@t | age eo rrin P (1) = optminsc, (lo) +mo and|S” | —

OPtMINSC, (IO) < |L(]Vf))| — OPtLageLED Min PMG(I)- Fina”y, SincmptMlNSCg(IO) > % the
result follows.

Applying the same kind of proof to the vertex cover problem in cubic graphs [1], we
obtain that IABELED Min PM, in K, , is APX-complete for any- > 3. In order to
establish this fact and starting from a cubic graphk- (V, E), we associate to each edge
e = [z,y] € E a4-long cycle{a ., as.,as.,as.} together with a coloratio given
by: L(a1.) = ¢, L(aze) = ¢, and L(as,) = L(as.) = c.. We complete this graph
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into a complete bipartite graph, adding a new color per edge. Eachgolor: € V)
appears 3 times;. (Ve € E) twice and any other color, once. Hence, the application of
the proof that was made in Theorem 3.1 leads to the announced result. Unfortunately,
we can not apply the proof of Theorem 2.2 since in this latter, on the one hand, we have
some cycles of size 6 and, on the other hand, a color may occurs in different gadgets.
One open question concerns the complexity eBELED Min P M, in bipartite com-

plete graphs. Moreover, from Theorem 3.1, we can also obtain a stronger inapproxima-
bility result: one can not compute in polynomial-time an approximate solution that uses
less that(1/2 — &)In(optiaseren maz pa (1)) colors in complete bipartite graphs where
optLaseren Maz (1) IS the value of an optimal solution ofABELED Max PM, i.e., the
maximum number of colors used by a perfect matching.

Corollary 3.2 For any ¢ > 0, LABELED Min PM isnot (3 — ) x In(n) approximable
in complete bipartite graphs K, ,,, unless NPCDTIME (n!°9o9m).

Proof. First, we apply the construction made in Theorem 3.1, excepihat(S, X)
is an instance of MiSC such that the number of elements is strictly larger than the
number of sets,. From/,, we construct, instancedy, ..., I, of LABELED Min PM

wherel! = (H, L;). The colorsL;(E) are the same thah(FE), except that we replace
colorsc,y41s - - s Cngmeo DY G

Let S* be an optimal set cover ofy and assume that; € S*, we consider the
instancel; of LABELED Min PM. FromS*, we can easily construct a perfect matching
M of I; that uses exactlyS*| colors. Conversely, let/; be a perfect matching of; by
construction, the subs& = {5 : ¢, € L(M;)} of S is a set cover o using|L(M;)|
sets. Finally, letA be an approximate algorithm forABELED Min PM, we compute
no perfect matchingd/;, applyingA on instanceg;. Thus, if we pick the matching that
uses the minimum number of colors, then we can polynomially construct a set cover on
1, of cardinality this number of colors.

Sinceny < my— 1, the sizen of a perfect matching ok, ,, verifies:n = |E; | +mg <
no X mo+mqy < mo(me—1)+me = m2. Hence, from any algorithm solving LABELED
Min PM within a performance ratip, (/) < 1 x In(n), we can deduce an algorithm
for MINSC that guarantees the performance ration) < iln(m3) = In(mo). Since
the negative result of [10] holds when < m — 1, i.e., MINSC is not(1 — ¢) x In(my)
approximable for any > 0, unlessNPCDTIME(nl°9'°9"), we obtain a contradiction.

On the other hand, dealing withABELED Max PM, in K, ,, the result of [8] shows
that the case = 2 is polynomial, whereas it becombiP-hard when- = Q(n?). Indeed,
it is proved in [8] that, on the one hand, we can compute a good matchifig irwithin
polynomial-time when each color appears at most twice and, on the other hand, there
always exists a good matching in such a graph it= 3. An interesting question is
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to decide the complexity and the approximability oARELED Max PM, whenr is a
constant greater than 2.

3.1 Approximation algorithm for LABELED Min PM,

Let us consider the greedy algorithm forkELED Min P M, in complete bipartite
graphs that iteratively picks the color that induces the maximum-size matching in the
current graph and delete the corresponding vertices. Formally(if) denotes the colors
that are still available in the graglf at a given iteration and &' [¢] (resp.,GG’[V']) denotes
the subgraph of? that is induced by the edges of colofresp., by the verticeg’), then
the greedy algorithm consists in the following process:

G eedy
1SetC’ =0,V =V andG = G;
2 WhileV’ # () do

2.1 For any € L(G"), compute a maximum matching, in G’[c];
2.2 Select a colot* maximizing|M.|;
230 —CU{c}, V' — V' \ V(M) andG = G[V];

3 outputl’;

Theorem 3.3 G eedy isan %-approximation of LABELED Min PM, in complete
bipartite graphs where H., is the r-th harmonic number H, = >~"_ 1, and thisratio is
tight.

Proof. Letl = (G, L) be an instance of ABELED Min PM,, we denote by,
fori = 1,...,r be the set of colors of the approximate solution which appears exactly
times inC’ and byp; its cardinality; finally, let)M; denote the matching with colo€s. If
apx(I) = |C'|, then we have:

apx(I) = sz- (5)
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LetC* be an optimal solution corresponding to the perfect matchifigf sizeopt (1) =
|C*|; we denote byF; the set of edges from/* that belong ta=[Ui_,V (M)], the sub-
graph induced by _,V (M,) and we set; = |E;\ E;_1| (where we assume tha}, = ().
Forany:i =1,...,r — 1, we get:

opt(1) > =3 (6)
k=1

Indeed,Z};:1 qr = |F;| and by construction, each color appears at nidghes in
GU,_,V (My)].

We also have the following inequality for any=1,...,r — 1:

opt(1 <2 Z kX pr — Z Qk> (7)

SinceM* is a perfect matching, the quant'mE};:1 kX pp — 22:1 g counts the edges
of M* of which at least one endpoint belongsd&éJ:_, V' (M,,)]. Because each color
appears on at mostedges, the result follows.

Finally, since}",_, k x py is the size of a perfect matching 6f, the following in-
equality holds:

1 T
opt(D) > =3k x py 8)
k=1
Using equality (5) and adding inequalities (6) with coefficiant= 50 +1) fori =
1,...,r—1, inequalities (7) with coefficient; = m fori=1,...,r—1and mequallty
(8), we obtain:
apa(r) < (255 ) oprt) ©

Indeed > /" a; = LH,—Landy | B = L — L. Thus YI_| (a; + 3;)+1 = 2=,

The quantityp; appears in inequality (8) and inequality (7) foe= j,...,r — 1. Its
total contribution is:2j x p; + 2 (ZZ’;; ﬂi) j x p; = p;. The quantityg; appears in
inequality (6) fori = j,...,r — 1 and inequality (7) forn = j,...,r — 1. We have:
(Z?‘.l a—?) -1 (Z;;jl @) g; = 0. Thus, using equality (5), the inequality (9) holds.

i=j 1

In order to show the tightness of this bound, consider the instarcék’, ,,, L) where
the left setd and the right seB of vertices of the complete bipartite graph are given by
A={a;;:i=1,...,r,j=1,.. n}andBf{b”.zfl,....r j=1... n},
with ny = (r + 1)! andn; = r! fori = 2,...,r. Moreover, the edge coloration verifies:
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*
1,1

apa(l) =17 opt(I) = 4

Figure 3: The instancéwhenr = 2.

Foranyi=1,...,randforanyj =1,...,n;, L(a;;,b;;) = ¢, (-

Foranyi =2,...,randforanyj =1,....7!, L(a;;, b1 i—14(r—1)(-1)) = 1
andL(bi,j; al,i71+(r—1)(j—1)) = C;J"

Foranyj =1,...,7! L(bijt(r—1)xrl, @1, 1)1—j41) = €15
andL(ax,j+(r—1)xrt, b1,G+1)1—j+1) = €5 ;-

We associate a new color to each missing edge.

I is clearly an instance of ABELED Min PM,. The set of colorg’ = {Ci,rﬂ D=
1,...,r, j = 1,...,n;} is the approximate solution outputted By eedy and it uses
apr(l) = (H, +r) x r! colors, wherea€* = {c; ; :i = 1,2, j =1,...,r!} is the set of
colors that are used by an optimal solution; this latter verifigsl) = 2 x r!. The Figure
3 describes the instanddor r = 2.

We conjecture that ABELED Min PM is notO(n®)-approximable in complete bipar-
tite graphs. Thus, a challenge will be to give better approximate algorithms or to improve
the lower bound.
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